Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmliblzma/liblzma/rangecoder/range_decoder.h
3156 views
1
// SPDX-License-Identifier: 0BSD
2
3
///////////////////////////////////////////////////////////////////////////////
4
//
5
/// \file range_decoder.h
6
/// \brief Range Decoder
7
///
8
// Authors: Igor Pavlov
9
// Lasse Collin
10
//
11
///////////////////////////////////////////////////////////////////////////////
12
13
#ifndef LZMA_RANGE_DECODER_H
14
#define LZMA_RANGE_DECODER_H
15
16
#include "range_common.h"
17
18
19
// Choose the range decoder variants to use using a bitmask.
20
// If no bits are set, only the basic version is used.
21
// If more than one version is selected for the same feature,
22
// the last one on the list below is used.
23
//
24
// Bitwise-or of the following enable branchless C versions:
25
// 0x01 normal bittrees
26
// 0x02 fixed-sized reverse bittrees
27
// 0x04 variable-sized reverse bittrees (not faster)
28
// 0x08 matched literal (not faster)
29
//
30
// GCC & Clang compatible x86-64 inline assembly:
31
// 0x010 normal bittrees
32
// 0x020 fixed-sized reverse bittrees
33
// 0x040 variable-sized reverse bittrees
34
// 0x080 matched literal
35
// 0x100 direct bits
36
//
37
// The default can be overridden at build time by defining
38
// LZMA_RANGE_DECODER_CONFIG to the desired mask.
39
//
40
// 2024-02-22: Feedback from benchmarks:
41
// - Brancless C (0x003) can be better than basic on x86-64 but often it's
42
// slightly worse on other archs. Since asm is much better on x86-64,
43
// branchless C is not used at all.
44
// - With x86-64 asm, there are slight differences between GCC and Clang
45
// and different processors. Overall 0x1F0 seems to be the best choice.
46
#ifndef LZMA_RANGE_DECODER_CONFIG
47
# if defined(__x86_64__) && !defined(__ILP32__) \
48
&& !defined(__NVCOMPILER) \
49
&& (defined(__GNUC__) || defined(__clang__))
50
# define LZMA_RANGE_DECODER_CONFIG 0x1F0
51
# else
52
# define LZMA_RANGE_DECODER_CONFIG 0
53
# endif
54
#endif
55
56
57
// Negative RC_BIT_MODEL_TOTAL but the lowest RC_MOVE_BITS are flipped.
58
// This is useful for updating probability variables in branchless decoding:
59
//
60
// uint32_t decoded_bit = ...;
61
// probability tmp = RC_BIT_MODEL_OFFSET;
62
// tmp &= decoded_bit - 1;
63
// prob -= (prob + tmp) >> RC_MOVE_BITS;
64
#define RC_BIT_MODEL_OFFSET \
65
((UINT32_C(1) << RC_MOVE_BITS) - 1 - RC_BIT_MODEL_TOTAL)
66
67
68
typedef struct {
69
uint32_t range;
70
uint32_t code;
71
uint32_t init_bytes_left;
72
} lzma_range_decoder;
73
74
75
/// Reads the first five bytes to initialize the range decoder.
76
static inline lzma_ret
77
rc_read_init(lzma_range_decoder *rc, const uint8_t *restrict in,
78
size_t *restrict in_pos, size_t in_size)
79
{
80
while (rc->init_bytes_left > 0) {
81
if (*in_pos == in_size)
82
return LZMA_OK;
83
84
// The first byte is always 0x00. It could have been omitted
85
// in LZMA2 but it wasn't, so one byte is wasted in every
86
// LZMA2 chunk.
87
if (rc->init_bytes_left == 5 && in[*in_pos] != 0x00)
88
return LZMA_DATA_ERROR;
89
90
rc->code = (rc->code << 8) | in[*in_pos];
91
++*in_pos;
92
--rc->init_bytes_left;
93
}
94
95
return LZMA_STREAM_END;
96
}
97
98
99
/// Makes local copies of range decoder and *in_pos variables. Doing this
100
/// improves speed significantly. The range decoder macros expect also
101
/// variables 'in' and 'in_size' to be defined.
102
#define rc_to_local(range_decoder, in_pos, fast_mode_in_required) \
103
lzma_range_decoder rc = range_decoder; \
104
const uint8_t *rc_in_ptr = in + (in_pos); \
105
const uint8_t *rc_in_end = in + in_size; \
106
const uint8_t *rc_in_fast_end \
107
= (rc_in_end - rc_in_ptr) <= (fast_mode_in_required) \
108
? rc_in_ptr \
109
: rc_in_end - (fast_mode_in_required); \
110
(void)rc_in_fast_end; /* Silence a warning with HAVE_SMALL. */ \
111
uint32_t rc_bound
112
113
114
/// Evaluates to true if there is enough input remaining to use fast mode.
115
#define rc_is_fast_allowed() (rc_in_ptr < rc_in_fast_end)
116
117
118
/// Stores the local copes back to the range decoder structure.
119
#define rc_from_local(range_decoder, in_pos) \
120
do { \
121
range_decoder = rc; \
122
in_pos = (size_t)(rc_in_ptr - in); \
123
} while (0)
124
125
126
/// Resets the range decoder structure.
127
#define rc_reset(range_decoder) \
128
do { \
129
(range_decoder).range = UINT32_MAX; \
130
(range_decoder).code = 0; \
131
(range_decoder).init_bytes_left = 5; \
132
} while (0)
133
134
135
/// When decoding has been properly finished, rc.code is always zero unless
136
/// the input stream is corrupt. So checking this can catch some corrupt
137
/// files especially if they don't have any other integrity check.
138
#define rc_is_finished(range_decoder) \
139
((range_decoder).code == 0)
140
141
142
// Read the next input byte if needed.
143
#define rc_normalize() \
144
do { \
145
if (rc.range < RC_TOP_VALUE) { \
146
rc.range <<= RC_SHIFT_BITS; \
147
rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \
148
} \
149
} while (0)
150
151
152
/// If more input is needed but there is
153
/// no more input available, "goto out" is used to jump out of the main
154
/// decoder loop. The "_safe" macros are used in the Resumable decoder
155
/// mode in order to save the sequence to continue decoding from that
156
/// point later.
157
#define rc_normalize_safe(seq) \
158
do { \
159
if (rc.range < RC_TOP_VALUE) { \
160
if (rc_in_ptr == rc_in_end) { \
161
coder->sequence = seq; \
162
goto out; \
163
} \
164
rc.range <<= RC_SHIFT_BITS; \
165
rc.code = (rc.code << RC_SHIFT_BITS) | *rc_in_ptr++; \
166
} \
167
} while (0)
168
169
170
/// Start decoding a bit. This must be used together with rc_update_0()
171
/// and rc_update_1():
172
///
173
/// rc_if_0(prob) {
174
/// rc_update_0(prob);
175
/// // Do something
176
/// } else {
177
/// rc_update_1(prob);
178
/// // Do something else
179
/// }
180
///
181
#define rc_if_0(prob) \
182
rc_normalize(); \
183
rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \
184
if (rc.code < rc_bound)
185
186
187
#define rc_if_0_safe(prob, seq) \
188
rc_normalize_safe(seq); \
189
rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob); \
190
if (rc.code < rc_bound)
191
192
193
/// Update the range decoder state and the used probability variable to
194
/// match a decoded bit of 0.
195
///
196
/// The x86-64 assembly uses the commented method but it seems that,
197
/// at least on x86-64, the first version is slightly faster as C code.
198
#define rc_update_0(prob) \
199
do { \
200
rc.range = rc_bound; \
201
prob += (RC_BIT_MODEL_TOTAL - (prob)) >> RC_MOVE_BITS; \
202
/* prob -= ((prob) + RC_BIT_MODEL_OFFSET) >> RC_MOVE_BITS; */ \
203
} while (0)
204
205
206
/// Update the range decoder state and the used probability variable to
207
/// match a decoded bit of 1.
208
#define rc_update_1(prob) \
209
do { \
210
rc.range -= rc_bound; \
211
rc.code -= rc_bound; \
212
prob -= (prob) >> RC_MOVE_BITS; \
213
} while (0)
214
215
216
/// Decodes one bit and runs action0 or action1 depending on the decoded bit.
217
/// This macro is used as the last step in bittree reverse decoders since
218
/// those don't use "symbol" for anything else than indexing the probability
219
/// arrays.
220
#define rc_bit_last(prob, action0, action1) \
221
do { \
222
rc_if_0(prob) { \
223
rc_update_0(prob); \
224
action0; \
225
} else { \
226
rc_update_1(prob); \
227
action1; \
228
} \
229
} while (0)
230
231
232
#define rc_bit_last_safe(prob, action0, action1, seq) \
233
do { \
234
rc_if_0_safe(prob, seq) { \
235
rc_update_0(prob); \
236
action0; \
237
} else { \
238
rc_update_1(prob); \
239
action1; \
240
} \
241
} while (0)
242
243
244
/// Decodes one bit, updates "symbol", and runs action0 or action1 depending
245
/// on the decoded bit.
246
#define rc_bit(prob, action0, action1) \
247
rc_bit_last(prob, \
248
symbol <<= 1; action0, \
249
symbol = (symbol << 1) + 1; action1);
250
251
252
#define rc_bit_safe(prob, action0, action1, seq) \
253
rc_bit_last_safe(prob, \
254
symbol <<= 1; action0, \
255
symbol = (symbol << 1) + 1; action1, \
256
seq);
257
258
// Unroll fixed-sized bittree decoding.
259
//
260
// A compile-time constant in final_add can be used to get rid of the high bit
261
// from symbol that is used for the array indexing (1U << bittree_bits).
262
// final_add may also be used to add offset to the result (LZMA length
263
// decoder does that).
264
//
265
// The reason to have final_add here is that in the asm code the addition
266
// can be done for free: in x86-64 there is SBB instruction with -1 as
267
// the immediate value, and final_add is combined with that value.
268
#define rc_bittree_bit(prob) \
269
rc_bit(prob, , )
270
271
#define rc_bittree3(probs, final_add) \
272
do { \
273
symbol = 1; \
274
rc_bittree_bit(probs[symbol]); \
275
rc_bittree_bit(probs[symbol]); \
276
rc_bittree_bit(probs[symbol]); \
277
symbol += (uint32_t)(final_add); \
278
} while (0)
279
280
#define rc_bittree6(probs, final_add) \
281
do { \
282
symbol = 1; \
283
rc_bittree_bit(probs[symbol]); \
284
rc_bittree_bit(probs[symbol]); \
285
rc_bittree_bit(probs[symbol]); \
286
rc_bittree_bit(probs[symbol]); \
287
rc_bittree_bit(probs[symbol]); \
288
rc_bittree_bit(probs[symbol]); \
289
symbol += (uint32_t)(final_add); \
290
} while (0)
291
292
#define rc_bittree8(probs, final_add) \
293
do { \
294
symbol = 1; \
295
rc_bittree_bit(probs[symbol]); \
296
rc_bittree_bit(probs[symbol]); \
297
rc_bittree_bit(probs[symbol]); \
298
rc_bittree_bit(probs[symbol]); \
299
rc_bittree_bit(probs[symbol]); \
300
rc_bittree_bit(probs[symbol]); \
301
rc_bittree_bit(probs[symbol]); \
302
rc_bittree_bit(probs[symbol]); \
303
symbol += (uint32_t)(final_add); \
304
} while (0)
305
306
307
// Fixed-sized reverse bittree
308
#define rc_bittree_rev4(probs) \
309
do { \
310
symbol = 0; \
311
rc_bit_last(probs[symbol + 1], , symbol += 1); \
312
rc_bit_last(probs[symbol + 2], , symbol += 2); \
313
rc_bit_last(probs[symbol + 4], , symbol += 4); \
314
rc_bit_last(probs[symbol + 8], , symbol += 8); \
315
} while (0)
316
317
318
// Decode one bit from variable-sized reverse bittree. The loop is done
319
// in the code that uses this macro. This could be changed if the assembly
320
// version benefited from having the loop done in assembly but it didn't
321
// seem so in early 2024.
322
//
323
// Also, if the loop was done here, the loop counter would likely be local
324
// to the macro so that it wouldn't modify yet another input variable.
325
// If a _safe version of a macro with a loop was done then a modifiable
326
// input variable couldn't be avoided though.
327
#define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \
328
rc_bit(probs[symbol], \
329
, \
330
dest += value_to_add_if_1);
331
332
333
// Matched literal
334
#define decode_with_match_bit \
335
t_match_byte <<= 1; \
336
t_match_bit = t_match_byte & t_offset; \
337
t_subcoder_index = t_offset + t_match_bit + symbol; \
338
rc_bit(probs[t_subcoder_index], \
339
t_offset &= ~t_match_bit, \
340
t_offset &= t_match_bit)
341
342
#define rc_matched_literal(probs_base_var, match_byte) \
343
do { \
344
uint32_t t_match_byte = (match_byte); \
345
uint32_t t_match_bit; \
346
uint32_t t_subcoder_index; \
347
uint32_t t_offset = 0x100; \
348
symbol = 1; \
349
decode_with_match_bit; \
350
decode_with_match_bit; \
351
decode_with_match_bit; \
352
decode_with_match_bit; \
353
decode_with_match_bit; \
354
decode_with_match_bit; \
355
decode_with_match_bit; \
356
decode_with_match_bit; \
357
} while (0)
358
359
360
/// Decode a bit without using a probability.
361
//
362
// NOTE: GCC 13 and Clang/LLVM 16 can, at least on x86-64, optimize the bound
363
// calculation to use an arithmetic right shift so there's no need to provide
364
// the alternative code which, according to C99/C11/C23 6.3.1.3-p3 isn't
365
// perfectly portable: rc_bound = (uint32_t)((int32_t)rc.code >> 31);
366
#define rc_direct(dest, count_var) \
367
do { \
368
dest = (dest << 1) + 1; \
369
rc_normalize(); \
370
rc.range >>= 1; \
371
rc.code -= rc.range; \
372
rc_bound = UINT32_C(0) - (rc.code >> 31); \
373
dest += rc_bound; \
374
rc.code += rc.range & rc_bound; \
375
} while (--count_var > 0)
376
377
378
379
#define rc_direct_safe(dest, count_var, seq) \
380
do { \
381
rc_normalize_safe(seq); \
382
rc.range >>= 1; \
383
rc.code -= rc.range; \
384
rc_bound = UINT32_C(0) - (rc.code >> 31); \
385
rc.code += rc.range & rc_bound; \
386
dest = (dest << 1) + (rc_bound + 1); \
387
} while (--count_var > 0)
388
389
390
//////////////////
391
// Branchless C //
392
//////////////////
393
394
/// Decode a bit using a branchless method. This reduces the number of
395
/// mispredicted branches and thus can improve speed.
396
#define rc_c_bit(prob, action_bit, action_neg) \
397
do { \
398
probability *p = &(prob); \
399
rc_normalize(); \
400
rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * *p; \
401
uint32_t rc_mask = rc.code >= rc_bound; /* rc_mask = decoded bit */ \
402
action_bit; /* action when rc_mask is 0 or 1 */ \
403
/* rc_mask becomes 0 if bit is 0 and 0xFFFFFFFF if bit is 1: */ \
404
rc_mask = 0U - rc_mask; \
405
rc.range &= rc_mask; /* If bit 0: set rc.range = 0 */ \
406
rc_bound ^= rc_mask; \
407
rc_bound -= rc_mask; /* If bit 1: rc_bound = 0U - rc_bound */ \
408
rc.range += rc_bound; \
409
rc_bound &= rc_mask; \
410
rc.code += rc_bound; \
411
action_neg; /* action when rc_mask is 0 or 0xFFFFFFFF */ \
412
rc_mask = ~rc_mask; /* If bit 0: all bits are set in rc_mask */ \
413
rc_mask &= RC_BIT_MODEL_OFFSET; \
414
*p -= (*p + rc_mask) >> RC_MOVE_BITS; \
415
} while (0)
416
417
418
// Testing on x86-64 give an impression that only the normal bittrees and
419
// the fixed-sized reverse bittrees are worth the branchless C code.
420
// It should be tested on other archs for which there isn't assembly code
421
// in this file.
422
423
// Using addition in "(symbol << 1) + rc_mask" allows use of x86 LEA
424
// or RISC-V SH1ADD instructions. Compilers might infer it from
425
// "(symbol << 1) | rc_mask" too if they see that mask is 0 or 1 but
426
// the use of addition doesn't require such analysis from compilers.
427
#if LZMA_RANGE_DECODER_CONFIG & 0x01
428
#undef rc_bittree_bit
429
#define rc_bittree_bit(prob) \
430
rc_c_bit(prob, \
431
symbol = (symbol << 1) + rc_mask, \
432
)
433
#endif // LZMA_RANGE_DECODER_CONFIG & 0x01
434
435
#if LZMA_RANGE_DECODER_CONFIG & 0x02
436
#undef rc_bittree_rev4
437
#define rc_bittree_rev4(probs) \
438
do { \
439
symbol = 0; \
440
rc_c_bit(probs[symbol + 1], symbol += rc_mask, ); \
441
rc_c_bit(probs[symbol + 2], symbol += rc_mask << 1, ); \
442
rc_c_bit(probs[symbol + 4], symbol += rc_mask << 2, ); \
443
rc_c_bit(probs[symbol + 8], symbol += rc_mask << 3, ); \
444
} while (0)
445
#endif // LZMA_RANGE_DECODER_CONFIG & 0x02
446
447
#if LZMA_RANGE_DECODER_CONFIG & 0x04
448
#undef rc_bit_add_if_1
449
#define rc_bit_add_if_1(probs, dest, value_to_add_if_1) \
450
rc_c_bit(probs[symbol], \
451
symbol = (symbol << 1) + rc_mask, \
452
dest += (value_to_add_if_1) & rc_mask)
453
#endif // LZMA_RANGE_DECODER_CONFIG & 0x04
454
455
456
#if LZMA_RANGE_DECODER_CONFIG & 0x08
457
#undef decode_with_match_bit
458
#define decode_with_match_bit \
459
t_match_byte <<= 1; \
460
t_match_bit = t_match_byte & t_offset; \
461
t_subcoder_index = t_offset + t_match_bit + symbol; \
462
rc_c_bit(probs[t_subcoder_index], \
463
symbol = (symbol << 1) + rc_mask, \
464
t_offset &= ~t_match_bit ^ rc_mask)
465
#endif // LZMA_RANGE_DECODER_CONFIG & 0x08
466
467
468
////////////
469
// x86-64 //
470
////////////
471
472
#if LZMA_RANGE_DECODER_CONFIG & 0x1F0
473
474
// rc_asm_y and rc_asm_n are used as arguments to macros to control which
475
// strings to include or omit.
476
#define rc_asm_y(str) str
477
#define rc_asm_n(str)
478
479
// There are a few possible variations for normalization.
480
// This is the smallest variant which is also used by LZMA SDK.
481
//
482
// - This has partial register write (the MOV from (%[in_ptr])).
483
//
484
// - INC saves one byte in code size over ADD. False dependency on
485
// partial flags from INC shouldn't become a problem on any processor
486
// because the instructions after normalization don't read the flags
487
// until SUB which sets all flags.
488
//
489
#define rc_asm_normalize \
490
"cmp %[top_value], %[range]\n\t" \
491
"jae 1f\n\t" \
492
"shl %[shift_bits], %[code]\n\t" \
493
"mov (%[in_ptr]), %b[code]\n\t" \
494
"shl %[shift_bits], %[range]\n\t" \
495
"inc %[in_ptr]\n" \
496
"1:\n"
497
498
// rc_asm_calc(prob) is roughly equivalent to the C version of rc_if_0(prob)...
499
//
500
// rc_bound = (rc.range >> RC_BIT_MODEL_TOTAL_BITS) * (prob);
501
// if (rc.code < rc_bound)
502
//
503
// ...but the bound is stored in "range":
504
//
505
// t0 = range;
506
// range = (range >> RC_BIT_MODEL_TOTAL_BITS) * (prob);
507
// t0 -= range;
508
// t1 = code;
509
// code -= range;
510
//
511
// The carry flag (CF) from the last subtraction holds the negation of
512
// the decoded bit (if CF==0 then the decoded bit is 1).
513
// The values in t0 and t1 are needed for rc_update_0(prob) and
514
// rc_update_1(prob). If the bit is 0, rc_update_0(prob)...
515
//
516
// rc.range = rc_bound;
517
//
518
// ...has already been done but the "code -= range" has to be reverted using
519
// the old value stored in t1. (Also, prob needs to be updated.)
520
//
521
// If the bit is 1, rc_update_1(prob)...
522
//
523
// rc.range -= rc_bound;
524
// rc.code -= rc_bound;
525
//
526
// ...is already done for "code" but the value for "range" needs to be taken
527
// from t0. (Also, prob needs to be updated here as well.)
528
//
529
// The assignments from t0 and t1 can be done in a branchless manner with CMOV
530
// after the instructions from this macro. The CF from SUB tells which moves
531
// are needed.
532
#define rc_asm_calc(prob) \
533
"mov %[range], %[t0]\n\t" \
534
"shr %[bit_model_total_bits], %[range]\n\t" \
535
"imul %[" prob "], %[range]\n\t" \
536
"sub %[range], %[t0]\n\t" \
537
"mov %[code], %[t1]\n\t" \
538
"sub %[range], %[code]\n\t"
539
540
// Also, prob needs to be updated: The update math depends on the decoded bit.
541
// It can be expressed in a few slightly different ways but this is fairly
542
// convenient here:
543
//
544
// prob -= (prob + (bit ? 0 : RC_BIT_MODEL_OFFSET)) >> RC_MOVE_BITS;
545
//
546
// To do it in branchless way when the negation of the decoded bit is in CF,
547
// both "prob" and "prob + RC_BIT_MODEL_OFFSET" are needed. Then the desired
548
// value can be picked with CMOV. The addition can be done using LEA without
549
// affecting CF.
550
//
551
// (This prob update method is a tiny bit different from LZMA SDK 23.01.
552
// In the LZMA SDK a single register is reserved solely for a constant to
553
// be used with CMOV when updating prob. That is fine since there are enough
554
// free registers to do so. The method used here uses one fewer register,
555
// which is valuable with inline assembly.)
556
//
557
// * * *
558
//
559
// In bittree decoding, each (unrolled) loop iteration decodes one bit
560
// and needs one prob variable. To make it faster, the prob variable of
561
// the iteration N+1 is loaded during iteration N. There are two possible
562
// prob variables to choose from for N+1. Both are loaded from memory and
563
// the correct one is chosen with CMOV using the same CF as is used for
564
// other things described above.
565
//
566
// This preloading/prefetching requires an extra register. To avoid
567
// useless moves from "preloaded prob register" to "current prob register",
568
// the macros swap between the two registers for odd and even iterations.
569
//
570
// * * *
571
//
572
// Finally, the decoded bit has to be stored in "symbol". Since the negation
573
// of the bit is in CF, this can be done with SBB: symbol -= CF - 1. That is,
574
// if the decoded bit is 0 (CF==1) the operation is a no-op "symbol -= 0"
575
// and when bit is 1 (CF==0) the operation is "symbol -= 0 - 1" which is
576
// the same as "symbol += 1".
577
//
578
// The instructions for all things are intertwined for a few reasons:
579
// - freeing temporary registers for new use
580
// - not modifying CF too early
581
// - instruction scheduling
582
//
583
// The first and last iterations can cheat a little. For example,
584
// on the first iteration "symbol" is known to start from 1 so it
585
// doesn't need to be read; it can even be immediately initialized
586
// to 2 to prepare for the second iteration of the loop.
587
//
588
// * * *
589
//
590
// a = number of the current prob variable (0 or 1)
591
// b = number of the next prob variable (1 or 0)
592
// *_only = rc_asm_y or _n to include or exclude code marked with them
593
#define rc_asm_bittree(a, b, first_only, middle_only, last_only) \
594
first_only( \
595
"movzwl 2(%[probs_base]), %[prob" #a "]\n\t" \
596
"mov $2, %[symbol]\n\t" \
597
"movzwl 4(%[probs_base]), %[prob" #b "]\n\t" \
598
) \
599
middle_only( \
600
/* Note the scaling of 4 instead of 2: */ \
601
"movzwl (%[probs_base], %q[symbol], 4), %[prob" #b "]\n\t" \
602
) \
603
last_only( \
604
"add %[symbol], %[symbol]\n\t" \
605
) \
606
\
607
rc_asm_normalize \
608
rc_asm_calc("prob" #a) \
609
\
610
"cmovae %[t0], %[range]\n\t" \
611
\
612
first_only( \
613
"movzwl 6(%[probs_base]), %[t0]\n\t" \
614
"cmovae %[t0], %[prob" #b "]\n\t" \
615
) \
616
middle_only( \
617
"movzwl 2(%[probs_base], %q[symbol], 4), %[t0]\n\t" \
618
"lea (%q[symbol], %q[symbol]), %[symbol]\n\t" \
619
"cmovae %[t0], %[prob" #b "]\n\t" \
620
) \
621
\
622
"lea %c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \
623
"cmovb %[t1], %[code]\n\t" \
624
"mov %[symbol], %[t1]\n\t" \
625
"cmovae %[prob" #a "], %[t0]\n\t" \
626
\
627
first_only( \
628
"sbb $-1, %[symbol]\n\t" \
629
) \
630
middle_only( \
631
"sbb $-1, %[symbol]\n\t" \
632
) \
633
last_only( \
634
"sbb %[last_sbb], %[symbol]\n\t" \
635
) \
636
\
637
"shr %[move_bits], %[t0]\n\t" \
638
"sub %[t0], %[prob" #a "]\n\t" \
639
/* Scaling of 1 instead of 2 because symbol <<= 1. */ \
640
"mov %w[prob" #a "], (%[probs_base], %q[t1], 1)\n\t"
641
642
// NOTE: The order of variables in __asm__ can affect speed and code size.
643
#define rc_asm_bittree_n(probs_base_var, final_add, asm_str) \
644
do { \
645
uint32_t t0; \
646
uint32_t t1; \
647
uint32_t t_prob0; \
648
uint32_t t_prob1; \
649
\
650
__asm__( \
651
asm_str \
652
: \
653
[range] "+&r"(rc.range), \
654
[code] "+&r"(rc.code), \
655
[t0] "=&r"(t0), \
656
[t1] "=&r"(t1), \
657
[prob0] "=&r"(t_prob0), \
658
[prob1] "=&r"(t_prob1), \
659
[symbol] "=&r"(symbol), \
660
[in_ptr] "+&r"(rc_in_ptr) \
661
: \
662
[probs_base] "r"(probs_base_var), \
663
[last_sbb] "n"(-1 - (final_add)), \
664
[top_value] "n"(RC_TOP_VALUE), \
665
[shift_bits] "n"(RC_SHIFT_BITS), \
666
[bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
667
[bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \
668
[move_bits] "n"(RC_MOVE_BITS) \
669
: \
670
"cc", "memory"); \
671
} while (0)
672
673
674
#if LZMA_RANGE_DECODER_CONFIG & 0x010
675
#undef rc_bittree3
676
#define rc_bittree3(probs_base_var, final_add) \
677
rc_asm_bittree_n(probs_base_var, final_add, \
678
rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
679
rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
680
rc_asm_bittree(0, 1, rc_asm_n, rc_asm_n, rc_asm_y) \
681
)
682
683
#undef rc_bittree6
684
#define rc_bittree6(probs_base_var, final_add) \
685
rc_asm_bittree_n(probs_base_var, final_add, \
686
rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
687
rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
688
rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
689
rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
690
rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
691
rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \
692
)
693
694
#undef rc_bittree8
695
#define rc_bittree8(probs_base_var, final_add) \
696
rc_asm_bittree_n(probs_base_var, final_add, \
697
rc_asm_bittree(0, 1, rc_asm_y, rc_asm_n, rc_asm_n) \
698
rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
699
rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
700
rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
701
rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
702
rc_asm_bittree(1, 0, rc_asm_n, rc_asm_y, rc_asm_n) \
703
rc_asm_bittree(0, 1, rc_asm_n, rc_asm_y, rc_asm_n) \
704
rc_asm_bittree(1, 0, rc_asm_n, rc_asm_n, rc_asm_y) \
705
)
706
#endif // LZMA_RANGE_DECODER_CONFIG & 0x010
707
708
709
// Fixed-sized reverse bittree
710
//
711
// This uses the indexing that constructs the final value in symbol directly.
712
// add = 1, 2, 4, 8
713
// dcur = -, 4, 8, 16
714
// dnext0 = 4, 8, 16, -
715
// dnext0 = 6, 12, 24, -
716
#define rc_asm_bittree_rev(a, b, add, dcur, dnext0, dnext1, \
717
first_only, middle_only, last_only) \
718
first_only( \
719
"movzwl 2(%[probs_base]), %[prob" #a "]\n\t" \
720
"xor %[symbol], %[symbol]\n\t" \
721
"movzwl 4(%[probs_base]), %[prob" #b "]\n\t" \
722
) \
723
middle_only( \
724
"movzwl " #dnext0 "(%[probs_base], %q[symbol], 2), " \
725
"%[prob" #b "]\n\t" \
726
) \
727
\
728
rc_asm_normalize \
729
rc_asm_calc("prob" #a) \
730
\
731
"cmovae %[t0], %[range]\n\t" \
732
\
733
first_only( \
734
"movzwl 6(%[probs_base]), %[t0]\n\t" \
735
"cmovae %[t0], %[prob" #b "]\n\t" \
736
) \
737
middle_only( \
738
"movzwl " #dnext1 "(%[probs_base], %q[symbol], 2), %[t0]\n\t" \
739
"cmovae %[t0], %[prob" #b "]\n\t" \
740
) \
741
\
742
"lea " #add "(%q[symbol]), %[t0]\n\t" \
743
"cmovb %[t1], %[code]\n\t" \
744
middle_only( \
745
"mov %[symbol], %[t1]\n\t" \
746
) \
747
last_only( \
748
"mov %[symbol], %[t1]\n\t" \
749
) \
750
"cmovae %[t0], %[symbol]\n\t" \
751
"lea %c[bit_model_offset](%q[prob" #a "]), %[t0]\n\t" \
752
"cmovae %[prob" #a "], %[t0]\n\t" \
753
\
754
"shr %[move_bits], %[t0]\n\t" \
755
"sub %[t0], %[prob" #a "]\n\t" \
756
first_only( \
757
"mov %w[prob" #a "], 2(%[probs_base])\n\t" \
758
) \
759
middle_only( \
760
"mov %w[prob" #a "], " \
761
#dcur "(%[probs_base], %q[t1], 2)\n\t" \
762
) \
763
last_only( \
764
"mov %w[prob" #a "], " \
765
#dcur "(%[probs_base], %q[t1], 2)\n\t" \
766
)
767
768
#if LZMA_RANGE_DECODER_CONFIG & 0x020
769
#undef rc_bittree_rev4
770
#define rc_bittree_rev4(probs_base_var) \
771
rc_asm_bittree_n(probs_base_var, 4, \
772
rc_asm_bittree_rev(0, 1, 1, -, 4, 6, rc_asm_y, rc_asm_n, rc_asm_n) \
773
rc_asm_bittree_rev(1, 0, 2, 4, 8, 12, rc_asm_n, rc_asm_y, rc_asm_n) \
774
rc_asm_bittree_rev(0, 1, 4, 8, 16, 24, rc_asm_n, rc_asm_y, rc_asm_n) \
775
rc_asm_bittree_rev(1, 0, 8, 16, -, -, rc_asm_n, rc_asm_n, rc_asm_y) \
776
)
777
#endif // LZMA_RANGE_DECODER_CONFIG & 0x020
778
779
780
#if LZMA_RANGE_DECODER_CONFIG & 0x040
781
#undef rc_bit_add_if_1
782
#define rc_bit_add_if_1(probs_base_var, dest_var, value_to_add_if_1) \
783
do { \
784
uint32_t t0; \
785
uint32_t t1; \
786
uint32_t t2 = (value_to_add_if_1); \
787
uint32_t t_prob; \
788
uint32_t t_index; \
789
\
790
__asm__( \
791
"movzwl (%[probs_base], %q[symbol], 2), %[prob]\n\t" \
792
"mov %[symbol], %[index]\n\t" \
793
\
794
"add %[dest], %[t2]\n\t" \
795
"add %[symbol], %[symbol]\n\t" \
796
\
797
rc_asm_normalize \
798
rc_asm_calc("prob") \
799
\
800
"cmovae %[t0], %[range]\n\t" \
801
"lea %c[bit_model_offset](%q[prob]), %[t0]\n\t" \
802
"cmovb %[t1], %[code]\n\t" \
803
"cmovae %[prob], %[t0]\n\t" \
804
\
805
"cmovae %[t2], %[dest]\n\t" \
806
"sbb $-1, %[symbol]\n\t" \
807
\
808
"sar %[move_bits], %[t0]\n\t" \
809
"sub %[t0], %[prob]\n\t" \
810
"mov %w[prob], (%[probs_base], %q[index], 2)" \
811
: \
812
[range] "+&r"(rc.range), \
813
[code] "+&r"(rc.code), \
814
[t0] "=&r"(t0), \
815
[t1] "=&r"(t1), \
816
[prob] "=&r"(t_prob), \
817
[index] "=&r"(t_index), \
818
[symbol] "+&r"(symbol), \
819
[t2] "+&r"(t2), \
820
[dest] "+&r"(dest_var), \
821
[in_ptr] "+&r"(rc_in_ptr) \
822
: \
823
[probs_base] "r"(probs_base_var), \
824
[top_value] "n"(RC_TOP_VALUE), \
825
[shift_bits] "n"(RC_SHIFT_BITS), \
826
[bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
827
[bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \
828
[move_bits] "n"(RC_MOVE_BITS) \
829
: \
830
"cc", "memory"); \
831
} while (0)
832
#endif // LZMA_RANGE_DECODER_CONFIG & 0x040
833
834
835
// Literal decoding uses a normal 8-bit bittree but literal with match byte
836
// is more complex in picking the probability variable from the correct
837
// subtree. This doesn't use preloading/prefetching of the next prob because
838
// there are four choices instead of two.
839
//
840
// FIXME? The first iteration starts with symbol = 1 so it could be optimized
841
// by a tiny amount.
842
#define rc_asm_matched_literal(nonlast_only) \
843
"add %[offset], %[symbol]\n\t" \
844
"and %[offset], %[match_bit]\n\t" \
845
"add %[match_bit], %[symbol]\n\t" \
846
\
847
"movzwl (%[probs_base], %q[symbol], 2), %[prob]\n\t" \
848
\
849
"add %[symbol], %[symbol]\n\t" \
850
\
851
nonlast_only( \
852
"xor %[match_bit], %[offset]\n\t" \
853
"add %[match_byte], %[match_byte]\n\t" \
854
) \
855
\
856
rc_asm_normalize \
857
rc_asm_calc("prob") \
858
\
859
"cmovae %[t0], %[range]\n\t" \
860
"lea %c[bit_model_offset](%q[prob]), %[t0]\n\t" \
861
"cmovb %[t1], %[code]\n\t" \
862
"mov %[symbol], %[t1]\n\t" \
863
"cmovae %[prob], %[t0]\n\t" \
864
\
865
nonlast_only( \
866
"cmovae %[match_bit], %[offset]\n\t" \
867
"mov %[match_byte], %[match_bit]\n\t" \
868
) \
869
\
870
"sbb $-1, %[symbol]\n\t" \
871
\
872
"shr %[move_bits], %[t0]\n\t" \
873
/* Undo symbol += match_bit + offset: */ \
874
"and $0x1FF, %[symbol]\n\t" \
875
"sub %[t0], %[prob]\n\t" \
876
\
877
/* Scaling of 1 instead of 2 because symbol <<= 1. */ \
878
"mov %w[prob], (%[probs_base], %q[t1], 1)\n\t"
879
880
881
#if LZMA_RANGE_DECODER_CONFIG & 0x080
882
#undef rc_matched_literal
883
#define rc_matched_literal(probs_base_var, match_byte_value) \
884
do { \
885
uint32_t t0; \
886
uint32_t t1; \
887
uint32_t t_prob; \
888
uint32_t t_match_byte = (uint32_t)(match_byte_value) << 1; \
889
uint32_t t_match_bit = t_match_byte; \
890
uint32_t t_offset = 0x100; \
891
symbol = 1; \
892
\
893
__asm__( \
894
rc_asm_matched_literal(rc_asm_y) \
895
rc_asm_matched_literal(rc_asm_y) \
896
rc_asm_matched_literal(rc_asm_y) \
897
rc_asm_matched_literal(rc_asm_y) \
898
rc_asm_matched_literal(rc_asm_y) \
899
rc_asm_matched_literal(rc_asm_y) \
900
rc_asm_matched_literal(rc_asm_y) \
901
rc_asm_matched_literal(rc_asm_n) \
902
: \
903
[range] "+&r"(rc.range), \
904
[code] "+&r"(rc.code), \
905
[t0] "=&r"(t0), \
906
[t1] "=&r"(t1), \
907
[prob] "=&r"(t_prob), \
908
[match_bit] "+&r"(t_match_bit), \
909
[symbol] "+&r"(symbol), \
910
[match_byte] "+&r"(t_match_byte), \
911
[offset] "+&r"(t_offset), \
912
[in_ptr] "+&r"(rc_in_ptr) \
913
: \
914
[probs_base] "r"(probs_base_var), \
915
[top_value] "n"(RC_TOP_VALUE), \
916
[shift_bits] "n"(RC_SHIFT_BITS), \
917
[bit_model_total_bits] "n"(RC_BIT_MODEL_TOTAL_BITS), \
918
[bit_model_offset] "n"(RC_BIT_MODEL_OFFSET), \
919
[move_bits] "n"(RC_MOVE_BITS) \
920
: \
921
"cc", "memory"); \
922
} while (0)
923
#endif // LZMA_RANGE_DECODER_CONFIG & 0x080
924
925
926
// Doing the loop in asm instead of C seems to help a little.
927
#if LZMA_RANGE_DECODER_CONFIG & 0x100
928
#undef rc_direct
929
#define rc_direct(dest_var, count_var) \
930
do { \
931
uint32_t t0; \
932
uint32_t t1; \
933
\
934
__asm__( \
935
"2:\n\t" \
936
"add %[dest], %[dest]\n\t" \
937
"lea 1(%q[dest]), %[t1]\n\t" \
938
\
939
rc_asm_normalize \
940
\
941
"shr $1, %[range]\n\t" \
942
"mov %[code], %[t0]\n\t" \
943
"sub %[range], %[code]\n\t" \
944
"cmovns %[t1], %[dest]\n\t" \
945
"cmovs %[t0], %[code]\n\t" \
946
"dec %[count]\n\t" \
947
"jnz 2b\n\t" \
948
: \
949
[range] "+&r"(rc.range), \
950
[code] "+&r"(rc.code), \
951
[t0] "=&r"(t0), \
952
[t1] "=&r"(t1), \
953
[dest] "+&r"(dest_var), \
954
[count] "+&r"(count_var), \
955
[in_ptr] "+&r"(rc_in_ptr) \
956
: \
957
[top_value] "n"(RC_TOP_VALUE), \
958
[shift_bits] "n"(RC_SHIFT_BITS) \
959
: \
960
"cc", "memory"); \
961
} while (0)
962
#endif // LZMA_RANGE_DECODER_CONFIG & 0x100
963
964
#endif // x86_64
965
966
#endif
967
968