Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmlibrhash/librhash/sha256.c
3150 views
1
/* sha256.c - an implementation of SHA-256/224 hash functions
2
* based on FIPS 180-3 (Federal Information Processing Standart).
3
*
4
* Copyright (c) 2010, Aleksey Kravchenko <[email protected]>
5
*
6
* Permission to use, copy, modify, and/or distribute this software for any
7
* purpose with or without fee is hereby granted.
8
*
9
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
10
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
11
* AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
12
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
13
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
14
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
15
* PERFORMANCE OF THIS SOFTWARE.
16
*/
17
18
#include <string.h>
19
#include "byte_order.h"
20
#include "sha256.h"
21
22
/* SHA-224 and SHA-256 constants for 64 rounds. These words represent
23
* the first 32 bits of the fractional parts of the cube
24
* roots of the first 64 prime numbers. */
25
static const unsigned rhash_k256[64] = {
26
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
27
0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
28
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
29
0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
30
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
31
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
32
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
33
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
34
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
35
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
36
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
37
};
38
39
/* The SHA256/224 functions defined by FIPS 180-3, 4.1.2 */
40
/* Optimized version of Ch(x,y,z)=((x & y) | (~x & z)) */
41
#define Ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
42
/* Optimized version of Maj(x,y,z)=((x & y) ^ (x & z) ^ (y & z)) */
43
#define Maj(x,y,z) (((x) & (y)) ^ ((z) & ((x) ^ (y))))
44
45
#define Sigma0(x) (ROTR32((x), 2) ^ ROTR32((x), 13) ^ ROTR32((x), 22))
46
#define Sigma1(x) (ROTR32((x), 6) ^ ROTR32((x), 11) ^ ROTR32((x), 25))
47
#define sigma0(x) (ROTR32((x), 7) ^ ROTR32((x), 18) ^ ((x) >> 3))
48
#define sigma1(x) (ROTR32((x),17) ^ ROTR32((x), 19) ^ ((x) >> 10))
49
50
/* Recalculate element n-th of circular buffer W using formula
51
* W[n] = sigma1(W[n - 2]) + W[n - 7] + sigma0(W[n - 15]) + W[n - 16]; */
52
#define RECALCULATE_W(W,n) (W[n] += \
53
(sigma1(W[(n - 2) & 15]) + W[(n - 7) & 15] + sigma0(W[(n - 15) & 15])))
54
55
#define ROUND(a,b,c,d,e,f,g,h,k,data) { \
56
unsigned T1 = h + Sigma1(e) + Ch(e,f,g) + k + (data); \
57
d += T1, h = T1 + Sigma0(a) + Maj(a,b,c); }
58
#define ROUND_1_16(a,b,c,d,e,f,g,h,n) \
59
ROUND(a,b,c,d,e,f,g,h, rhash_k256[n], W[n] = be2me_32(block[n]))
60
#define ROUND_17_64(a,b,c,d,e,f,g,h,n) \
61
ROUND(a,b,c,d,e,f,g,h, k[n], RECALCULATE_W(W, n))
62
63
/**
64
* Initialize context before calculating hash.
65
*
66
* @param ctx context to initialize
67
*/
68
void rhash_sha256_init(sha256_ctx* ctx)
69
{
70
/* Initial values. These words were obtained by taking the first 32
71
* bits of the fractional parts of the square roots of the first
72
* eight prime numbers. */
73
static const unsigned SHA256_H0[8] = {
74
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
75
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
76
};
77
memset(ctx->message, 0, sizeof(ctx->message));
78
ctx->length = 0;
79
ctx->digest_length = sha256_hash_size;
80
81
/* initialize algorithm state */
82
memcpy(ctx->hash, SHA256_H0, sizeof(ctx->hash));
83
}
84
85
/**
86
* Initialize context before calculating hash.
87
*
88
* @param ctx context to initialize
89
*/
90
void rhash_sha224_init(struct sha256_ctx* ctx)
91
{
92
/* Initial values from FIPS 180-3. These words were obtained by taking
93
* bits from 33th to 64th of the fractional parts of the square
94
* roots of ninth through sixteenth prime numbers. */
95
static const unsigned SHA224_H0[8] = {
96
0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939,
97
0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4
98
};
99
memset(ctx->message, 0, sizeof(ctx->message));
100
ctx->length = 0;
101
ctx->digest_length = sha224_hash_size;
102
103
memcpy(ctx->hash, SHA224_H0, sizeof(ctx->hash));
104
}
105
106
/**
107
* The core transformation. Process a 512-bit block.
108
*
109
* @param hash algorithm state
110
* @param block the message block to process
111
*/
112
static void rhash_sha256_process_block(unsigned hash[8], unsigned block[16])
113
{
114
unsigned A, B, C, D, E, F, G, H;
115
unsigned W[16];
116
const unsigned* k;
117
int i;
118
119
A = hash[0], B = hash[1], C = hash[2], D = hash[3];
120
E = hash[4], F = hash[5], G = hash[6], H = hash[7];
121
122
/* Compute SHA using alternate Method: FIPS 180-3 6.1.3 */
123
ROUND_1_16(A, B, C, D, E, F, G, H, 0);
124
ROUND_1_16(H, A, B, C, D, E, F, G, 1);
125
ROUND_1_16(G, H, A, B, C, D, E, F, 2);
126
ROUND_1_16(F, G, H, A, B, C, D, E, 3);
127
ROUND_1_16(E, F, G, H, A, B, C, D, 4);
128
ROUND_1_16(D, E, F, G, H, A, B, C, 5);
129
ROUND_1_16(C, D, E, F, G, H, A, B, 6);
130
ROUND_1_16(B, C, D, E, F, G, H, A, 7);
131
ROUND_1_16(A, B, C, D, E, F, G, H, 8);
132
ROUND_1_16(H, A, B, C, D, E, F, G, 9);
133
ROUND_1_16(G, H, A, B, C, D, E, F, 10);
134
ROUND_1_16(F, G, H, A, B, C, D, E, 11);
135
ROUND_1_16(E, F, G, H, A, B, C, D, 12);
136
ROUND_1_16(D, E, F, G, H, A, B, C, 13);
137
ROUND_1_16(C, D, E, F, G, H, A, B, 14);
138
ROUND_1_16(B, C, D, E, F, G, H, A, 15);
139
140
for (i = 16, k = &rhash_k256[16]; i < 64; i += 16, k += 16) {
141
ROUND_17_64(A, B, C, D, E, F, G, H, 0);
142
ROUND_17_64(H, A, B, C, D, E, F, G, 1);
143
ROUND_17_64(G, H, A, B, C, D, E, F, 2);
144
ROUND_17_64(F, G, H, A, B, C, D, E, 3);
145
ROUND_17_64(E, F, G, H, A, B, C, D, 4);
146
ROUND_17_64(D, E, F, G, H, A, B, C, 5);
147
ROUND_17_64(C, D, E, F, G, H, A, B, 6);
148
ROUND_17_64(B, C, D, E, F, G, H, A, 7);
149
ROUND_17_64(A, B, C, D, E, F, G, H, 8);
150
ROUND_17_64(H, A, B, C, D, E, F, G, 9);
151
ROUND_17_64(G, H, A, B, C, D, E, F, 10);
152
ROUND_17_64(F, G, H, A, B, C, D, E, 11);
153
ROUND_17_64(E, F, G, H, A, B, C, D, 12);
154
ROUND_17_64(D, E, F, G, H, A, B, C, 13);
155
ROUND_17_64(C, D, E, F, G, H, A, B, 14);
156
ROUND_17_64(B, C, D, E, F, G, H, A, 15);
157
}
158
159
hash[0] += A, hash[1] += B, hash[2] += C, hash[3] += D;
160
hash[4] += E, hash[5] += F, hash[6] += G, hash[7] += H;
161
}
162
163
/**
164
* Calculate message hash.
165
* Can be called repeatedly with chunks of the message to be hashed.
166
*
167
* @param ctx the algorithm context containing current hashing state
168
* @param msg message chunk
169
* @param size length of the message chunk
170
*/
171
void rhash_sha256_update(sha256_ctx* ctx, const unsigned char* msg, size_t size)
172
{
173
size_t index = (size_t)ctx->length & 63;
174
ctx->length += size;
175
176
/* fill partial block */
177
if (index) {
178
size_t left = sha256_block_size - index;
179
memcpy((char*)ctx->message + index, msg, (size < left ? size : left));
180
if (size < left) return;
181
182
/* process partial block */
183
rhash_sha256_process_block(ctx->hash, (unsigned*)ctx->message);
184
msg += left;
185
size -= left;
186
}
187
while (size >= sha256_block_size) {
188
unsigned* aligned_message_block;
189
if (IS_ALIGNED_32(msg)) {
190
/* the most common case is processing of an already aligned message
191
without copying it */
192
aligned_message_block = (unsigned*)msg;
193
} else {
194
memcpy(ctx->message, msg, sha256_block_size);
195
aligned_message_block = (unsigned*)ctx->message;
196
}
197
198
rhash_sha256_process_block(ctx->hash, aligned_message_block);
199
msg += sha256_block_size;
200
size -= sha256_block_size;
201
}
202
if (size) {
203
memcpy(ctx->message, msg, size); /* save leftovers */
204
}
205
}
206
207
/**
208
* Store calculated hash into the given array.
209
*
210
* @param ctx the algorithm context containing current hashing state
211
* @param result calculated hash in binary form
212
*/
213
void rhash_sha256_final(sha256_ctx* ctx, unsigned char* result)
214
{
215
size_t index = ((unsigned)ctx->length & 63) >> 2;
216
unsigned shift = ((unsigned)ctx->length & 3) * 8;
217
218
/* pad message and run for last block */
219
220
/* append the byte 0x80 to the message */
221
ctx->message[index] &= le2me_32(~(0xFFFFFFFFu << shift));
222
ctx->message[index++] ^= le2me_32(0x80u << shift);
223
224
/* if no room left in the message to store 64-bit message length */
225
if (index > 14) {
226
/* then fill the rest with zeros and process it */
227
while (index < 16) {
228
ctx->message[index++] = 0;
229
}
230
rhash_sha256_process_block(ctx->hash, ctx->message);
231
index = 0;
232
}
233
while (index < 14) {
234
ctx->message[index++] = 0;
235
}
236
ctx->message[14] = be2me_32( (unsigned)(ctx->length >> 29) );
237
ctx->message[15] = be2me_32( (unsigned)(ctx->length << 3) );
238
rhash_sha256_process_block(ctx->hash, ctx->message);
239
240
if (result) be32_copy(result, 0, ctx->hash, ctx->digest_length);
241
}
242
243