Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmliblzma/liblzma/lz/lz_encoder.c
3156 views
1
// SPDX-License-Identifier: 0BSD
2
3
///////////////////////////////////////////////////////////////////////////////
4
//
5
/// \file lz_encoder.c
6
/// \brief LZ in window
7
///
8
// Authors: Igor Pavlov
9
// Lasse Collin
10
//
11
///////////////////////////////////////////////////////////////////////////////
12
13
#include "lz_encoder.h"
14
#include "lz_encoder_hash.h"
15
16
// See lz_encoder_hash.h. This is a bit hackish but avoids making
17
// endianness a conditional in makefiles.
18
#if defined(WORDS_BIGENDIAN) && !defined(HAVE_SMALL)
19
# include "lz_encoder_hash_table.h"
20
#endif
21
22
#include "memcmplen.h"
23
24
25
typedef struct {
26
/// LZ-based encoder e.g. LZMA
27
lzma_lz_encoder lz;
28
29
/// History buffer and match finder
30
lzma_mf mf;
31
32
/// Next coder in the chain
33
lzma_next_coder next;
34
} lzma_coder;
35
36
37
/// \brief Moves the data in the input window to free space for new data
38
///
39
/// mf->buffer is a sliding input window, which keeps mf->keep_size_before
40
/// bytes of input history available all the time. Now and then we need to
41
/// "slide" the buffer to make space for the new data to the end of the
42
/// buffer. At the same time, data older than keep_size_before is dropped.
43
///
44
static void
45
move_window(lzma_mf *mf)
46
{
47
// Align the move to a multiple of 16 bytes. Some LZ-based encoders
48
// like LZMA use the lowest bits of mf->read_pos to know the
49
// alignment of the uncompressed data. We also get better speed
50
// for memmove() with aligned buffers.
51
assert(mf->read_pos > mf->keep_size_before);
52
const uint32_t move_offset
53
= (mf->read_pos - mf->keep_size_before) & ~UINT32_C(15);
54
55
assert(mf->write_pos > move_offset);
56
const size_t move_size = mf->write_pos - move_offset;
57
58
assert(move_offset + move_size <= mf->size);
59
60
memmove(mf->buffer, mf->buffer + move_offset, move_size);
61
62
mf->offset += move_offset;
63
mf->read_pos -= move_offset;
64
mf->read_limit -= move_offset;
65
mf->write_pos -= move_offset;
66
67
return;
68
}
69
70
71
/// \brief Tries to fill the input window (mf->buffer)
72
///
73
/// If we are the last encoder in the chain, our input data is in in[].
74
/// Otherwise we call the next filter in the chain to process in[] and
75
/// write its output to mf->buffer.
76
///
77
/// This function must not be called once it has returned LZMA_STREAM_END.
78
///
79
static lzma_ret
80
fill_window(lzma_coder *coder, const lzma_allocator *allocator,
81
const uint8_t *in, size_t *in_pos, size_t in_size,
82
lzma_action action)
83
{
84
assert(coder->mf.read_pos <= coder->mf.write_pos);
85
86
// Move the sliding window if needed.
87
if (coder->mf.read_pos >= coder->mf.size - coder->mf.keep_size_after)
88
move_window(&coder->mf);
89
90
// Maybe this is ugly, but lzma_mf uses uint32_t for most things
91
// (which I find cleanest), but we need size_t here when filling
92
// the history window.
93
size_t write_pos = coder->mf.write_pos;
94
lzma_ret ret;
95
if (coder->next.code == NULL) {
96
// Not using a filter, simply memcpy() as much as possible.
97
lzma_bufcpy(in, in_pos, in_size, coder->mf.buffer,
98
&write_pos, coder->mf.size);
99
100
ret = action != LZMA_RUN && *in_pos == in_size
101
? LZMA_STREAM_END : LZMA_OK;
102
103
} else {
104
ret = coder->next.code(coder->next.coder, allocator,
105
in, in_pos, in_size,
106
coder->mf.buffer, &write_pos,
107
coder->mf.size, action);
108
}
109
110
coder->mf.write_pos = write_pos;
111
112
// Silence Valgrind. lzma_memcmplen() can read extra bytes
113
// and Valgrind will give warnings if those bytes are uninitialized
114
// because Valgrind cannot see that the values of the uninitialized
115
// bytes are eventually ignored.
116
memzero(coder->mf.buffer + write_pos, LZMA_MEMCMPLEN_EXTRA);
117
118
// If end of stream has been reached or flushing completed, we allow
119
// the encoder to process all the input (that is, read_pos is allowed
120
// to reach write_pos). Otherwise we keep keep_size_after bytes
121
// available as prebuffer.
122
if (ret == LZMA_STREAM_END) {
123
assert(*in_pos == in_size);
124
ret = LZMA_OK;
125
coder->mf.action = action;
126
coder->mf.read_limit = coder->mf.write_pos;
127
128
} else if (coder->mf.write_pos > coder->mf.keep_size_after) {
129
// This needs to be done conditionally, because if we got
130
// only little new input, there may be too little input
131
// to do any encoding yet.
132
coder->mf.read_limit = coder->mf.write_pos
133
- coder->mf.keep_size_after;
134
}
135
136
// Restart the match finder after finished LZMA_SYNC_FLUSH.
137
if (coder->mf.pending > 0
138
&& coder->mf.read_pos < coder->mf.read_limit) {
139
// Match finder may update coder->pending and expects it to
140
// start from zero, so use a temporary variable.
141
const uint32_t pending = coder->mf.pending;
142
coder->mf.pending = 0;
143
144
// Rewind read_pos so that the match finder can hash
145
// the pending bytes.
146
assert(coder->mf.read_pos >= pending);
147
coder->mf.read_pos -= pending;
148
149
// Call the skip function directly instead of using
150
// mf_skip(), since we don't want to touch mf->read_ahead.
151
coder->mf.skip(&coder->mf, pending);
152
}
153
154
return ret;
155
}
156
157
158
static lzma_ret
159
lz_encode(void *coder_ptr, const lzma_allocator *allocator,
160
const uint8_t *restrict in, size_t *restrict in_pos,
161
size_t in_size,
162
uint8_t *restrict out, size_t *restrict out_pos,
163
size_t out_size, lzma_action action)
164
{
165
lzma_coder *coder = coder_ptr;
166
167
while (*out_pos < out_size
168
&& (*in_pos < in_size || action != LZMA_RUN)) {
169
// Read more data to coder->mf.buffer if needed.
170
if (coder->mf.action == LZMA_RUN && coder->mf.read_pos
171
>= coder->mf.read_limit)
172
return_if_error(fill_window(coder, allocator,
173
in, in_pos, in_size, action));
174
175
// Encode
176
const lzma_ret ret = coder->lz.code(coder->lz.coder,
177
&coder->mf, out, out_pos, out_size);
178
if (ret != LZMA_OK) {
179
// Setting this to LZMA_RUN for cases when we are
180
// flushing. It doesn't matter when finishing or if
181
// an error occurred.
182
coder->mf.action = LZMA_RUN;
183
return ret;
184
}
185
}
186
187
return LZMA_OK;
188
}
189
190
191
static bool
192
lz_encoder_prepare(lzma_mf *mf, const lzma_allocator *allocator,
193
const lzma_lz_options *lz_options)
194
{
195
// For now, the dictionary size is limited to 1.5 GiB. This may grow
196
// in the future if needed, but it needs a little more work than just
197
// changing this check.
198
if (!IS_ENC_DICT_SIZE_VALID(lz_options->dict_size)
199
|| lz_options->nice_len > lz_options->match_len_max)
200
return true;
201
202
mf->keep_size_before = lz_options->before_size + lz_options->dict_size;
203
204
mf->keep_size_after = lz_options->after_size
205
+ lz_options->match_len_max;
206
207
// To avoid constant memmove()s, allocate some extra space. Since
208
// memmove()s become more expensive when the size of the buffer
209
// increases, we reserve more space when a large dictionary is
210
// used to make the memmove() calls rarer.
211
//
212
// This works with dictionaries up to about 3 GiB. If bigger
213
// dictionary is wanted, some extra work is needed:
214
// - Several variables in lzma_mf have to be changed from uint32_t
215
// to size_t.
216
// - Memory usage calculation needs something too, e.g. use uint64_t
217
// for mf->size.
218
uint32_t reserve = lz_options->dict_size / 2;
219
if (reserve > (UINT32_C(1) << 30))
220
reserve /= 2;
221
222
reserve += (lz_options->before_size + lz_options->match_len_max
223
+ lz_options->after_size) / 2 + (UINT32_C(1) << 19);
224
225
const uint32_t old_size = mf->size;
226
mf->size = mf->keep_size_before + reserve + mf->keep_size_after;
227
228
// Deallocate the old history buffer if it exists but has different
229
// size than what is needed now.
230
if (mf->buffer != NULL && old_size != mf->size) {
231
lzma_free(mf->buffer, allocator);
232
mf->buffer = NULL;
233
}
234
235
// Match finder options
236
mf->match_len_max = lz_options->match_len_max;
237
mf->nice_len = lz_options->nice_len;
238
239
// cyclic_size has to stay smaller than 2 Gi. Note that this doesn't
240
// mean limiting dictionary size to less than 2 GiB. With a match
241
// finder that uses multibyte resolution (hashes start at e.g. every
242
// fourth byte), cyclic_size would stay below 2 Gi even when
243
// dictionary size is greater than 2 GiB.
244
//
245
// It would be possible to allow cyclic_size >= 2 Gi, but then we
246
// would need to be careful to use 64-bit types in various places
247
// (size_t could do since we would need bigger than 32-bit address
248
// space anyway). It would also require either zeroing a multigigabyte
249
// buffer at initialization (waste of time and RAM) or allow
250
// normalization in lz_encoder_mf.c to access uninitialized
251
// memory to keep the code simpler. The current way is simple and
252
// still allows pretty big dictionaries, so I don't expect these
253
// limits to change.
254
mf->cyclic_size = lz_options->dict_size + 1;
255
256
// Validate the match finder ID and setup the function pointers.
257
switch (lz_options->match_finder) {
258
#ifdef HAVE_MF_HC3
259
case LZMA_MF_HC3:
260
mf->find = &lzma_mf_hc3_find;
261
mf->skip = &lzma_mf_hc3_skip;
262
break;
263
#endif
264
#ifdef HAVE_MF_HC4
265
case LZMA_MF_HC4:
266
mf->find = &lzma_mf_hc4_find;
267
mf->skip = &lzma_mf_hc4_skip;
268
break;
269
#endif
270
#ifdef HAVE_MF_BT2
271
case LZMA_MF_BT2:
272
mf->find = &lzma_mf_bt2_find;
273
mf->skip = &lzma_mf_bt2_skip;
274
break;
275
#endif
276
#ifdef HAVE_MF_BT3
277
case LZMA_MF_BT3:
278
mf->find = &lzma_mf_bt3_find;
279
mf->skip = &lzma_mf_bt3_skip;
280
break;
281
#endif
282
#ifdef HAVE_MF_BT4
283
case LZMA_MF_BT4:
284
mf->find = &lzma_mf_bt4_find;
285
mf->skip = &lzma_mf_bt4_skip;
286
break;
287
#endif
288
289
default:
290
return true;
291
}
292
293
// Calculate the sizes of mf->hash and mf->son.
294
//
295
// NOTE: Since 5.3.5beta the LZMA encoder ensures that nice_len
296
// is big enough for the selected match finder. This makes it
297
// easier for applications as nice_len = 2 will always be accepted
298
// even though the effective value can be slightly bigger.
299
const uint32_t hash_bytes
300
= mf_get_hash_bytes(lz_options->match_finder);
301
assert(hash_bytes <= mf->nice_len);
302
303
const bool is_bt = (lz_options->match_finder & 0x10) != 0;
304
uint32_t hs;
305
306
if (hash_bytes == 2) {
307
hs = 0xFFFF;
308
} else {
309
// Round dictionary size up to the next 2^n - 1 so it can
310
// be used as a hash mask.
311
hs = lz_options->dict_size - 1;
312
hs |= hs >> 1;
313
hs |= hs >> 2;
314
hs |= hs >> 4;
315
hs |= hs >> 8;
316
hs >>= 1;
317
hs |= 0xFFFF;
318
319
if (hs > (UINT32_C(1) << 24)) {
320
if (hash_bytes == 3)
321
hs = (UINT32_C(1) << 24) - 1;
322
else
323
hs >>= 1;
324
}
325
}
326
327
mf->hash_mask = hs;
328
329
++hs;
330
if (hash_bytes > 2)
331
hs += HASH_2_SIZE;
332
if (hash_bytes > 3)
333
hs += HASH_3_SIZE;
334
/*
335
No match finder uses this at the moment.
336
if (mf->hash_bytes > 4)
337
hs += HASH_4_SIZE;
338
*/
339
340
const uint32_t old_hash_count = mf->hash_count;
341
const uint32_t old_sons_count = mf->sons_count;
342
mf->hash_count = hs;
343
mf->sons_count = mf->cyclic_size;
344
if (is_bt)
345
mf->sons_count *= 2;
346
347
// Deallocate the old hash array if it exists and has different size
348
// than what is needed now.
349
if (old_hash_count != mf->hash_count
350
|| old_sons_count != mf->sons_count) {
351
lzma_free(mf->hash, allocator);
352
mf->hash = NULL;
353
354
lzma_free(mf->son, allocator);
355
mf->son = NULL;
356
}
357
358
// Maximum number of match finder cycles
359
mf->depth = lz_options->depth;
360
if (mf->depth == 0) {
361
if (is_bt)
362
mf->depth = 16 + mf->nice_len / 2;
363
else
364
mf->depth = 4 + mf->nice_len / 4;
365
}
366
367
return false;
368
}
369
370
371
static bool
372
lz_encoder_init(lzma_mf *mf, const lzma_allocator *allocator,
373
const lzma_lz_options *lz_options)
374
{
375
// Allocate the history buffer.
376
if (mf->buffer == NULL) {
377
// lzma_memcmplen() is used for the dictionary buffer
378
// so we need to allocate a few extra bytes to prevent
379
// it from reading past the end of the buffer.
380
mf->buffer = lzma_alloc(mf->size + LZMA_MEMCMPLEN_EXTRA,
381
allocator);
382
if (mf->buffer == NULL)
383
return true;
384
385
// Keep Valgrind happy with lzma_memcmplen() and initialize
386
// the extra bytes whose value may get read but which will
387
// effectively get ignored.
388
memzero(mf->buffer + mf->size, LZMA_MEMCMPLEN_EXTRA);
389
}
390
391
// Use cyclic_size as initial mf->offset. This allows
392
// avoiding a few branches in the match finders. The downside is
393
// that match finder needs to be normalized more often, which may
394
// hurt performance with huge dictionaries.
395
mf->offset = mf->cyclic_size;
396
mf->read_pos = 0;
397
mf->read_ahead = 0;
398
mf->read_limit = 0;
399
mf->write_pos = 0;
400
mf->pending = 0;
401
402
#if UINT32_MAX >= SIZE_MAX / 4
403
// Check for integer overflow. (Huge dictionaries are not
404
// possible on 32-bit CPU.)
405
if (mf->hash_count > SIZE_MAX / sizeof(uint32_t)
406
|| mf->sons_count > SIZE_MAX / sizeof(uint32_t))
407
return true;
408
#endif
409
410
// Allocate and initialize the hash table. Since EMPTY_HASH_VALUE
411
// is zero, we can use lzma_alloc_zero() or memzero() for mf->hash.
412
//
413
// We don't need to initialize mf->son, but not doing that may
414
// make Valgrind complain in normalization (see normalize() in
415
// lz_encoder_mf.c). Skipping the initialization is *very* good
416
// when big dictionary is used but only small amount of data gets
417
// actually compressed: most of the mf->son won't get actually
418
// allocated by the kernel, so we avoid wasting RAM and improve
419
// initialization speed a lot.
420
if (mf->hash == NULL) {
421
mf->hash = lzma_alloc_zero(mf->hash_count * sizeof(uint32_t),
422
allocator);
423
mf->son = lzma_alloc(mf->sons_count * sizeof(uint32_t),
424
allocator);
425
426
if (mf->hash == NULL || mf->son == NULL) {
427
lzma_free(mf->hash, allocator);
428
mf->hash = NULL;
429
430
lzma_free(mf->son, allocator);
431
mf->son = NULL;
432
433
return true;
434
}
435
} else {
436
/*
437
for (uint32_t i = 0; i < mf->hash_count; ++i)
438
mf->hash[i] = EMPTY_HASH_VALUE;
439
*/
440
memzero(mf->hash, mf->hash_count * sizeof(uint32_t));
441
}
442
443
mf->cyclic_pos = 0;
444
445
// Handle preset dictionary.
446
if (lz_options->preset_dict != NULL
447
&& lz_options->preset_dict_size > 0) {
448
// If the preset dictionary is bigger than the actual
449
// dictionary, use only the tail.
450
mf->write_pos = my_min(lz_options->preset_dict_size, mf->size);
451
memcpy(mf->buffer, lz_options->preset_dict
452
+ lz_options->preset_dict_size - mf->write_pos,
453
mf->write_pos);
454
mf->action = LZMA_SYNC_FLUSH;
455
mf->skip(mf, mf->write_pos);
456
}
457
458
mf->action = LZMA_RUN;
459
460
return false;
461
}
462
463
464
extern uint64_t
465
lzma_lz_encoder_memusage(const lzma_lz_options *lz_options)
466
{
467
// Old buffers must not exist when calling lz_encoder_prepare().
468
lzma_mf mf = {
469
.buffer = NULL,
470
.hash = NULL,
471
.son = NULL,
472
.hash_count = 0,
473
.sons_count = 0,
474
};
475
476
// Setup the size information into mf.
477
if (lz_encoder_prepare(&mf, NULL, lz_options))
478
return UINT64_MAX;
479
480
// Calculate the memory usage.
481
return ((uint64_t)(mf.hash_count) + mf.sons_count) * sizeof(uint32_t)
482
+ mf.size + sizeof(lzma_coder);
483
}
484
485
486
static void
487
lz_encoder_end(void *coder_ptr, const lzma_allocator *allocator)
488
{
489
lzma_coder *coder = coder_ptr;
490
491
lzma_next_end(&coder->next, allocator);
492
493
lzma_free(coder->mf.son, allocator);
494
lzma_free(coder->mf.hash, allocator);
495
lzma_free(coder->mf.buffer, allocator);
496
497
if (coder->lz.end != NULL)
498
coder->lz.end(coder->lz.coder, allocator);
499
else
500
lzma_free(coder->lz.coder, allocator);
501
502
lzma_free(coder, allocator);
503
return;
504
}
505
506
507
static lzma_ret
508
lz_encoder_update(void *coder_ptr, const lzma_allocator *allocator,
509
const lzma_filter *filters_null lzma_attribute((__unused__)),
510
const lzma_filter *reversed_filters)
511
{
512
lzma_coder *coder = coder_ptr;
513
514
if (coder->lz.options_update == NULL)
515
return LZMA_PROG_ERROR;
516
517
return_if_error(coder->lz.options_update(
518
coder->lz.coder, reversed_filters));
519
520
return lzma_next_filter_update(
521
&coder->next, allocator, reversed_filters + 1);
522
}
523
524
525
static lzma_ret
526
lz_encoder_set_out_limit(void *coder_ptr, uint64_t *uncomp_size,
527
uint64_t out_limit)
528
{
529
lzma_coder *coder = coder_ptr;
530
531
// This is supported only if there are no other filters chained.
532
if (coder->next.code == NULL && coder->lz.set_out_limit != NULL)
533
return coder->lz.set_out_limit(
534
coder->lz.coder, uncomp_size, out_limit);
535
536
return LZMA_OPTIONS_ERROR;
537
}
538
539
540
extern lzma_ret
541
lzma_lz_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
542
const lzma_filter_info *filters,
543
lzma_ret (*lz_init)(lzma_lz_encoder *lz,
544
const lzma_allocator *allocator,
545
lzma_vli id, const void *options,
546
lzma_lz_options *lz_options))
547
{
548
#if defined(HAVE_SMALL) && !defined(HAVE_FUNC_ATTRIBUTE_CONSTRUCTOR)
549
// The CRC32 table must be initialized.
550
lzma_crc32_init();
551
#endif
552
553
// Allocate and initialize the base data structure.
554
lzma_coder *coder = next->coder;
555
if (coder == NULL) {
556
coder = lzma_alloc(sizeof(lzma_coder), allocator);
557
if (coder == NULL)
558
return LZMA_MEM_ERROR;
559
560
next->coder = coder;
561
next->code = &lz_encode;
562
next->end = &lz_encoder_end;
563
next->update = &lz_encoder_update;
564
next->set_out_limit = &lz_encoder_set_out_limit;
565
566
coder->lz.coder = NULL;
567
coder->lz.code = NULL;
568
coder->lz.end = NULL;
569
coder->lz.options_update = NULL;
570
coder->lz.set_out_limit = NULL;
571
572
// mf.size is initialized to silence Valgrind
573
// when used on optimized binaries (GCC may reorder
574
// code in a way that Valgrind gets unhappy).
575
coder->mf.buffer = NULL;
576
coder->mf.size = 0;
577
coder->mf.hash = NULL;
578
coder->mf.son = NULL;
579
coder->mf.hash_count = 0;
580
coder->mf.sons_count = 0;
581
582
coder->next = LZMA_NEXT_CODER_INIT;
583
}
584
585
// Initialize the LZ-based encoder.
586
lzma_lz_options lz_options;
587
return_if_error(lz_init(&coder->lz, allocator,
588
filters[0].id, filters[0].options, &lz_options));
589
590
// Setup the size information into coder->mf and deallocate
591
// old buffers if they have wrong size.
592
if (lz_encoder_prepare(&coder->mf, allocator, &lz_options))
593
return LZMA_OPTIONS_ERROR;
594
595
// Allocate new buffers if needed, and do the rest of
596
// the initialization.
597
if (lz_encoder_init(&coder->mf, allocator, &lz_options))
598
return LZMA_MEM_ERROR;
599
600
// Initialize the next filter in the chain, if any.
601
return lzma_next_filter_init(&coder->next, allocator, filters + 1);
602
}
603
604
605
extern LZMA_API(lzma_bool)
606
lzma_mf_is_supported(lzma_match_finder mf)
607
{
608
switch (mf) {
609
#ifdef HAVE_MF_HC3
610
case LZMA_MF_HC3:
611
return true;
612
#endif
613
#ifdef HAVE_MF_HC4
614
case LZMA_MF_HC4:
615
return true;
616
#endif
617
#ifdef HAVE_MF_BT2
618
case LZMA_MF_BT2:
619
return true;
620
#endif
621
#ifdef HAVE_MF_BT3
622
case LZMA_MF_BT3:
623
return true;
624
#endif
625
#ifdef HAVE_MF_BT4
626
case LZMA_MF_BT4:
627
return true;
628
#endif
629
default:
630
return false;
631
}
632
}
633
634