Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmliblzma/liblzma/simple/simple_coder.c
3156 views
1
// SPDX-License-Identifier: 0BSD
2
3
///////////////////////////////////////////////////////////////////////////////
4
//
5
/// \file simple_coder.c
6
/// \brief Wrapper for simple filters
7
///
8
/// Simple filters don't change the size of the data i.e. number of bytes
9
/// in equals the number of bytes out.
10
//
11
// Author: Lasse Collin
12
//
13
///////////////////////////////////////////////////////////////////////////////
14
15
#include "simple_private.h"
16
17
18
/// Copied or encodes/decodes more data to out[].
19
static lzma_ret
20
copy_or_code(lzma_simple_coder *coder, const lzma_allocator *allocator,
21
const uint8_t *restrict in, size_t *restrict in_pos,
22
size_t in_size, uint8_t *restrict out,
23
size_t *restrict out_pos, size_t out_size, lzma_action action)
24
{
25
assert(!coder->end_was_reached);
26
27
if (coder->next.code == NULL) {
28
lzma_bufcpy(in, in_pos, in_size, out, out_pos, out_size);
29
30
// Check if end of stream was reached.
31
if (coder->is_encoder && action == LZMA_FINISH
32
&& *in_pos == in_size)
33
coder->end_was_reached = true;
34
35
} else {
36
// Call the next coder in the chain to provide us some data.
37
const lzma_ret ret = coder->next.code(
38
coder->next.coder, allocator,
39
in, in_pos, in_size,
40
out, out_pos, out_size, action);
41
42
if (ret == LZMA_STREAM_END) {
43
assert(!coder->is_encoder
44
|| action == LZMA_FINISH);
45
coder->end_was_reached = true;
46
47
} else if (ret != LZMA_OK) {
48
return ret;
49
}
50
}
51
52
return LZMA_OK;
53
}
54
55
56
static size_t
57
call_filter(lzma_simple_coder *coder, uint8_t *buffer, size_t size)
58
{
59
const size_t filtered = coder->filter(coder->simple,
60
coder->now_pos, coder->is_encoder,
61
buffer, size);
62
coder->now_pos += filtered;
63
return filtered;
64
}
65
66
67
static lzma_ret
68
simple_code(void *coder_ptr, const lzma_allocator *allocator,
69
const uint8_t *restrict in, size_t *restrict in_pos,
70
size_t in_size, uint8_t *restrict out,
71
size_t *restrict out_pos, size_t out_size, lzma_action action)
72
{
73
lzma_simple_coder *coder = coder_ptr;
74
75
// TODO: Add partial support for LZMA_SYNC_FLUSH. We can support it
76
// in cases when the filter is able to filter everything. With most
77
// simple filters it can be done at offset that is a multiple of 2,
78
// 4, or 16. With x86 filter, it needs good luck, and thus cannot
79
// be made to work predictably.
80
if (action == LZMA_SYNC_FLUSH)
81
return LZMA_OPTIONS_ERROR;
82
83
// Flush already filtered data from coder->buffer[] to out[].
84
if (coder->pos < coder->filtered) {
85
lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
86
out, out_pos, out_size);
87
88
// If we couldn't flush all the filtered data, return to
89
// application immediately.
90
if (coder->pos < coder->filtered)
91
return LZMA_OK;
92
93
if (coder->end_was_reached) {
94
assert(coder->filtered == coder->size);
95
return LZMA_STREAM_END;
96
}
97
}
98
99
// If we get here, there is no filtered data left in the buffer.
100
coder->filtered = 0;
101
102
assert(!coder->end_was_reached);
103
104
// If there is more output space left than there is unfiltered data
105
// in coder->buffer[], flush coder->buffer[] to out[], and copy/code
106
// more data to out[] hopefully filling it completely. Then filter
107
// the data in out[]. This step is where most of the data gets
108
// filtered if the buffer sizes used by the application are reasonable.
109
const size_t out_avail = out_size - *out_pos;
110
const size_t buf_avail = coder->size - coder->pos;
111
if (out_avail > buf_avail || buf_avail == 0) {
112
// Store the old position so that we know from which byte
113
// to start filtering.
114
const size_t out_start = *out_pos;
115
116
// Flush data from coder->buffer[] to out[], but don't reset
117
// coder->pos and coder->size yet. This way the coder can be
118
// restarted if the next filter in the chain returns e.g.
119
// LZMA_MEM_ERROR.
120
//
121
// Do the memcpy() conditionally because out can be NULL
122
// (in which case buf_avail is always 0). Calling memcpy()
123
// with a null-pointer is undefined even if the third
124
// argument is 0.
125
if (buf_avail > 0)
126
memcpy(out + *out_pos, coder->buffer + coder->pos,
127
buf_avail);
128
129
*out_pos += buf_avail;
130
131
// Copy/Encode/Decode more data to out[].
132
{
133
const lzma_ret ret = copy_or_code(coder, allocator,
134
in, in_pos, in_size,
135
out, out_pos, out_size, action);
136
assert(ret != LZMA_STREAM_END);
137
if (ret != LZMA_OK)
138
return ret;
139
}
140
141
// Filter out[] unless there is nothing to filter.
142
// This way we avoid null pointer + 0 (undefined behavior)
143
// when out == NULL.
144
const size_t size = *out_pos - out_start;
145
const size_t filtered = size == 0 ? 0 : call_filter(
146
coder, out + out_start, size);
147
148
const size_t unfiltered = size - filtered;
149
assert(unfiltered <= coder->allocated / 2);
150
151
// Now we can update coder->pos and coder->size, because
152
// the next coder in the chain (if any) was successful.
153
coder->pos = 0;
154
coder->size = unfiltered;
155
156
if (coder->end_was_reached) {
157
// The last byte has been copied to out[] already.
158
// They are left as is.
159
coder->size = 0;
160
161
} else if (unfiltered > 0) {
162
// There is unfiltered data left in out[]. Copy it to
163
// coder->buffer[] and rewind *out_pos appropriately.
164
*out_pos -= unfiltered;
165
memcpy(coder->buffer, out + *out_pos, unfiltered);
166
}
167
} else if (coder->pos > 0) {
168
memmove(coder->buffer, coder->buffer + coder->pos, buf_avail);
169
coder->size -= coder->pos;
170
coder->pos = 0;
171
}
172
173
assert(coder->pos == 0);
174
175
// If coder->buffer[] isn't empty, try to fill it by copying/decoding
176
// more data. Then filter coder->buffer[] and copy the successfully
177
// filtered data to out[]. It is probable, that some filtered and
178
// unfiltered data will be left to coder->buffer[].
179
if (coder->size > 0) {
180
{
181
const lzma_ret ret = copy_or_code(coder, allocator,
182
in, in_pos, in_size,
183
coder->buffer, &coder->size,
184
coder->allocated, action);
185
assert(ret != LZMA_STREAM_END);
186
if (ret != LZMA_OK)
187
return ret;
188
}
189
190
coder->filtered = call_filter(
191
coder, coder->buffer, coder->size);
192
193
// Everything is considered to be filtered if coder->buffer[]
194
// contains the last bytes of the data.
195
if (coder->end_was_reached)
196
coder->filtered = coder->size;
197
198
// Flush as much as possible.
199
lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered,
200
out, out_pos, out_size);
201
}
202
203
// Check if we got everything done.
204
if (coder->end_was_reached && coder->pos == coder->size)
205
return LZMA_STREAM_END;
206
207
return LZMA_OK;
208
}
209
210
211
static void
212
simple_coder_end(void *coder_ptr, const lzma_allocator *allocator)
213
{
214
lzma_simple_coder *coder = coder_ptr;
215
lzma_next_end(&coder->next, allocator);
216
lzma_free(coder->simple, allocator);
217
lzma_free(coder, allocator);
218
return;
219
}
220
221
222
static lzma_ret
223
simple_coder_update(void *coder_ptr, const lzma_allocator *allocator,
224
const lzma_filter *filters_null lzma_attribute((__unused__)),
225
const lzma_filter *reversed_filters)
226
{
227
lzma_simple_coder *coder = coder_ptr;
228
229
// No update support, just call the next filter in the chain.
230
return lzma_next_filter_update(
231
&coder->next, allocator, reversed_filters + 1);
232
}
233
234
235
extern lzma_ret
236
lzma_simple_coder_init(lzma_next_coder *next, const lzma_allocator *allocator,
237
const lzma_filter_info *filters,
238
size_t (*filter)(void *simple, uint32_t now_pos,
239
bool is_encoder, uint8_t *buffer, size_t size),
240
size_t simple_size, size_t unfiltered_max,
241
uint32_t alignment, bool is_encoder)
242
{
243
// Allocate memory for the lzma_simple_coder structure if needed.
244
lzma_simple_coder *coder = next->coder;
245
if (coder == NULL) {
246
// Here we allocate space also for the temporary buffer. We
247
// need twice the size of unfiltered_max, because then it
248
// is always possible to filter at least unfiltered_max bytes
249
// more data in coder->buffer[] if it can be filled completely.
250
coder = lzma_alloc(sizeof(lzma_simple_coder)
251
+ 2 * unfiltered_max, allocator);
252
if (coder == NULL)
253
return LZMA_MEM_ERROR;
254
255
next->coder = coder;
256
next->code = &simple_code;
257
next->end = &simple_coder_end;
258
next->update = &simple_coder_update;
259
260
coder->next = LZMA_NEXT_CODER_INIT;
261
coder->filter = filter;
262
coder->allocated = 2 * unfiltered_max;
263
264
// Allocate memory for filter-specific data structure.
265
if (simple_size > 0) {
266
coder->simple = lzma_alloc(simple_size, allocator);
267
if (coder->simple == NULL)
268
return LZMA_MEM_ERROR;
269
} else {
270
coder->simple = NULL;
271
}
272
}
273
274
if (filters[0].options != NULL) {
275
const lzma_options_bcj *simple = filters[0].options;
276
coder->now_pos = simple->start_offset;
277
if (coder->now_pos & (alignment - 1))
278
return LZMA_OPTIONS_ERROR;
279
} else {
280
coder->now_pos = 0;
281
}
282
283
// Reset variables.
284
coder->is_encoder = is_encoder;
285
coder->end_was_reached = false;
286
coder->pos = 0;
287
coder->filtered = 0;
288
coder->size = 0;
289
290
return lzma_next_filter_init(&coder->next, allocator, filters + 1);
291
}
292
293