Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmliblzma/liblzma/lz/lz_decoder.h
3156 views
1
// SPDX-License-Identifier: 0BSD
2
3
///////////////////////////////////////////////////////////////////////////////
4
//
5
/// \file lz_decoder.h
6
/// \brief LZ out window
7
///
8
// Authors: Igor Pavlov
9
// Lasse Collin
10
//
11
///////////////////////////////////////////////////////////////////////////////
12
13
#ifndef LZMA_LZ_DECODER_H
14
#define LZMA_LZ_DECODER_H
15
16
#include "common.h"
17
18
19
/// Maximum length of a match rounded up to a nice power of 2 which is
20
/// a good size for aligned memcpy(). The allocated dictionary buffer will
21
/// be 2 * LZ_DICT_REPEAT_MAX bytes larger than the actual dictionary size:
22
///
23
/// (1) Every time the decoder reaches the end of the dictionary buffer,
24
/// the last LZ_DICT_REPEAT_MAX bytes will be copied to the beginning.
25
/// This way dict_repeat() will only need to copy from one place,
26
/// never from both the end and beginning of the buffer.
27
///
28
/// (2) The other LZ_DICT_REPEAT_MAX bytes is kept as a buffer between
29
/// the oldest byte still in the dictionary and the current write
30
/// position. This way dict_repeat(dict, dict->size - 1, &len)
31
/// won't need memmove() as the copying cannot overlap.
32
///
33
/// Note that memcpy() still cannot be used if distance < len.
34
///
35
/// LZMA's longest match length is 273 so pick a multiple of 16 above that.
36
#define LZ_DICT_REPEAT_MAX 288
37
38
39
typedef struct {
40
/// Pointer to the dictionary buffer.
41
uint8_t *buf;
42
43
/// Write position in dictionary. The next byte will be written to
44
/// buf[pos].
45
size_t pos;
46
47
/// Indicates how full the dictionary is. This is used by
48
/// dict_is_distance_valid() to detect corrupt files that would
49
/// read beyond the beginning of the dictionary.
50
size_t full;
51
52
/// Write limit
53
size_t limit;
54
55
/// Allocated size of buf. This is 2 * LZ_DICT_REPEAT_MAX bytes
56
/// larger than the actual dictionary size. This is enforced by
57
/// how the value for "full" is set; it can be at most
58
/// "size - 2 * LZ_DICT_REPEAT_MAX".
59
size_t size;
60
61
/// True once the dictionary has become full and the writing position
62
/// has been wrapped in decode_buffer() in lz_decoder.c.
63
bool has_wrapped;
64
65
/// True when dictionary should be reset before decoding more data.
66
bool need_reset;
67
68
} lzma_dict;
69
70
71
typedef struct {
72
size_t dict_size;
73
const uint8_t *preset_dict;
74
size_t preset_dict_size;
75
} lzma_lz_options;
76
77
78
typedef struct {
79
/// Data specific to the LZ-based decoder
80
void *coder;
81
82
/// Function to decode from in[] to *dict
83
lzma_ret (*code)(void *coder,
84
lzma_dict *restrict dict, const uint8_t *restrict in,
85
size_t *restrict in_pos, size_t in_size);
86
87
void (*reset)(void *coder, const void *options);
88
89
/// Set the uncompressed size. If uncompressed_size == LZMA_VLI_UNKNOWN
90
/// then allow_eopm will always be true.
91
void (*set_uncompressed)(void *coder, lzma_vli uncompressed_size,
92
bool allow_eopm);
93
94
/// Free allocated resources
95
void (*end)(void *coder, const lzma_allocator *allocator);
96
97
} lzma_lz_decoder;
98
99
100
#define LZMA_LZ_DECODER_INIT \
101
(lzma_lz_decoder){ \
102
.coder = NULL, \
103
.code = NULL, \
104
.reset = NULL, \
105
.set_uncompressed = NULL, \
106
.end = NULL, \
107
}
108
109
110
extern lzma_ret lzma_lz_decoder_init(lzma_next_coder *next,
111
const lzma_allocator *allocator,
112
const lzma_filter_info *filters,
113
lzma_ret (*lz_init)(lzma_lz_decoder *lz,
114
const lzma_allocator *allocator,
115
lzma_vli id, const void *options,
116
lzma_lz_options *lz_options));
117
118
extern uint64_t lzma_lz_decoder_memusage(size_t dictionary_size);
119
120
121
//////////////////////
122
// Inline functions //
123
//////////////////////
124
125
/// Get a byte from the history buffer.
126
static inline uint8_t
127
dict_get(const lzma_dict *const dict, const uint32_t distance)
128
{
129
return dict->buf[dict->pos - distance - 1
130
+ (distance < dict->pos
131
? 0 : dict->size - LZ_DICT_REPEAT_MAX)];
132
}
133
134
135
/// Optimized version of dict_get(dict, 0)
136
static inline uint8_t
137
dict_get0(const lzma_dict *const dict)
138
{
139
return dict->buf[dict->pos - 1];
140
}
141
142
143
/// Test if dictionary is empty.
144
static inline bool
145
dict_is_empty(const lzma_dict *const dict)
146
{
147
return dict->full == 0;
148
}
149
150
151
/// Validate the match distance
152
static inline bool
153
dict_is_distance_valid(const lzma_dict *const dict, const size_t distance)
154
{
155
return dict->full > distance;
156
}
157
158
159
/// Repeat *len bytes at distance.
160
static inline bool
161
dict_repeat(lzma_dict *dict, uint32_t distance, uint32_t *len)
162
{
163
// Don't write past the end of the dictionary.
164
const size_t dict_avail = dict->limit - dict->pos;
165
uint32_t left = my_min(dict_avail, *len);
166
*len -= left;
167
168
size_t back = dict->pos - distance - 1;
169
if (distance >= dict->pos)
170
back += dict->size - LZ_DICT_REPEAT_MAX;
171
172
// Repeat a block of data from the history. Because memcpy() is faster
173
// than copying byte by byte in a loop, the copying process gets split
174
// into two cases.
175
if (distance < left) {
176
// Source and target areas overlap, thus we can't use
177
// memcpy() nor even memmove() safely.
178
do {
179
dict->buf[dict->pos++] = dict->buf[back++];
180
} while (--left > 0);
181
} else {
182
memcpy(dict->buf + dict->pos, dict->buf + back, left);
183
dict->pos += left;
184
}
185
186
// Update how full the dictionary is.
187
if (!dict->has_wrapped)
188
dict->full = dict->pos - 2 * LZ_DICT_REPEAT_MAX;
189
190
return *len != 0;
191
}
192
193
194
static inline void
195
dict_put(lzma_dict *dict, uint8_t byte)
196
{
197
dict->buf[dict->pos++] = byte;
198
199
if (!dict->has_wrapped)
200
dict->full = dict->pos - 2 * LZ_DICT_REPEAT_MAX;
201
}
202
203
204
/// Puts one byte into the dictionary. Returns true if the dictionary was
205
/// already full and the byte couldn't be added.
206
static inline bool
207
dict_put_safe(lzma_dict *dict, uint8_t byte)
208
{
209
if (unlikely(dict->pos == dict->limit))
210
return true;
211
212
dict_put(dict, byte);
213
return false;
214
}
215
216
217
/// Copies arbitrary amount of data into the dictionary.
218
static inline void
219
dict_write(lzma_dict *restrict dict, const uint8_t *restrict in,
220
size_t *restrict in_pos, size_t in_size,
221
size_t *restrict left)
222
{
223
// NOTE: If we are being given more data than the size of the
224
// dictionary, it could be possible to optimize the LZ decoder
225
// so that not everything needs to go through the dictionary.
226
// This shouldn't be very common thing in practice though, and
227
// the slowdown of one extra memcpy() isn't bad compared to how
228
// much time it would have taken if the data were compressed.
229
230
if (in_size - *in_pos > *left)
231
in_size = *in_pos + *left;
232
233
*left -= lzma_bufcpy(in, in_pos, in_size,
234
dict->buf, &dict->pos, dict->limit);
235
236
if (!dict->has_wrapped)
237
dict->full = dict->pos - 2 * LZ_DICT_REPEAT_MAX;
238
239
return;
240
}
241
242
243
static inline void
244
dict_reset(lzma_dict *dict)
245
{
246
dict->need_reset = true;
247
return;
248
}
249
250
#endif
251
252