Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmliblzma/liblzma/lzma/lzma_encoder.c
3156 views
1
// SPDX-License-Identifier: 0BSD
2
3
///////////////////////////////////////////////////////////////////////////////
4
//
5
/// \file lzma_encoder.c
6
/// \brief LZMA encoder
7
///
8
// Authors: Igor Pavlov
9
// Lasse Collin
10
//
11
///////////////////////////////////////////////////////////////////////////////
12
13
#include "lzma2_encoder.h"
14
#include "lzma_encoder_private.h"
15
#include "fastpos.h"
16
17
18
/////////////
19
// Literal //
20
/////////////
21
22
static inline void
23
literal_matched(lzma_range_encoder *rc, probability *subcoder,
24
uint32_t match_byte, uint32_t symbol)
25
{
26
uint32_t offset = 0x100;
27
symbol += UINT32_C(1) << 8;
28
29
do {
30
match_byte <<= 1;
31
const uint32_t match_bit = match_byte & offset;
32
const uint32_t subcoder_index
33
= offset + match_bit + (symbol >> 8);
34
const uint32_t bit = (symbol >> 7) & 1;
35
rc_bit(rc, &subcoder[subcoder_index], bit);
36
37
symbol <<= 1;
38
offset &= ~(match_byte ^ symbol);
39
40
} while (symbol < (UINT32_C(1) << 16));
41
}
42
43
44
static inline void
45
literal(lzma_lzma1_encoder *coder, lzma_mf *mf, uint32_t position)
46
{
47
// Locate the literal byte to be encoded and the subcoder.
48
const uint8_t cur_byte = mf->buffer[
49
mf->read_pos - mf->read_ahead];
50
probability *subcoder = literal_subcoder(coder->literal,
51
coder->literal_context_bits, coder->literal_mask,
52
position, mf->buffer[mf->read_pos - mf->read_ahead - 1]);
53
54
if (is_literal_state(coder->state)) {
55
// Previous LZMA-symbol was a literal. Encode a normal
56
// literal without a match byte.
57
update_literal_normal(coder->state);
58
rc_bittree(&coder->rc, subcoder, 8, cur_byte);
59
} else {
60
// Previous LZMA-symbol was a match. Use the last byte of
61
// the match as a "match byte". That is, compare the bits
62
// of the current literal and the match byte.
63
update_literal_matched(coder->state);
64
const uint8_t match_byte = mf->buffer[
65
mf->read_pos - coder->reps[0] - 1
66
- mf->read_ahead];
67
literal_matched(&coder->rc, subcoder, match_byte, cur_byte);
68
}
69
}
70
71
72
//////////////////
73
// Match length //
74
//////////////////
75
76
static void
77
length_update_prices(lzma_length_encoder *lc, const uint32_t pos_state)
78
{
79
const uint32_t table_size = lc->table_size;
80
lc->counters[pos_state] = table_size;
81
82
const uint32_t a0 = rc_bit_0_price(lc->choice);
83
const uint32_t a1 = rc_bit_1_price(lc->choice);
84
const uint32_t b0 = a1 + rc_bit_0_price(lc->choice2);
85
const uint32_t b1 = a1 + rc_bit_1_price(lc->choice2);
86
uint32_t *const prices = lc->prices[pos_state];
87
88
uint32_t i;
89
for (i = 0; i < table_size && i < LEN_LOW_SYMBOLS; ++i)
90
prices[i] = a0 + rc_bittree_price(lc->low[pos_state],
91
LEN_LOW_BITS, i);
92
93
for (; i < table_size && i < LEN_LOW_SYMBOLS + LEN_MID_SYMBOLS; ++i)
94
prices[i] = b0 + rc_bittree_price(lc->mid[pos_state],
95
LEN_MID_BITS, i - LEN_LOW_SYMBOLS);
96
97
for (; i < table_size; ++i)
98
prices[i] = b1 + rc_bittree_price(lc->high, LEN_HIGH_BITS,
99
i - LEN_LOW_SYMBOLS - LEN_MID_SYMBOLS);
100
101
return;
102
}
103
104
105
static inline void
106
length(lzma_range_encoder *rc, lzma_length_encoder *lc,
107
const uint32_t pos_state, uint32_t len, const bool fast_mode)
108
{
109
assert(len <= MATCH_LEN_MAX);
110
len -= MATCH_LEN_MIN;
111
112
if (len < LEN_LOW_SYMBOLS) {
113
rc_bit(rc, &lc->choice, 0);
114
rc_bittree(rc, lc->low[pos_state], LEN_LOW_BITS, len);
115
} else {
116
rc_bit(rc, &lc->choice, 1);
117
len -= LEN_LOW_SYMBOLS;
118
119
if (len < LEN_MID_SYMBOLS) {
120
rc_bit(rc, &lc->choice2, 0);
121
rc_bittree(rc, lc->mid[pos_state], LEN_MID_BITS, len);
122
} else {
123
rc_bit(rc, &lc->choice2, 1);
124
len -= LEN_MID_SYMBOLS;
125
rc_bittree(rc, lc->high, LEN_HIGH_BITS, len);
126
}
127
}
128
129
// Only getoptimum uses the prices so don't update the table when
130
// in fast mode.
131
if (!fast_mode)
132
if (--lc->counters[pos_state] == 0)
133
length_update_prices(lc, pos_state);
134
}
135
136
137
///////////
138
// Match //
139
///////////
140
141
static inline void
142
match(lzma_lzma1_encoder *coder, const uint32_t pos_state,
143
const uint32_t distance, const uint32_t len)
144
{
145
update_match(coder->state);
146
147
length(&coder->rc, &coder->match_len_encoder, pos_state, len,
148
coder->fast_mode);
149
150
const uint32_t dist_slot = get_dist_slot(distance);
151
const uint32_t dist_state = get_dist_state(len);
152
rc_bittree(&coder->rc, coder->dist_slot[dist_state],
153
DIST_SLOT_BITS, dist_slot);
154
155
if (dist_slot >= DIST_MODEL_START) {
156
const uint32_t footer_bits = (dist_slot >> 1) - 1;
157
const uint32_t base = (2 | (dist_slot & 1)) << footer_bits;
158
const uint32_t dist_reduced = distance - base;
159
160
if (dist_slot < DIST_MODEL_END) {
161
// Careful here: base - dist_slot - 1 can be -1, but
162
// rc_bittree_reverse starts at probs[1], not probs[0].
163
rc_bittree_reverse(&coder->rc,
164
coder->dist_special + base - dist_slot - 1,
165
footer_bits, dist_reduced);
166
} else {
167
rc_direct(&coder->rc, dist_reduced >> ALIGN_BITS,
168
footer_bits - ALIGN_BITS);
169
rc_bittree_reverse(
170
&coder->rc, coder->dist_align,
171
ALIGN_BITS, dist_reduced & ALIGN_MASK);
172
++coder->align_price_count;
173
}
174
}
175
176
coder->reps[3] = coder->reps[2];
177
coder->reps[2] = coder->reps[1];
178
coder->reps[1] = coder->reps[0];
179
coder->reps[0] = distance;
180
++coder->match_price_count;
181
}
182
183
184
////////////////////
185
// Repeated match //
186
////////////////////
187
188
static inline void
189
rep_match(lzma_lzma1_encoder *coder, const uint32_t pos_state,
190
const uint32_t rep, const uint32_t len)
191
{
192
if (rep == 0) {
193
rc_bit(&coder->rc, &coder->is_rep0[coder->state], 0);
194
rc_bit(&coder->rc,
195
&coder->is_rep0_long[coder->state][pos_state],
196
len != 1);
197
} else {
198
const uint32_t distance = coder->reps[rep];
199
rc_bit(&coder->rc, &coder->is_rep0[coder->state], 1);
200
201
if (rep == 1) {
202
rc_bit(&coder->rc, &coder->is_rep1[coder->state], 0);
203
} else {
204
rc_bit(&coder->rc, &coder->is_rep1[coder->state], 1);
205
rc_bit(&coder->rc, &coder->is_rep2[coder->state],
206
rep - 2);
207
208
if (rep == 3)
209
coder->reps[3] = coder->reps[2];
210
211
coder->reps[2] = coder->reps[1];
212
}
213
214
coder->reps[1] = coder->reps[0];
215
coder->reps[0] = distance;
216
}
217
218
if (len == 1) {
219
update_short_rep(coder->state);
220
} else {
221
length(&coder->rc, &coder->rep_len_encoder, pos_state, len,
222
coder->fast_mode);
223
update_long_rep(coder->state);
224
}
225
}
226
227
228
//////////
229
// Main //
230
//////////
231
232
static void
233
encode_symbol(lzma_lzma1_encoder *coder, lzma_mf *mf,
234
uint32_t back, uint32_t len, uint32_t position)
235
{
236
const uint32_t pos_state = position & coder->pos_mask;
237
238
if (back == UINT32_MAX) {
239
// Literal i.e. eight-bit byte
240
assert(len == 1);
241
rc_bit(&coder->rc,
242
&coder->is_match[coder->state][pos_state], 0);
243
literal(coder, mf, position);
244
} else {
245
// Some type of match
246
rc_bit(&coder->rc,
247
&coder->is_match[coder->state][pos_state], 1);
248
249
if (back < REPS) {
250
// It's a repeated match i.e. the same distance
251
// has been used earlier.
252
rc_bit(&coder->rc, &coder->is_rep[coder->state], 1);
253
rep_match(coder, pos_state, back, len);
254
} else {
255
// Normal match
256
rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
257
match(coder, pos_state, back - REPS, len);
258
}
259
}
260
261
assert(mf->read_ahead >= len);
262
mf->read_ahead -= len;
263
}
264
265
266
static bool
267
encode_init(lzma_lzma1_encoder *coder, lzma_mf *mf)
268
{
269
assert(mf_position(mf) == 0);
270
assert(coder->uncomp_size == 0);
271
272
if (mf->read_pos == mf->read_limit) {
273
if (mf->action == LZMA_RUN)
274
return false; // We cannot do anything.
275
276
// We are finishing (we cannot get here when flushing).
277
assert(mf->write_pos == mf->read_pos);
278
assert(mf->action == LZMA_FINISH);
279
} else {
280
// Do the actual initialization. The first LZMA symbol must
281
// always be a literal.
282
mf_skip(mf, 1);
283
mf->read_ahead = 0;
284
rc_bit(&coder->rc, &coder->is_match[0][0], 0);
285
rc_bittree(&coder->rc, coder->literal + 0, 8, mf->buffer[0]);
286
++coder->uncomp_size;
287
}
288
289
// Initialization is done (except if empty file).
290
coder->is_initialized = true;
291
292
return true;
293
}
294
295
296
static void
297
encode_eopm(lzma_lzma1_encoder *coder, uint32_t position)
298
{
299
const uint32_t pos_state = position & coder->pos_mask;
300
rc_bit(&coder->rc, &coder->is_match[coder->state][pos_state], 1);
301
rc_bit(&coder->rc, &coder->is_rep[coder->state], 0);
302
match(coder, pos_state, UINT32_MAX, MATCH_LEN_MIN);
303
}
304
305
306
/// Number of bytes that a single encoding loop in lzma_lzma_encode() can
307
/// consume from the dictionary. This limit comes from lzma_lzma_optimum()
308
/// and may need to be updated if that function is significantly modified.
309
#define LOOP_INPUT_MAX (OPTS + 1)
310
311
312
extern lzma_ret
313
lzma_lzma_encode(lzma_lzma1_encoder *restrict coder, lzma_mf *restrict mf,
314
uint8_t *restrict out, size_t *restrict out_pos,
315
size_t out_size, uint32_t limit)
316
{
317
// Initialize the stream if no data has been encoded yet.
318
if (!coder->is_initialized && !encode_init(coder, mf))
319
return LZMA_OK;
320
321
// Encode pending output bytes from the range encoder.
322
// At the start of the stream, encode_init() encodes one literal.
323
// Later there can be pending output only with LZMA1 because LZMA2
324
// ensures that there is always enough output space. Thus when using
325
// LZMA2, rc_encode() calls in this function will always return false.
326
if (rc_encode(&coder->rc, out, out_pos, out_size)) {
327
// We don't get here with LZMA2.
328
assert(limit == UINT32_MAX);
329
return LZMA_OK;
330
}
331
332
// If the range encoder was flushed in an earlier call to this
333
// function but there wasn't enough output buffer space, those
334
// bytes would have now been encoded by the above rc_encode() call
335
// and the stream has now been finished. This can only happen with
336
// LZMA1 as LZMA2 always provides enough output buffer space.
337
if (coder->is_flushed) {
338
assert(limit == UINT32_MAX);
339
return LZMA_STREAM_END;
340
}
341
342
while (true) {
343
// With LZMA2 we need to take care that compressed size of
344
// a chunk doesn't get too big.
345
// FIXME? Check if this could be improved.
346
if (limit != UINT32_MAX
347
&& (mf->read_pos - mf->read_ahead >= limit
348
|| *out_pos + rc_pending(&coder->rc)
349
>= LZMA2_CHUNK_MAX
350
- LOOP_INPUT_MAX))
351
break;
352
353
// Check that there is some input to process.
354
if (mf->read_pos >= mf->read_limit) {
355
if (mf->action == LZMA_RUN)
356
return LZMA_OK;
357
358
if (mf->read_ahead == 0)
359
break;
360
}
361
362
// Get optimal match (repeat position and length).
363
// Value ranges for pos:
364
// - [0, REPS): repeated match
365
// - [REPS, UINT32_MAX):
366
// match at (pos - REPS)
367
// - UINT32_MAX: not a match but a literal
368
// Value ranges for len:
369
// - [MATCH_LEN_MIN, MATCH_LEN_MAX]
370
uint32_t len;
371
uint32_t back;
372
373
if (coder->fast_mode)
374
lzma_lzma_optimum_fast(coder, mf, &back, &len);
375
else
376
lzma_lzma_optimum_normal(coder, mf, &back, &len,
377
(uint32_t)(coder->uncomp_size));
378
379
encode_symbol(coder, mf, back, len,
380
(uint32_t)(coder->uncomp_size));
381
382
// If output size limiting is active (out_limit != 0), check
383
// if encoding this LZMA symbol would make the output size
384
// exceed the specified limit.
385
if (coder->out_limit != 0 && rc_encode_dummy(
386
&coder->rc, coder->out_limit)) {
387
// The most recent LZMA symbol would make the output
388
// too big. Throw it away.
389
rc_forget(&coder->rc);
390
391
// FIXME: Tell the LZ layer to not read more input as
392
// it would be waste of time. This doesn't matter if
393
// output-size-limited encoding is done with a single
394
// call though.
395
396
break;
397
}
398
399
// This symbol will be encoded so update the uncompressed size.
400
coder->uncomp_size += len;
401
402
// Encode the LZMA symbol.
403
if (rc_encode(&coder->rc, out, out_pos, out_size)) {
404
// Once again, this can only happen with LZMA1.
405
assert(limit == UINT32_MAX);
406
return LZMA_OK;
407
}
408
}
409
410
// Make the uncompressed size available to the application.
411
if (coder->uncomp_size_ptr != NULL)
412
*coder->uncomp_size_ptr = coder->uncomp_size;
413
414
// LZMA2 doesn't use EOPM at LZMA level.
415
//
416
// Plain LZMA streams without EOPM aren't supported except when
417
// output size limiting is enabled.
418
if (coder->use_eopm)
419
encode_eopm(coder, (uint32_t)(coder->uncomp_size));
420
421
// Flush the remaining bytes from the range encoder.
422
rc_flush(&coder->rc);
423
424
// Copy the remaining bytes to the output buffer. If there
425
// isn't enough output space, we will copy out the remaining
426
// bytes on the next call to this function.
427
if (rc_encode(&coder->rc, out, out_pos, out_size)) {
428
// This cannot happen with LZMA2.
429
assert(limit == UINT32_MAX);
430
431
coder->is_flushed = true;
432
return LZMA_OK;
433
}
434
435
return LZMA_STREAM_END;
436
}
437
438
439
static lzma_ret
440
lzma_encode(void *coder, lzma_mf *restrict mf,
441
uint8_t *restrict out, size_t *restrict out_pos,
442
size_t out_size)
443
{
444
// Plain LZMA has no support for sync-flushing.
445
if (unlikely(mf->action == LZMA_SYNC_FLUSH))
446
return LZMA_OPTIONS_ERROR;
447
448
return lzma_lzma_encode(coder, mf, out, out_pos, out_size, UINT32_MAX);
449
}
450
451
452
static lzma_ret
453
lzma_lzma_set_out_limit(
454
void *coder_ptr, uint64_t *uncomp_size, uint64_t out_limit)
455
{
456
// Minimum output size is 5 bytes but that cannot hold any output
457
// so we use 6 bytes.
458
if (out_limit < 6)
459
return LZMA_BUF_ERROR;
460
461
lzma_lzma1_encoder *coder = coder_ptr;
462
coder->out_limit = out_limit;
463
coder->uncomp_size_ptr = uncomp_size;
464
coder->use_eopm = false;
465
return LZMA_OK;
466
}
467
468
469
////////////////////
470
// Initialization //
471
////////////////////
472
473
static bool
474
is_options_valid(const lzma_options_lzma *options)
475
{
476
// Validate some of the options. LZ encoder validates nice_len too
477
// but we need a valid value here earlier.
478
return is_lclppb_valid(options)
479
&& options->nice_len >= MATCH_LEN_MIN
480
&& options->nice_len <= MATCH_LEN_MAX
481
&& (options->mode == LZMA_MODE_FAST
482
|| options->mode == LZMA_MODE_NORMAL);
483
}
484
485
486
static void
487
set_lz_options(lzma_lz_options *lz_options, const lzma_options_lzma *options)
488
{
489
// LZ encoder initialization does the validation for these so we
490
// don't need to validate here.
491
lz_options->before_size = OPTS;
492
lz_options->dict_size = options->dict_size;
493
lz_options->after_size = LOOP_INPUT_MAX;
494
lz_options->match_len_max = MATCH_LEN_MAX;
495
lz_options->nice_len = my_max(mf_get_hash_bytes(options->mf),
496
options->nice_len);
497
lz_options->match_finder = options->mf;
498
lz_options->depth = options->depth;
499
lz_options->preset_dict = options->preset_dict;
500
lz_options->preset_dict_size = options->preset_dict_size;
501
return;
502
}
503
504
505
static void
506
length_encoder_reset(lzma_length_encoder *lencoder,
507
const uint32_t num_pos_states, const bool fast_mode)
508
{
509
bit_reset(lencoder->choice);
510
bit_reset(lencoder->choice2);
511
512
for (size_t pos_state = 0; pos_state < num_pos_states; ++pos_state) {
513
bittree_reset(lencoder->low[pos_state], LEN_LOW_BITS);
514
bittree_reset(lencoder->mid[pos_state], LEN_MID_BITS);
515
}
516
517
bittree_reset(lencoder->high, LEN_HIGH_BITS);
518
519
if (!fast_mode)
520
for (uint32_t pos_state = 0; pos_state < num_pos_states;
521
++pos_state)
522
length_update_prices(lencoder, pos_state);
523
524
return;
525
}
526
527
528
extern lzma_ret
529
lzma_lzma_encoder_reset(lzma_lzma1_encoder *coder,
530
const lzma_options_lzma *options)
531
{
532
if (!is_options_valid(options))
533
return LZMA_OPTIONS_ERROR;
534
535
coder->pos_mask = (1U << options->pb) - 1;
536
coder->literal_context_bits = options->lc;
537
coder->literal_mask = literal_mask_calc(options->lc, options->lp);
538
539
// Range coder
540
rc_reset(&coder->rc);
541
542
// State
543
coder->state = STATE_LIT_LIT;
544
for (size_t i = 0; i < REPS; ++i)
545
coder->reps[i] = 0;
546
547
literal_init(coder->literal, options->lc, options->lp);
548
549
// Bit encoders
550
for (size_t i = 0; i < STATES; ++i) {
551
for (size_t j = 0; j <= coder->pos_mask; ++j) {
552
bit_reset(coder->is_match[i][j]);
553
bit_reset(coder->is_rep0_long[i][j]);
554
}
555
556
bit_reset(coder->is_rep[i]);
557
bit_reset(coder->is_rep0[i]);
558
bit_reset(coder->is_rep1[i]);
559
bit_reset(coder->is_rep2[i]);
560
}
561
562
for (size_t i = 0; i < FULL_DISTANCES - DIST_MODEL_END; ++i)
563
bit_reset(coder->dist_special[i]);
564
565
// Bit tree encoders
566
for (size_t i = 0; i < DIST_STATES; ++i)
567
bittree_reset(coder->dist_slot[i], DIST_SLOT_BITS);
568
569
bittree_reset(coder->dist_align, ALIGN_BITS);
570
571
// Length encoders
572
length_encoder_reset(&coder->match_len_encoder,
573
1U << options->pb, coder->fast_mode);
574
575
length_encoder_reset(&coder->rep_len_encoder,
576
1U << options->pb, coder->fast_mode);
577
578
// Price counts are incremented every time appropriate probabilities
579
// are changed. price counts are set to zero when the price tables
580
// are updated, which is done when the appropriate price counts have
581
// big enough value, and lzma_mf.read_ahead == 0 which happens at
582
// least every OPTS (a few thousand) possible price count increments.
583
//
584
// By resetting price counts to UINT32_MAX / 2, we make sure that the
585
// price tables will be initialized before they will be used (since
586
// the value is definitely big enough), and that it is OK to increment
587
// price counts without risk of integer overflow (since UINT32_MAX / 2
588
// is small enough). The current code doesn't increment price counts
589
// before initializing price tables, but it maybe done in future if
590
// we add support for saving the state between LZMA2 chunks.
591
coder->match_price_count = UINT32_MAX / 2;
592
coder->align_price_count = UINT32_MAX / 2;
593
594
coder->opts_end_index = 0;
595
coder->opts_current_index = 0;
596
597
return LZMA_OK;
598
}
599
600
601
extern lzma_ret
602
lzma_lzma_encoder_create(void **coder_ptr, const lzma_allocator *allocator,
603
lzma_vli id, const lzma_options_lzma *options,
604
lzma_lz_options *lz_options)
605
{
606
assert(id == LZMA_FILTER_LZMA1 || id == LZMA_FILTER_LZMA1EXT
607
|| id == LZMA_FILTER_LZMA2);
608
609
// Allocate lzma_lzma1_encoder if it wasn't already allocated.
610
if (*coder_ptr == NULL) {
611
*coder_ptr = lzma_alloc(sizeof(lzma_lzma1_encoder), allocator);
612
if (*coder_ptr == NULL)
613
return LZMA_MEM_ERROR;
614
}
615
616
lzma_lzma1_encoder *coder = *coder_ptr;
617
618
// Set compression mode. Note that we haven't validated the options
619
// yet. Invalid options will get rejected by lzma_lzma_encoder_reset()
620
// call at the end of this function.
621
switch (options->mode) {
622
case LZMA_MODE_FAST:
623
coder->fast_mode = true;
624
break;
625
626
case LZMA_MODE_NORMAL: {
627
coder->fast_mode = false;
628
629
// Set dist_table_size.
630
// Round the dictionary size up to next 2^n.
631
//
632
// Currently the maximum encoder dictionary size
633
// is 1.5 GiB due to lz_encoder.c and here we need
634
// to be below 2 GiB to make the rounded up value
635
// fit in an uint32_t and avoid an infinite while-loop
636
// (and undefined behavior due to a too large shift).
637
// So do the same check as in LZ encoder,
638
// limiting to 1.5 GiB.
639
if (options->dict_size > (UINT32_C(1) << 30)
640
+ (UINT32_C(1) << 29))
641
return LZMA_OPTIONS_ERROR;
642
643
uint32_t log_size = 0;
644
while ((UINT32_C(1) << log_size) < options->dict_size)
645
++log_size;
646
647
coder->dist_table_size = log_size * 2;
648
649
// Length encoders' price table size
650
const uint32_t nice_len = my_max(
651
mf_get_hash_bytes(options->mf),
652
options->nice_len);
653
654
coder->match_len_encoder.table_size
655
= nice_len + 1 - MATCH_LEN_MIN;
656
coder->rep_len_encoder.table_size
657
= nice_len + 1 - MATCH_LEN_MIN;
658
break;
659
}
660
661
default:
662
return LZMA_OPTIONS_ERROR;
663
}
664
665
// We don't need to write the first byte as literal if there is
666
// a non-empty preset dictionary. encode_init() wouldn't even work
667
// if there is a non-empty preset dictionary, because encode_init()
668
// assumes that position is zero and previous byte is also zero.
669
coder->is_initialized = options->preset_dict != NULL
670
&& options->preset_dict_size > 0;
671
coder->is_flushed = false;
672
coder->uncomp_size = 0;
673
coder->uncomp_size_ptr = NULL;
674
675
// Output size limiting is disabled by default.
676
coder->out_limit = 0;
677
678
// Determine if end marker is wanted:
679
// - It is never used with LZMA2.
680
// - It is always used with LZMA_FILTER_LZMA1 (unless
681
// lzma_lzma_set_out_limit() is called later).
682
// - LZMA_FILTER_LZMA1EXT has a flag for it in the options.
683
coder->use_eopm = (id == LZMA_FILTER_LZMA1);
684
if (id == LZMA_FILTER_LZMA1EXT) {
685
// Check if unsupported flags are present.
686
if (options->ext_flags & ~LZMA_LZMA1EXT_ALLOW_EOPM)
687
return LZMA_OPTIONS_ERROR;
688
689
coder->use_eopm = (options->ext_flags
690
& LZMA_LZMA1EXT_ALLOW_EOPM) != 0;
691
692
// TODO? As long as there are no filters that change the size
693
// of the data, it is enough to look at lzma_stream.total_in
694
// after encoding has been finished to know the uncompressed
695
// size of the LZMA1 stream. But in the future there could be
696
// filters that change the size of the data and then total_in
697
// doesn't work as the LZMA1 stream size might be different
698
// due to another filter in the chain. The problem is simple
699
// to solve: Add another flag to ext_flags and then set
700
// coder->uncomp_size_ptr to the address stored in
701
// lzma_options_lzma.reserved_ptr2 (or _ptr1).
702
}
703
704
set_lz_options(lz_options, options);
705
706
return lzma_lzma_encoder_reset(coder, options);
707
}
708
709
710
static lzma_ret
711
lzma_encoder_init(lzma_lz_encoder *lz, const lzma_allocator *allocator,
712
lzma_vli id, const void *options, lzma_lz_options *lz_options)
713
{
714
if (options == NULL)
715
return LZMA_PROG_ERROR;
716
717
lz->code = &lzma_encode;
718
lz->set_out_limit = &lzma_lzma_set_out_limit;
719
return lzma_lzma_encoder_create(
720
&lz->coder, allocator, id, options, lz_options);
721
}
722
723
724
extern lzma_ret
725
lzma_lzma_encoder_init(lzma_next_coder *next, const lzma_allocator *allocator,
726
const lzma_filter_info *filters)
727
{
728
return lzma_lz_encoder_init(
729
next, allocator, filters, &lzma_encoder_init);
730
}
731
732
733
extern uint64_t
734
lzma_lzma_encoder_memusage(const void *options)
735
{
736
if (!is_options_valid(options))
737
return UINT64_MAX;
738
739
lzma_lz_options lz_options;
740
set_lz_options(&lz_options, options);
741
742
const uint64_t lz_memusage = lzma_lz_encoder_memusage(&lz_options);
743
if (lz_memusage == UINT64_MAX)
744
return UINT64_MAX;
745
746
return (uint64_t)(sizeof(lzma_lzma1_encoder)) + lz_memusage;
747
}
748
749
750
extern bool
751
lzma_lzma_lclppb_encode(const lzma_options_lzma *options, uint8_t *byte)
752
{
753
if (!is_lclppb_valid(options))
754
return true;
755
756
*byte = (options->pb * 5 + options->lp) * 9 + options->lc;
757
assert(*byte <= (4 * 5 + 4) * 9 + 8);
758
759
return false;
760
}
761
762
763
#ifdef HAVE_ENCODER_LZMA1
764
extern lzma_ret
765
lzma_lzma_props_encode(const void *options, uint8_t *out)
766
{
767
if (options == NULL)
768
return LZMA_PROG_ERROR;
769
770
const lzma_options_lzma *const opt = options;
771
772
if (lzma_lzma_lclppb_encode(opt, out))
773
return LZMA_PROG_ERROR;
774
775
write32le(out + 1, opt->dict_size);
776
777
return LZMA_OK;
778
}
779
#endif
780
781
782
extern LZMA_API(lzma_bool)
783
lzma_mode_is_supported(lzma_mode mode)
784
{
785
return mode == LZMA_MODE_FAST || mode == LZMA_MODE_NORMAL;
786
}
787
788