Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmliblzma/liblzma/rangecoder/range_encoder.h
3156 views
1
// SPDX-License-Identifier: 0BSD
2
3
///////////////////////////////////////////////////////////////////////////////
4
//
5
/// \file range_encoder.h
6
/// \brief Range Encoder
7
///
8
// Authors: Igor Pavlov
9
// Lasse Collin
10
//
11
///////////////////////////////////////////////////////////////////////////////
12
13
#ifndef LZMA_RANGE_ENCODER_H
14
#define LZMA_RANGE_ENCODER_H
15
16
#include "range_common.h"
17
#include "price.h"
18
19
20
/// Maximum number of symbols that can be put pending into lzma_range_encoder
21
/// structure between calls to lzma_rc_encode(). For LZMA, 48+5 is enough
22
/// (match with big distance and length followed by range encoder flush).
23
#define RC_SYMBOLS_MAX 53
24
25
26
typedef struct {
27
uint64_t low;
28
uint64_t cache_size;
29
uint32_t range;
30
uint8_t cache;
31
32
/// Number of bytes written out by rc_encode() -> rc_shift_low()
33
uint64_t out_total;
34
35
/// Number of symbols in the tables
36
size_t count;
37
38
/// rc_encode()'s position in the tables
39
size_t pos;
40
41
/// Symbols to encode
42
enum {
43
RC_BIT_0,
44
RC_BIT_1,
45
RC_DIRECT_0,
46
RC_DIRECT_1,
47
RC_FLUSH,
48
} symbols[RC_SYMBOLS_MAX];
49
50
/// Probabilities associated with RC_BIT_0 or RC_BIT_1
51
probability *probs[RC_SYMBOLS_MAX];
52
53
} lzma_range_encoder;
54
55
56
static inline void
57
rc_reset(lzma_range_encoder *rc)
58
{
59
rc->low = 0;
60
rc->cache_size = 1;
61
rc->range = UINT32_MAX;
62
rc->cache = 0;
63
rc->out_total = 0;
64
rc->count = 0;
65
rc->pos = 0;
66
}
67
68
69
static inline void
70
rc_forget(lzma_range_encoder *rc)
71
{
72
// This must not be called when rc_encode() is partially done.
73
assert(rc->pos == 0);
74
rc->count = 0;
75
}
76
77
78
static inline void
79
rc_bit(lzma_range_encoder *rc, probability *prob, uint32_t bit)
80
{
81
rc->symbols[rc->count] = bit;
82
rc->probs[rc->count] = prob;
83
++rc->count;
84
}
85
86
87
static inline void
88
rc_bittree(lzma_range_encoder *rc, probability *probs,
89
uint32_t bit_count, uint32_t symbol)
90
{
91
uint32_t model_index = 1;
92
93
do {
94
const uint32_t bit = (symbol >> --bit_count) & 1;
95
rc_bit(rc, &probs[model_index], bit);
96
model_index = (model_index << 1) + bit;
97
} while (bit_count != 0);
98
}
99
100
101
static inline void
102
rc_bittree_reverse(lzma_range_encoder *rc, probability *probs,
103
uint32_t bit_count, uint32_t symbol)
104
{
105
uint32_t model_index = 1;
106
107
do {
108
const uint32_t bit = symbol & 1;
109
symbol >>= 1;
110
rc_bit(rc, &probs[model_index], bit);
111
model_index = (model_index << 1) + bit;
112
} while (--bit_count != 0);
113
}
114
115
116
static inline void
117
rc_direct(lzma_range_encoder *rc,
118
uint32_t value, uint32_t bit_count)
119
{
120
do {
121
rc->symbols[rc->count++]
122
= RC_DIRECT_0 + ((value >> --bit_count) & 1);
123
} while (bit_count != 0);
124
}
125
126
127
static inline void
128
rc_flush(lzma_range_encoder *rc)
129
{
130
for (size_t i = 0; i < 5; ++i)
131
rc->symbols[rc->count++] = RC_FLUSH;
132
}
133
134
135
static inline bool
136
rc_shift_low(lzma_range_encoder *rc,
137
uint8_t *out, size_t *out_pos, size_t out_size)
138
{
139
if ((uint32_t)(rc->low) < (uint32_t)(0xFF000000)
140
|| (uint32_t)(rc->low >> 32) != 0) {
141
do {
142
if (*out_pos == out_size)
143
return true;
144
145
out[*out_pos] = rc->cache + (uint8_t)(rc->low >> 32);
146
++*out_pos;
147
++rc->out_total;
148
rc->cache = 0xFF;
149
150
} while (--rc->cache_size != 0);
151
152
rc->cache = (rc->low >> 24) & 0xFF;
153
}
154
155
++rc->cache_size;
156
rc->low = (rc->low & 0x00FFFFFF) << RC_SHIFT_BITS;
157
158
return false;
159
}
160
161
162
// NOTE: The last two arguments are uint64_t instead of size_t because in
163
// the dummy version these refer to the size of the whole range-encoded
164
// output stream, not just to the currently available output buffer space.
165
static inline bool
166
rc_shift_low_dummy(uint64_t *low, uint64_t *cache_size, uint8_t *cache,
167
uint64_t *out_pos, uint64_t out_size)
168
{
169
if ((uint32_t)(*low) < (uint32_t)(0xFF000000)
170
|| (uint32_t)(*low >> 32) != 0) {
171
do {
172
if (*out_pos == out_size)
173
return true;
174
175
++*out_pos;
176
*cache = 0xFF;
177
178
} while (--*cache_size != 0);
179
180
*cache = (*low >> 24) & 0xFF;
181
}
182
183
++*cache_size;
184
*low = (*low & 0x00FFFFFF) << RC_SHIFT_BITS;
185
186
return false;
187
}
188
189
190
static inline bool
191
rc_encode(lzma_range_encoder *rc,
192
uint8_t *out, size_t *out_pos, size_t out_size)
193
{
194
assert(rc->count <= RC_SYMBOLS_MAX);
195
196
while (rc->pos < rc->count) {
197
// Normalize
198
if (rc->range < RC_TOP_VALUE) {
199
if (rc_shift_low(rc, out, out_pos, out_size))
200
return true;
201
202
rc->range <<= RC_SHIFT_BITS;
203
}
204
205
// Encode a bit
206
switch (rc->symbols[rc->pos]) {
207
case RC_BIT_0: {
208
probability prob = *rc->probs[rc->pos];
209
rc->range = (rc->range >> RC_BIT_MODEL_TOTAL_BITS)
210
* prob;
211
prob += (RC_BIT_MODEL_TOTAL - prob) >> RC_MOVE_BITS;
212
*rc->probs[rc->pos] = prob;
213
break;
214
}
215
216
case RC_BIT_1: {
217
probability prob = *rc->probs[rc->pos];
218
const uint32_t bound = prob * (rc->range
219
>> RC_BIT_MODEL_TOTAL_BITS);
220
rc->low += bound;
221
rc->range -= bound;
222
prob -= prob >> RC_MOVE_BITS;
223
*rc->probs[rc->pos] = prob;
224
break;
225
}
226
227
case RC_DIRECT_0:
228
rc->range >>= 1;
229
break;
230
231
case RC_DIRECT_1:
232
rc->range >>= 1;
233
rc->low += rc->range;
234
break;
235
236
case RC_FLUSH:
237
// Prevent further normalizations.
238
rc->range = UINT32_MAX;
239
240
// Flush the last five bytes (see rc_flush()).
241
do {
242
if (rc_shift_low(rc, out, out_pos, out_size))
243
return true;
244
} while (++rc->pos < rc->count);
245
246
// Reset the range encoder so we are ready to continue
247
// encoding if we weren't finishing the stream.
248
rc_reset(rc);
249
return false;
250
251
default:
252
assert(0);
253
break;
254
}
255
256
++rc->pos;
257
}
258
259
rc->count = 0;
260
rc->pos = 0;
261
262
return false;
263
}
264
265
266
static inline bool
267
rc_encode_dummy(const lzma_range_encoder *rc, uint64_t out_limit)
268
{
269
assert(rc->count <= RC_SYMBOLS_MAX);
270
271
uint64_t low = rc->low;
272
uint64_t cache_size = rc->cache_size;
273
uint32_t range = rc->range;
274
uint8_t cache = rc->cache;
275
uint64_t out_pos = rc->out_total;
276
277
size_t pos = rc->pos;
278
279
while (true) {
280
// Normalize
281
if (range < RC_TOP_VALUE) {
282
if (rc_shift_low_dummy(&low, &cache_size, &cache,
283
&out_pos, out_limit))
284
return true;
285
286
range <<= RC_SHIFT_BITS;
287
}
288
289
// This check is here because the normalization above must
290
// be done before flushing the last bytes.
291
if (pos == rc->count)
292
break;
293
294
// Encode a bit
295
switch (rc->symbols[pos]) {
296
case RC_BIT_0: {
297
probability prob = *rc->probs[pos];
298
range = (range >> RC_BIT_MODEL_TOTAL_BITS)
299
* prob;
300
break;
301
}
302
303
case RC_BIT_1: {
304
probability prob = *rc->probs[pos];
305
const uint32_t bound = prob * (range
306
>> RC_BIT_MODEL_TOTAL_BITS);
307
low += bound;
308
range -= bound;
309
break;
310
}
311
312
case RC_DIRECT_0:
313
range >>= 1;
314
break;
315
316
case RC_DIRECT_1:
317
range >>= 1;
318
low += range;
319
break;
320
321
case RC_FLUSH:
322
default:
323
assert(0);
324
break;
325
}
326
327
++pos;
328
}
329
330
// Flush the last bytes. This isn't in rc->symbols[] so we do
331
// it after the above loop to take into account the size of
332
// the flushing that will be done at the end of the stream.
333
for (pos = 0; pos < 5; ++pos) {
334
if (rc_shift_low_dummy(&low, &cache_size,
335
&cache, &out_pos, out_limit))
336
return true;
337
}
338
339
return false;
340
}
341
342
343
static inline uint64_t
344
rc_pending(const lzma_range_encoder *rc)
345
{
346
return rc->cache_size + 5 - 1;
347
}
348
349
#endif
350
351