Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmzlib/deflate.c
3148 views
1
/* deflate.c -- compress data using the deflation algorithm
2
* Copyright (C) 1995-2024 Jean-loup Gailly and Mark Adler
3
* For conditions of distribution and use, see copyright notice in zlib.h
4
*/
5
6
/*
7
* ALGORITHM
8
*
9
* The "deflation" process depends on being able to identify portions
10
* of the input text which are identical to earlier input (within a
11
* sliding window trailing behind the input currently being processed).
12
*
13
* The most straightforward technique turns out to be the fastest for
14
* most input files: try all possible matches and select the longest.
15
* The key feature of this algorithm is that insertions into the string
16
* dictionary are very simple and thus fast, and deletions are avoided
17
* completely. Insertions are performed at each input character, whereas
18
* string matches are performed only when the previous match ends. So it
19
* is preferable to spend more time in matches to allow very fast string
20
* insertions and avoid deletions. The matching algorithm for small
21
* strings is inspired from that of Rabin & Karp. A brute force approach
22
* is used to find longer strings when a small match has been found.
23
* A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24
* (by Leonid Broukhis).
25
* A previous version of this file used a more sophisticated algorithm
26
* (by Fiala and Greene) which is guaranteed to run in linear amortized
27
* time, but has a larger average cost, uses more memory and is patented.
28
* However the F&G algorithm may be faster for some highly redundant
29
* files if the parameter max_chain_length (described below) is too large.
30
*
31
* ACKNOWLEDGEMENTS
32
*
33
* The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34
* I found it in 'freeze' written by Leonid Broukhis.
35
* Thanks to many people for bug reports and testing.
36
*
37
* REFERENCES
38
*
39
* Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40
* Available in http://tools.ietf.org/html/rfc1951
41
*
42
* A description of the Rabin and Karp algorithm is given in the book
43
* "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44
*
45
* Fiala,E.R., and Greene,D.H.
46
* Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47
*
48
*/
49
50
/* @(#) $Id$ */
51
52
#include "deflate.h"
53
54
const char deflate_copyright[] =
55
" deflate 1.3.1 Copyright 1995-2024 Jean-loup Gailly and Mark Adler ";
56
/*
57
If you use the zlib library in a product, an acknowledgment is welcome
58
in the documentation of your product. If for some reason you cannot
59
include such an acknowledgment, I would appreciate that you keep this
60
copyright string in the executable of your product.
61
*/
62
63
typedef enum {
64
need_more, /* block not completed, need more input or more output */
65
block_done, /* block flush performed */
66
finish_started, /* finish started, need only more output at next deflate */
67
finish_done /* finish done, accept no more input or output */
68
} block_state;
69
70
typedef block_state (*compress_func)(deflate_state *s, int flush);
71
/* Compression function. Returns the block state after the call. */
72
73
local block_state deflate_stored(deflate_state *s, int flush);
74
local block_state deflate_fast(deflate_state *s, int flush);
75
#ifndef FASTEST
76
local block_state deflate_slow(deflate_state *s, int flush);
77
#endif
78
local block_state deflate_rle(deflate_state *s, int flush);
79
local block_state deflate_huff(deflate_state *s, int flush);
80
81
/* ===========================================================================
82
* Local data
83
*/
84
85
#define NIL 0
86
/* Tail of hash chains */
87
88
#ifndef TOO_FAR
89
# define TOO_FAR 4096
90
#endif
91
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
92
93
/* Values for max_lazy_match, good_match and max_chain_length, depending on
94
* the desired pack level (0..9). The values given below have been tuned to
95
* exclude worst case performance for pathological files. Better values may be
96
* found for specific files.
97
*/
98
typedef struct config_s {
99
ush good_length; /* reduce lazy search above this match length */
100
ush max_lazy; /* do not perform lazy search above this match length */
101
ush nice_length; /* quit search above this match length */
102
ush max_chain;
103
compress_func func;
104
} config;
105
106
#ifdef FASTEST
107
local const config configuration_table[2] = {
108
/* good lazy nice chain */
109
/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
110
/* 1 */ {4, 4, 8, 4, deflate_fast}}; /* max speed, no lazy matches */
111
#else
112
local const config configuration_table[10] = {
113
/* good lazy nice chain */
114
/* 0 */ {0, 0, 0, 0, deflate_stored}, /* store only */
115
/* 1 */ {4, 4, 8, 4, deflate_fast}, /* max speed, no lazy matches */
116
/* 2 */ {4, 5, 16, 8, deflate_fast},
117
/* 3 */ {4, 6, 32, 32, deflate_fast},
118
119
/* 4 */ {4, 4, 16, 16, deflate_slow}, /* lazy matches */
120
/* 5 */ {8, 16, 32, 32, deflate_slow},
121
/* 6 */ {8, 16, 128, 128, deflate_slow},
122
/* 7 */ {8, 32, 128, 256, deflate_slow},
123
/* 8 */ {32, 128, 258, 1024, deflate_slow},
124
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
125
#endif
126
127
/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
128
* For deflate_fast() (levels <= 3) good is ignored and lazy has a different
129
* meaning.
130
*/
131
132
/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
133
#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))
134
135
/* ===========================================================================
136
* Update a hash value with the given input byte
137
* IN assertion: all calls to UPDATE_HASH are made with consecutive input
138
* characters, so that a running hash key can be computed from the previous
139
* key instead of complete recalculation each time.
140
*/
141
#define UPDATE_HASH(s,h,c) (h = (((h) << s->hash_shift) ^ (c)) & s->hash_mask)
142
143
144
/* ===========================================================================
145
* Insert string str in the dictionary and set match_head to the previous head
146
* of the hash chain (the most recent string with same hash key). Return
147
* the previous length of the hash chain.
148
* If this file is compiled with -DFASTEST, the compression level is forced
149
* to 1, and no hash chains are maintained.
150
* IN assertion: all calls to INSERT_STRING are made with consecutive input
151
* characters and the first MIN_MATCH bytes of str are valid (except for
152
* the last MIN_MATCH-1 bytes of the input file).
153
*/
154
#ifdef FASTEST
155
#define INSERT_STRING(s, str, match_head) \
156
(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
157
match_head = s->head[s->ins_h], \
158
s->head[s->ins_h] = (Pos)(str))
159
#else
160
#define INSERT_STRING(s, str, match_head) \
161
(UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
162
match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
163
s->head[s->ins_h] = (Pos)(str))
164
#endif
165
166
/* ===========================================================================
167
* Initialize the hash table (avoiding 64K overflow for 16 bit systems).
168
* prev[] will be initialized on the fly.
169
*/
170
#define CLEAR_HASH(s) \
171
do { \
172
s->head[s->hash_size - 1] = NIL; \
173
zmemzero((Bytef *)s->head, \
174
(unsigned)(s->hash_size - 1)*sizeof(*s->head)); \
175
} while (0)
176
177
/* ===========================================================================
178
* Slide the hash table when sliding the window down (could be avoided with 32
179
* bit values at the expense of memory usage). We slide even when level == 0 to
180
* keep the hash table consistent if we switch back to level > 0 later.
181
*/
182
#if defined(__has_feature)
183
# if __has_feature(memory_sanitizer)
184
__attribute__((no_sanitize("memory")))
185
# endif
186
#endif
187
local void slide_hash(deflate_state *s) {
188
unsigned n, m;
189
Posf *p;
190
uInt wsize = s->w_size;
191
192
n = s->hash_size;
193
p = &s->head[n];
194
do {
195
m = *--p;
196
*p = (Pos)(m >= wsize ? m - wsize : NIL);
197
} while (--n);
198
n = wsize;
199
#ifndef FASTEST
200
p = &s->prev[n];
201
do {
202
m = *--p;
203
*p = (Pos)(m >= wsize ? m - wsize : NIL);
204
/* If n is not on any hash chain, prev[n] is garbage but
205
* its value will never be used.
206
*/
207
} while (--n);
208
#endif
209
}
210
211
/* ===========================================================================
212
* Read a new buffer from the current input stream, update the adler32
213
* and total number of bytes read. All deflate() input goes through
214
* this function so some applications may wish to modify it to avoid
215
* allocating a large strm->next_in buffer and copying from it.
216
* (See also flush_pending()).
217
*/
218
local unsigned read_buf(z_streamp strm, Bytef *buf, unsigned size) {
219
unsigned len = strm->avail_in;
220
221
if (len > size) len = size;
222
if (len == 0) return 0;
223
224
strm->avail_in -= len;
225
226
zmemcpy(buf, strm->next_in, len);
227
if (strm->state->wrap == 1) {
228
strm->adler = adler32(strm->adler, buf, len);
229
}
230
#ifdef GZIP
231
else if (strm->state->wrap == 2) {
232
strm->adler = crc32(strm->adler, buf, len);
233
}
234
#endif
235
strm->next_in += len;
236
strm->total_in += len;
237
238
return len;
239
}
240
241
/* ===========================================================================
242
* Fill the window when the lookahead becomes insufficient.
243
* Updates strstart and lookahead.
244
*
245
* IN assertion: lookahead < MIN_LOOKAHEAD
246
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
247
* At least one byte has been read, or avail_in == 0; reads are
248
* performed for at least two bytes (required for the zip translate_eol
249
* option -- not supported here).
250
*/
251
local void fill_window(deflate_state *s) {
252
unsigned n;
253
unsigned more; /* Amount of free space at the end of the window. */
254
uInt wsize = s->w_size;
255
256
Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");
257
258
do {
259
more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
260
261
/* Deal with !@#$% 64K limit: */
262
if (sizeof(int) <= 2) {
263
if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
264
more = wsize;
265
266
} else if (more == (unsigned)(-1)) {
267
/* Very unlikely, but possible on 16 bit machine if
268
* strstart == 0 && lookahead == 1 (input done a byte at time)
269
*/
270
more--;
271
}
272
}
273
274
/* If the window is almost full and there is insufficient lookahead,
275
* move the upper half to the lower one to make room in the upper half.
276
*/
277
if (s->strstart >= wsize + MAX_DIST(s)) {
278
279
zmemcpy(s->window, s->window + wsize, (unsigned)wsize - more);
280
s->match_start -= wsize;
281
s->strstart -= wsize; /* we now have strstart >= MAX_DIST */
282
s->block_start -= (long) wsize;
283
if (s->insert > s->strstart)
284
s->insert = s->strstart;
285
slide_hash(s);
286
more += wsize;
287
}
288
if (s->strm->avail_in == 0) break;
289
290
/* If there was no sliding:
291
* strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
292
* more == window_size - lookahead - strstart
293
* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
294
* => more >= window_size - 2*WSIZE + 2
295
* In the BIG_MEM or MMAP case (not yet supported),
296
* window_size == input_size + MIN_LOOKAHEAD &&
297
* strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
298
* Otherwise, window_size == 2*WSIZE so more >= 2.
299
* If there was sliding, more >= WSIZE. So in all cases, more >= 2.
300
*/
301
Assert(more >= 2, "more < 2");
302
303
n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
304
s->lookahead += n;
305
306
/* Initialize the hash value now that we have some input: */
307
if (s->lookahead + s->insert >= MIN_MATCH) {
308
uInt str = s->strstart - s->insert;
309
s->ins_h = s->window[str];
310
UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
311
#if MIN_MATCH != 3
312
Call UPDATE_HASH() MIN_MATCH-3 more times
313
#endif
314
while (s->insert) {
315
UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
316
#ifndef FASTEST
317
s->prev[str & s->w_mask] = s->head[s->ins_h];
318
#endif
319
s->head[s->ins_h] = (Pos)str;
320
str++;
321
s->insert--;
322
if (s->lookahead + s->insert < MIN_MATCH)
323
break;
324
}
325
}
326
/* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
327
* but this is not important since only literal bytes will be emitted.
328
*/
329
330
} while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
331
332
/* If the WIN_INIT bytes after the end of the current data have never been
333
* written, then zero those bytes in order to avoid memory check reports of
334
* the use of uninitialized (or uninitialised as Julian writes) bytes by
335
* the longest match routines. Update the high water mark for the next
336
* time through here. WIN_INIT is set to MAX_MATCH since the longest match
337
* routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
338
*/
339
if (s->high_water < s->window_size) {
340
ulg curr = s->strstart + (ulg)(s->lookahead);
341
ulg init;
342
343
if (s->high_water < curr) {
344
/* Previous high water mark below current data -- zero WIN_INIT
345
* bytes or up to end of window, whichever is less.
346
*/
347
init = s->window_size - curr;
348
if (init > WIN_INIT)
349
init = WIN_INIT;
350
zmemzero(s->window + curr, (unsigned)init);
351
s->high_water = curr + init;
352
}
353
else if (s->high_water < (ulg)curr + WIN_INIT) {
354
/* High water mark at or above current data, but below current data
355
* plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
356
* to end of window, whichever is less.
357
*/
358
init = (ulg)curr + WIN_INIT - s->high_water;
359
if (init > s->window_size - s->high_water)
360
init = s->window_size - s->high_water;
361
zmemzero(s->window + s->high_water, (unsigned)init);
362
s->high_water += init;
363
}
364
}
365
366
Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
367
"not enough room for search");
368
}
369
370
/* ========================================================================= */
371
int ZEXPORT deflateInit_(z_streamp strm, int level, const char *version,
372
int stream_size) {
373
return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
374
Z_DEFAULT_STRATEGY, version, stream_size);
375
/* To do: ignore strm->next_in if we use it as window */
376
}
377
378
/* ========================================================================= */
379
int ZEXPORT deflateInit2_(z_streamp strm, int level, int method,
380
int windowBits, int memLevel, int strategy,
381
const char *version, int stream_size) {
382
deflate_state *s;
383
int wrap = 1;
384
static const char my_version[] = ZLIB_VERSION;
385
386
if (version == Z_NULL || version[0] != my_version[0] ||
387
stream_size != sizeof(z_stream)) {
388
return Z_VERSION_ERROR;
389
}
390
if (strm == Z_NULL) return Z_STREAM_ERROR;
391
392
strm->msg = Z_NULL;
393
if (strm->zalloc == (alloc_func)0) {
394
#ifdef Z_SOLO
395
return Z_STREAM_ERROR;
396
#else
397
strm->zalloc = zcalloc;
398
strm->opaque = (voidpf)0;
399
#endif
400
}
401
if (strm->zfree == (free_func)0)
402
#ifdef Z_SOLO
403
return Z_STREAM_ERROR;
404
#else
405
strm->zfree = zcfree;
406
#endif
407
408
#ifdef FASTEST
409
if (level != 0) level = 1;
410
#else
411
if (level == Z_DEFAULT_COMPRESSION) level = 6;
412
#endif
413
414
if (windowBits < 0) { /* suppress zlib wrapper */
415
wrap = 0;
416
if (windowBits < -15)
417
return Z_STREAM_ERROR;
418
windowBits = -windowBits;
419
}
420
#ifdef GZIP
421
else if (windowBits > 15) {
422
wrap = 2; /* write gzip wrapper instead */
423
windowBits -= 16;
424
}
425
#endif
426
if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
427
windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
428
strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
429
return Z_STREAM_ERROR;
430
}
431
if (windowBits == 8) windowBits = 9; /* until 256-byte window bug fixed */
432
s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
433
if (s == Z_NULL) return Z_MEM_ERROR;
434
strm->state = (struct internal_state FAR *)s;
435
s->strm = strm;
436
s->status = INIT_STATE; /* to pass state test in deflateReset() */
437
438
s->wrap = wrap;
439
s->gzhead = Z_NULL;
440
s->w_bits = (uInt)windowBits;
441
s->w_size = 1 << s->w_bits;
442
s->w_mask = s->w_size - 1;
443
444
s->hash_bits = (uInt)memLevel + 7;
445
s->hash_size = 1 << s->hash_bits;
446
s->hash_mask = s->hash_size - 1;
447
s->hash_shift = ((s->hash_bits + MIN_MATCH-1) / MIN_MATCH);
448
449
s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
450
451
/* The following memset eliminates the valgrind uninitialized warning
452
"swept under the carpet" here:
453
http://www.zlib.net/zlib_faq.html#faq36 */
454
455
memset(s->window, 0, s->w_size*2*sizeof(Byte));
456
457
s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos));
458
s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos));
459
460
s->high_water = 0; /* nothing written to s->window yet */
461
462
s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
463
464
/* We overlay pending_buf and sym_buf. This works since the average size
465
* for length/distance pairs over any compressed block is assured to be 31
466
* bits or less.
467
*
468
* Analysis: The longest fixed codes are a length code of 8 bits plus 5
469
* extra bits, for lengths 131 to 257. The longest fixed distance codes are
470
* 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
471
* possible fixed-codes length/distance pair is then 31 bits total.
472
*
473
* sym_buf starts one-fourth of the way into pending_buf. So there are
474
* three bytes in sym_buf for every four bytes in pending_buf. Each symbol
475
* in sym_buf is three bytes -- two for the distance and one for the
476
* literal/length. As each symbol is consumed, the pointer to the next
477
* sym_buf value to read moves forward three bytes. From that symbol, up to
478
* 31 bits are written to pending_buf. The closest the written pending_buf
479
* bits gets to the next sym_buf symbol to read is just before the last
480
* code is written. At that time, 31*(n - 2) bits have been written, just
481
* after 24*(n - 2) bits have been consumed from sym_buf. sym_buf starts at
482
* 8*n bits into pending_buf. (Note that the symbol buffer fills when n - 1
483
* symbols are written.) The closest the writing gets to what is unread is
484
* then n + 14 bits. Here n is lit_bufsize, which is 16384 by default, and
485
* can range from 128 to 32768.
486
*
487
* Therefore, at a minimum, there are 142 bits of space between what is
488
* written and what is read in the overlain buffers, so the symbols cannot
489
* be overwritten by the compressed data. That space is actually 139 bits,
490
* due to the three-bit fixed-code block header.
491
*
492
* That covers the case where either Z_FIXED is specified, forcing fixed
493
* codes, or when the use of fixed codes is chosen, because that choice
494
* results in a smaller compressed block than dynamic codes. That latter
495
* condition then assures that the above analysis also covers all dynamic
496
* blocks. A dynamic-code block will only be chosen to be emitted if it has
497
* fewer bits than a fixed-code block would for the same set of symbols.
498
* Therefore its average symbol length is assured to be less than 31. So
499
* the compressed data for a dynamic block also cannot overwrite the
500
* symbols from which it is being constructed.
501
*/
502
503
s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, LIT_BUFS);
504
s->pending_buf_size = (ulg)s->lit_bufsize * 4;
505
506
if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
507
s->pending_buf == Z_NULL) {
508
s->status = FINISH_STATE;
509
strm->msg = ERR_MSG(Z_MEM_ERROR);
510
deflateEnd (strm);
511
return Z_MEM_ERROR;
512
}
513
#ifdef LIT_MEM
514
s->d_buf = (ushf *)(s->pending_buf + (s->lit_bufsize << 1));
515
s->l_buf = s->pending_buf + (s->lit_bufsize << 2);
516
s->sym_end = s->lit_bufsize - 1;
517
#else
518
s->sym_buf = s->pending_buf + s->lit_bufsize;
519
s->sym_end = (s->lit_bufsize - 1) * 3;
520
#endif
521
/* We avoid equality with lit_bufsize*3 because of wraparound at 64K
522
* on 16 bit machines and because stored blocks are restricted to
523
* 64K-1 bytes.
524
*/
525
526
s->level = level;
527
s->strategy = strategy;
528
s->method = (Byte)method;
529
530
return deflateReset(strm);
531
}
532
533
/* =========================================================================
534
* Check for a valid deflate stream state. Return 0 if ok, 1 if not.
535
*/
536
local int deflateStateCheck(z_streamp strm) {
537
deflate_state *s;
538
if (strm == Z_NULL ||
539
strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
540
return 1;
541
s = strm->state;
542
if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
543
#ifdef GZIP
544
s->status != GZIP_STATE &&
545
#endif
546
s->status != EXTRA_STATE &&
547
s->status != NAME_STATE &&
548
s->status != COMMENT_STATE &&
549
s->status != HCRC_STATE &&
550
s->status != BUSY_STATE &&
551
s->status != FINISH_STATE))
552
return 1;
553
return 0;
554
}
555
556
/* ========================================================================= */
557
int ZEXPORT deflateSetDictionary(z_streamp strm, const Bytef *dictionary,
558
uInt dictLength) {
559
deflate_state *s;
560
uInt str, n;
561
int wrap;
562
unsigned avail;
563
z_const unsigned char *next;
564
565
if (deflateStateCheck(strm) || dictionary == Z_NULL)
566
return Z_STREAM_ERROR;
567
s = strm->state;
568
wrap = s->wrap;
569
if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
570
return Z_STREAM_ERROR;
571
572
/* when using zlib wrappers, compute Adler-32 for provided dictionary */
573
if (wrap == 1)
574
strm->adler = adler32(strm->adler, dictionary, dictLength);
575
s->wrap = 0; /* avoid computing Adler-32 in read_buf */
576
577
/* if dictionary would fill window, just replace the history */
578
if (dictLength >= s->w_size) {
579
if (wrap == 0) { /* already empty otherwise */
580
CLEAR_HASH(s);
581
s->strstart = 0;
582
s->block_start = 0L;
583
s->insert = 0;
584
}
585
dictionary += dictLength - s->w_size; /* use the tail */
586
dictLength = s->w_size;
587
}
588
589
/* insert dictionary into window and hash */
590
avail = strm->avail_in;
591
next = strm->next_in;
592
strm->avail_in = dictLength;
593
strm->next_in = (z_const Bytef *)dictionary;
594
fill_window(s);
595
while (s->lookahead >= MIN_MATCH) {
596
str = s->strstart;
597
n = s->lookahead - (MIN_MATCH-1);
598
do {
599
UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
600
#ifndef FASTEST
601
s->prev[str & s->w_mask] = s->head[s->ins_h];
602
#endif
603
s->head[s->ins_h] = (Pos)str;
604
str++;
605
} while (--n);
606
s->strstart = str;
607
s->lookahead = MIN_MATCH-1;
608
fill_window(s);
609
}
610
s->strstart += s->lookahead;
611
s->block_start = (long)s->strstart;
612
s->insert = s->lookahead;
613
s->lookahead = 0;
614
s->match_length = s->prev_length = MIN_MATCH-1;
615
s->match_available = 0;
616
strm->next_in = next;
617
strm->avail_in = avail;
618
s->wrap = wrap;
619
return Z_OK;
620
}
621
622
/* ========================================================================= */
623
int ZEXPORT deflateGetDictionary(z_streamp strm, Bytef *dictionary,
624
uInt *dictLength) {
625
deflate_state *s;
626
uInt len;
627
628
if (deflateStateCheck(strm))
629
return Z_STREAM_ERROR;
630
s = strm->state;
631
len = s->strstart + s->lookahead;
632
if (len > s->w_size)
633
len = s->w_size;
634
if (dictionary != Z_NULL && len)
635
zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
636
if (dictLength != Z_NULL)
637
*dictLength = len;
638
return Z_OK;
639
}
640
641
/* ========================================================================= */
642
int ZEXPORT deflateResetKeep(z_streamp strm) {
643
deflate_state *s;
644
645
if (deflateStateCheck(strm)) {
646
return Z_STREAM_ERROR;
647
}
648
649
strm->total_in = strm->total_out = 0;
650
strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
651
strm->data_type = Z_UNKNOWN;
652
653
s = (deflate_state *)strm->state;
654
s->pending = 0;
655
s->pending_out = s->pending_buf;
656
657
if (s->wrap < 0) {
658
s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
659
}
660
s->status =
661
#ifdef GZIP
662
s->wrap == 2 ? GZIP_STATE :
663
#endif
664
INIT_STATE;
665
strm->adler =
666
#ifdef GZIP
667
s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
668
#endif
669
adler32(0L, Z_NULL, 0);
670
s->last_flush = -2;
671
672
_tr_init(s);
673
674
return Z_OK;
675
}
676
677
/* ===========================================================================
678
* Initialize the "longest match" routines for a new zlib stream
679
*/
680
local void lm_init(deflate_state *s) {
681
s->window_size = (ulg)2L*s->w_size;
682
683
CLEAR_HASH(s);
684
685
/* Set the default configuration parameters:
686
*/
687
s->max_lazy_match = configuration_table[s->level].max_lazy;
688
s->good_match = configuration_table[s->level].good_length;
689
s->nice_match = configuration_table[s->level].nice_length;
690
s->max_chain_length = configuration_table[s->level].max_chain;
691
692
s->strstart = 0;
693
s->block_start = 0L;
694
s->lookahead = 0;
695
s->insert = 0;
696
s->match_length = s->prev_length = MIN_MATCH-1;
697
s->match_available = 0;
698
s->ins_h = 0;
699
}
700
701
/* ========================================================================= */
702
int ZEXPORT deflateReset(z_streamp strm) {
703
int ret;
704
705
ret = deflateResetKeep(strm);
706
if (ret == Z_OK)
707
lm_init(strm->state);
708
return ret;
709
}
710
711
/* ========================================================================= */
712
int ZEXPORT deflateSetHeader(z_streamp strm, gz_headerp head) {
713
if (deflateStateCheck(strm) || strm->state->wrap != 2)
714
return Z_STREAM_ERROR;
715
strm->state->gzhead = head;
716
return Z_OK;
717
}
718
719
/* ========================================================================= */
720
int ZEXPORT deflatePending(z_streamp strm, unsigned *pending, int *bits) {
721
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
722
if (pending != Z_NULL)
723
*pending = strm->state->pending;
724
if (bits != Z_NULL)
725
*bits = strm->state->bi_valid;
726
return Z_OK;
727
}
728
729
/* ========================================================================= */
730
int ZEXPORT deflatePrime(z_streamp strm, int bits, int value) {
731
deflate_state *s;
732
int put;
733
734
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
735
s = strm->state;
736
#ifdef LIT_MEM
737
if (bits < 0 || bits > 16 ||
738
(uchf *)s->d_buf < s->pending_out + ((Buf_size + 7) >> 3))
739
return Z_BUF_ERROR;
740
#else
741
if (bits < 0 || bits > 16 ||
742
s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
743
return Z_BUF_ERROR;
744
#endif
745
do {
746
put = Buf_size - s->bi_valid;
747
if (put > bits)
748
put = bits;
749
s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
750
s->bi_valid += put;
751
_tr_flush_bits(s);
752
value >>= put;
753
bits -= put;
754
} while (bits);
755
return Z_OK;
756
}
757
758
/* ========================================================================= */
759
int ZEXPORT deflateParams(z_streamp strm, int level, int strategy) {
760
deflate_state *s;
761
compress_func func;
762
763
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
764
s = strm->state;
765
766
#ifdef FASTEST
767
if (level != 0) level = 1;
768
#else
769
if (level == Z_DEFAULT_COMPRESSION) level = 6;
770
#endif
771
if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
772
return Z_STREAM_ERROR;
773
}
774
func = configuration_table[s->level].func;
775
776
if ((strategy != s->strategy || func != configuration_table[level].func) &&
777
s->last_flush != -2) {
778
/* Flush the last buffer: */
779
int err = deflate(strm, Z_BLOCK);
780
if (err == Z_STREAM_ERROR)
781
return err;
782
if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
783
return Z_BUF_ERROR;
784
}
785
if (s->level != level) {
786
if (s->level == 0 && s->matches != 0) {
787
if (s->matches == 1)
788
slide_hash(s);
789
else
790
CLEAR_HASH(s);
791
s->matches = 0;
792
}
793
s->level = level;
794
s->max_lazy_match = configuration_table[level].max_lazy;
795
s->good_match = configuration_table[level].good_length;
796
s->nice_match = configuration_table[level].nice_length;
797
s->max_chain_length = configuration_table[level].max_chain;
798
}
799
s->strategy = strategy;
800
return Z_OK;
801
}
802
803
/* ========================================================================= */
804
int ZEXPORT deflateTune(z_streamp strm, int good_length, int max_lazy,
805
int nice_length, int max_chain) {
806
deflate_state *s;
807
808
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
809
s = strm->state;
810
s->good_match = (uInt)good_length;
811
s->max_lazy_match = (uInt)max_lazy;
812
s->nice_match = nice_length;
813
s->max_chain_length = (uInt)max_chain;
814
return Z_OK;
815
}
816
817
/* =========================================================================
818
* For the default windowBits of 15 and memLevel of 8, this function returns a
819
* close to exact, as well as small, upper bound on the compressed size. This
820
* is an expansion of ~0.03%, plus a small constant.
821
*
822
* For any setting other than those defaults for windowBits and memLevel, one
823
* of two worst case bounds is returned. This is at most an expansion of ~4% or
824
* ~13%, plus a small constant.
825
*
826
* Both the 0.03% and 4% derive from the overhead of stored blocks. The first
827
* one is for stored blocks of 16383 bytes (memLevel == 8), whereas the second
828
* is for stored blocks of 127 bytes (the worst case memLevel == 1). The
829
* expansion results from five bytes of header for each stored block.
830
*
831
* The larger expansion of 13% results from a window size less than or equal to
832
* the symbols buffer size (windowBits <= memLevel + 7). In that case some of
833
* the data being compressed may have slid out of the sliding window, impeding
834
* a stored block from being emitted. Then the only choice is a fixed or
835
* dynamic block, where a fixed block limits the maximum expansion to 9 bits
836
* per 8-bit byte, plus 10 bits for every block. The smallest block size for
837
* which this can occur is 255 (memLevel == 2).
838
*
839
* Shifts are used to approximate divisions, for speed.
840
*/
841
uLong ZEXPORT deflateBound(z_streamp strm, uLong sourceLen) {
842
deflate_state *s;
843
uLong fixedlen, storelen, wraplen;
844
845
/* upper bound for fixed blocks with 9-bit literals and length 255
846
(memLevel == 2, which is the lowest that may not use stored blocks) --
847
~13% overhead plus a small constant */
848
fixedlen = sourceLen + (sourceLen >> 3) + (sourceLen >> 8) +
849
(sourceLen >> 9) + 4;
850
851
/* upper bound for stored blocks with length 127 (memLevel == 1) --
852
~4% overhead plus a small constant */
853
storelen = sourceLen + (sourceLen >> 5) + (sourceLen >> 7) +
854
(sourceLen >> 11) + 7;
855
856
/* if can't get parameters, return larger bound plus a zlib wrapper */
857
if (deflateStateCheck(strm))
858
return (fixedlen > storelen ? fixedlen : storelen) + 6;
859
860
/* compute wrapper length */
861
s = strm->state;
862
switch (s->wrap) {
863
case 0: /* raw deflate */
864
wraplen = 0;
865
break;
866
case 1: /* zlib wrapper */
867
wraplen = 6 + (s->strstart ? 4 : 0);
868
break;
869
#ifdef GZIP
870
case 2: /* gzip wrapper */
871
wraplen = 18;
872
if (s->gzhead != Z_NULL) { /* user-supplied gzip header */
873
Bytef *str;
874
if (s->gzhead->extra != Z_NULL)
875
wraplen += 2 + s->gzhead->extra_len;
876
str = s->gzhead->name;
877
if (str != Z_NULL)
878
do {
879
wraplen++;
880
} while (*str++);
881
str = s->gzhead->comment;
882
if (str != Z_NULL)
883
do {
884
wraplen++;
885
} while (*str++);
886
if (s->gzhead->hcrc)
887
wraplen += 2;
888
}
889
break;
890
#endif
891
default: /* for compiler happiness */
892
wraplen = 6;
893
}
894
895
/* if not default parameters, return one of the conservative bounds */
896
if (s->w_bits != 15 || s->hash_bits != 8 + 7)
897
return (s->w_bits <= s->hash_bits && s->level ? fixedlen : storelen) +
898
wraplen;
899
900
/* default settings: return tight bound for that case -- ~0.03% overhead
901
plus a small constant */
902
return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
903
(sourceLen >> 25) + 13 - 6 + wraplen;
904
}
905
906
/* =========================================================================
907
* Put a short in the pending buffer. The 16-bit value is put in MSB order.
908
* IN assertion: the stream state is correct and there is enough room in
909
* pending_buf.
910
*/
911
local void putShortMSB(deflate_state *s, uInt b) {
912
put_byte(s, (Byte)(b >> 8));
913
put_byte(s, (Byte)(b & 0xff));
914
}
915
916
/* =========================================================================
917
* Flush as much pending output as possible. All deflate() output, except for
918
* some deflate_stored() output, goes through this function so some
919
* applications may wish to modify it to avoid allocating a large
920
* strm->next_out buffer and copying into it. (See also read_buf()).
921
*/
922
local void flush_pending(z_streamp strm) {
923
unsigned len;
924
deflate_state *s = strm->state;
925
926
_tr_flush_bits(s);
927
len = s->pending;
928
if (len > strm->avail_out) len = strm->avail_out;
929
if (len == 0) return;
930
931
zmemcpy(strm->next_out, s->pending_out, len);
932
strm->next_out += len;
933
s->pending_out += len;
934
strm->total_out += len;
935
strm->avail_out -= len;
936
s->pending -= len;
937
if (s->pending == 0) {
938
s->pending_out = s->pending_buf;
939
}
940
}
941
942
/* ===========================================================================
943
* Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
944
*/
945
#define HCRC_UPDATE(beg) \
946
do { \
947
if (s->gzhead->hcrc && s->pending > (beg)) \
948
strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
949
s->pending - (beg)); \
950
} while (0)
951
952
/* ========================================================================= */
953
int ZEXPORT deflate(z_streamp strm, int flush) {
954
int old_flush; /* value of flush param for previous deflate call */
955
deflate_state *s;
956
957
if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
958
return Z_STREAM_ERROR;
959
}
960
s = strm->state;
961
962
if (strm->next_out == Z_NULL ||
963
(strm->avail_in != 0 && strm->next_in == Z_NULL) ||
964
(s->status == FINISH_STATE && flush != Z_FINISH)) {
965
ERR_RETURN(strm, Z_STREAM_ERROR);
966
}
967
if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
968
969
old_flush = s->last_flush;
970
s->last_flush = flush;
971
972
/* Flush as much pending output as possible */
973
if (s->pending != 0) {
974
flush_pending(strm);
975
if (strm->avail_out == 0) {
976
/* Since avail_out is 0, deflate will be called again with
977
* more output space, but possibly with both pending and
978
* avail_in equal to zero. There won't be anything to do,
979
* but this is not an error situation so make sure we
980
* return OK instead of BUF_ERROR at next call of deflate:
981
*/
982
s->last_flush = -1;
983
return Z_OK;
984
}
985
986
/* Make sure there is something to do and avoid duplicate consecutive
987
* flushes. For repeated and useless calls with Z_FINISH, we keep
988
* returning Z_STREAM_END instead of Z_BUF_ERROR.
989
*/
990
} else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
991
flush != Z_FINISH) {
992
ERR_RETURN(strm, Z_BUF_ERROR);
993
}
994
995
/* User must not provide more input after the first FINISH: */
996
if (s->status == FINISH_STATE && strm->avail_in != 0) {
997
ERR_RETURN(strm, Z_BUF_ERROR);
998
}
999
1000
/* Write the header */
1001
if (s->status == INIT_STATE && s->wrap == 0)
1002
s->status = BUSY_STATE;
1003
if (s->status == INIT_STATE) {
1004
/* zlib header */
1005
uInt header = (Z_DEFLATED + ((s->w_bits - 8) << 4)) << 8;
1006
uInt level_flags;
1007
1008
if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
1009
level_flags = 0;
1010
else if (s->level < 6)
1011
level_flags = 1;
1012
else if (s->level == 6)
1013
level_flags = 2;
1014
else
1015
level_flags = 3;
1016
header |= (level_flags << 6);
1017
if (s->strstart != 0) header |= PRESET_DICT;
1018
header += 31 - (header % 31);
1019
1020
putShortMSB(s, header);
1021
1022
/* Save the adler32 of the preset dictionary: */
1023
if (s->strstart != 0) {
1024
putShortMSB(s, (uInt)(strm->adler >> 16));
1025
putShortMSB(s, (uInt)(strm->adler & 0xffff));
1026
}
1027
strm->adler = adler32(0L, Z_NULL, 0);
1028
s->status = BUSY_STATE;
1029
1030
/* Compression must start with an empty pending buffer */
1031
flush_pending(strm);
1032
if (s->pending != 0) {
1033
s->last_flush = -1;
1034
return Z_OK;
1035
}
1036
}
1037
#ifdef GZIP
1038
if (s->status == GZIP_STATE) {
1039
/* gzip header */
1040
strm->adler = crc32(0L, Z_NULL, 0);
1041
put_byte(s, 31);
1042
put_byte(s, 139);
1043
put_byte(s, 8);
1044
if (s->gzhead == Z_NULL) {
1045
put_byte(s, 0);
1046
put_byte(s, 0);
1047
put_byte(s, 0);
1048
put_byte(s, 0);
1049
put_byte(s, 0);
1050
put_byte(s, s->level == 9 ? 2 :
1051
(s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1052
4 : 0));
1053
put_byte(s, OS_CODE);
1054
s->status = BUSY_STATE;
1055
1056
/* Compression must start with an empty pending buffer */
1057
flush_pending(strm);
1058
if (s->pending != 0) {
1059
s->last_flush = -1;
1060
return Z_OK;
1061
}
1062
}
1063
else {
1064
put_byte(s, (s->gzhead->text ? 1 : 0) +
1065
(s->gzhead->hcrc ? 2 : 0) +
1066
(s->gzhead->extra == Z_NULL ? 0 : 4) +
1067
(s->gzhead->name == Z_NULL ? 0 : 8) +
1068
(s->gzhead->comment == Z_NULL ? 0 : 16)
1069
);
1070
put_byte(s, (Byte)(s->gzhead->time & 0xff));
1071
put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
1072
put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
1073
put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
1074
put_byte(s, s->level == 9 ? 2 :
1075
(s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
1076
4 : 0));
1077
put_byte(s, s->gzhead->os & 0xff);
1078
if (s->gzhead->extra != Z_NULL) {
1079
put_byte(s, s->gzhead->extra_len & 0xff);
1080
put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
1081
}
1082
if (s->gzhead->hcrc)
1083
strm->adler = crc32(strm->adler, s->pending_buf,
1084
s->pending);
1085
s->gzindex = 0;
1086
s->status = EXTRA_STATE;
1087
}
1088
}
1089
if (s->status == EXTRA_STATE) {
1090
if (s->gzhead->extra != Z_NULL) {
1091
ulg beg = s->pending; /* start of bytes to update crc */
1092
uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
1093
while (s->pending + left > s->pending_buf_size) {
1094
uInt copy = s->pending_buf_size - s->pending;
1095
zmemcpy(s->pending_buf + s->pending,
1096
s->gzhead->extra + s->gzindex, copy);
1097
s->pending = s->pending_buf_size;
1098
HCRC_UPDATE(beg);
1099
s->gzindex += copy;
1100
flush_pending(strm);
1101
if (s->pending != 0) {
1102
s->last_flush = -1;
1103
return Z_OK;
1104
}
1105
beg = 0;
1106
left -= copy;
1107
}
1108
zmemcpy(s->pending_buf + s->pending,
1109
s->gzhead->extra + s->gzindex, left);
1110
s->pending += left;
1111
HCRC_UPDATE(beg);
1112
s->gzindex = 0;
1113
}
1114
s->status = NAME_STATE;
1115
}
1116
if (s->status == NAME_STATE) {
1117
if (s->gzhead->name != Z_NULL) {
1118
ulg beg = s->pending; /* start of bytes to update crc */
1119
int val;
1120
do {
1121
if (s->pending == s->pending_buf_size) {
1122
HCRC_UPDATE(beg);
1123
flush_pending(strm);
1124
if (s->pending != 0) {
1125
s->last_flush = -1;
1126
return Z_OK;
1127
}
1128
beg = 0;
1129
}
1130
val = s->gzhead->name[s->gzindex++];
1131
put_byte(s, val);
1132
} while (val != 0);
1133
HCRC_UPDATE(beg);
1134
s->gzindex = 0;
1135
}
1136
s->status = COMMENT_STATE;
1137
}
1138
if (s->status == COMMENT_STATE) {
1139
if (s->gzhead->comment != Z_NULL) {
1140
ulg beg = s->pending; /* start of bytes to update crc */
1141
int val;
1142
do {
1143
if (s->pending == s->pending_buf_size) {
1144
HCRC_UPDATE(beg);
1145
flush_pending(strm);
1146
if (s->pending != 0) {
1147
s->last_flush = -1;
1148
return Z_OK;
1149
}
1150
beg = 0;
1151
}
1152
val = s->gzhead->comment[s->gzindex++];
1153
put_byte(s, val);
1154
} while (val != 0);
1155
HCRC_UPDATE(beg);
1156
}
1157
s->status = HCRC_STATE;
1158
}
1159
if (s->status == HCRC_STATE) {
1160
if (s->gzhead->hcrc) {
1161
if (s->pending + 2 > s->pending_buf_size) {
1162
flush_pending(strm);
1163
if (s->pending != 0) {
1164
s->last_flush = -1;
1165
return Z_OK;
1166
}
1167
}
1168
put_byte(s, (Byte)(strm->adler & 0xff));
1169
put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1170
strm->adler = crc32(0L, Z_NULL, 0);
1171
}
1172
s->status = BUSY_STATE;
1173
1174
/* Compression must start with an empty pending buffer */
1175
flush_pending(strm);
1176
if (s->pending != 0) {
1177
s->last_flush = -1;
1178
return Z_OK;
1179
}
1180
}
1181
#endif
1182
1183
/* Start a new block or continue the current one.
1184
*/
1185
if (strm->avail_in != 0 || s->lookahead != 0 ||
1186
(flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1187
block_state bstate;
1188
1189
bstate = s->level == 0 ? deflate_stored(s, flush) :
1190
s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
1191
s->strategy == Z_RLE ? deflate_rle(s, flush) :
1192
(*(configuration_table[s->level].func))(s, flush);
1193
1194
if (bstate == finish_started || bstate == finish_done) {
1195
s->status = FINISH_STATE;
1196
}
1197
if (bstate == need_more || bstate == finish_started) {
1198
if (strm->avail_out == 0) {
1199
s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1200
}
1201
return Z_OK;
1202
/* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1203
* of deflate should use the same flush parameter to make sure
1204
* that the flush is complete. So we don't have to output an
1205
* empty block here, this will be done at next call. This also
1206
* ensures that for a very small output buffer, we emit at most
1207
* one empty block.
1208
*/
1209
}
1210
if (bstate == block_done) {
1211
if (flush == Z_PARTIAL_FLUSH) {
1212
_tr_align(s);
1213
} else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
1214
_tr_stored_block(s, (char*)0, 0L, 0);
1215
/* For a full flush, this empty block will be recognized
1216
* as a special marker by inflate_sync().
1217
*/
1218
if (flush == Z_FULL_FLUSH) {
1219
CLEAR_HASH(s); /* forget history */
1220
if (s->lookahead == 0) {
1221
s->strstart = 0;
1222
s->block_start = 0L;
1223
s->insert = 0;
1224
}
1225
}
1226
}
1227
flush_pending(strm);
1228
if (strm->avail_out == 0) {
1229
s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1230
return Z_OK;
1231
}
1232
}
1233
}
1234
1235
if (flush != Z_FINISH) return Z_OK;
1236
if (s->wrap <= 0) return Z_STREAM_END;
1237
1238
/* Write the trailer */
1239
#ifdef GZIP
1240
if (s->wrap == 2) {
1241
put_byte(s, (Byte)(strm->adler & 0xff));
1242
put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
1243
put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
1244
put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
1245
put_byte(s, (Byte)(strm->total_in & 0xff));
1246
put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
1247
put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
1248
put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
1249
}
1250
else
1251
#endif
1252
{
1253
putShortMSB(s, (uInt)(strm->adler >> 16));
1254
putShortMSB(s, (uInt)(strm->adler & 0xffff));
1255
}
1256
flush_pending(strm);
1257
/* If avail_out is zero, the application will call deflate again
1258
* to flush the rest.
1259
*/
1260
if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
1261
return s->pending != 0 ? Z_OK : Z_STREAM_END;
1262
}
1263
1264
/* ========================================================================= */
1265
int ZEXPORT deflateEnd(z_streamp strm) {
1266
int status;
1267
1268
if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
1269
1270
status = strm->state->status;
1271
1272
/* Deallocate in reverse order of allocations: */
1273
TRY_FREE(strm, strm->state->pending_buf);
1274
TRY_FREE(strm, strm->state->head);
1275
TRY_FREE(strm, strm->state->prev);
1276
TRY_FREE(strm, strm->state->window);
1277
1278
ZFREE(strm, strm->state);
1279
strm->state = Z_NULL;
1280
1281
return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1282
}
1283
1284
/* =========================================================================
1285
* Copy the source state to the destination state.
1286
* To simplify the source, this is not supported for 16-bit MSDOS (which
1287
* doesn't have enough memory anyway to duplicate compression states).
1288
*/
1289
int ZEXPORT deflateCopy(z_streamp dest, z_streamp source) {
1290
#ifdef MAXSEG_64K
1291
(void)dest;
1292
(void)source;
1293
return Z_STREAM_ERROR;
1294
#else
1295
deflate_state *ds;
1296
deflate_state *ss;
1297
1298
1299
if (deflateStateCheck(source) || dest == Z_NULL) {
1300
return Z_STREAM_ERROR;
1301
}
1302
1303
ss = source->state;
1304
1305
zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));
1306
1307
ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1308
if (ds == Z_NULL) return Z_MEM_ERROR;
1309
dest->state = (struct internal_state FAR *) ds;
1310
zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
1311
ds->strm = dest;
1312
1313
ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1314
ds->prev = (Posf *) ZALLOC(dest, ds->w_size, sizeof(Pos));
1315
ds->head = (Posf *) ZALLOC(dest, ds->hash_size, sizeof(Pos));
1316
ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, LIT_BUFS);
1317
1318
if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1319
ds->pending_buf == Z_NULL) {
1320
deflateEnd (dest);
1321
return Z_MEM_ERROR;
1322
}
1323
/* following zmemcpy do not work for 16-bit MSDOS */
1324
zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1325
zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
1326
zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
1327
zmemcpy(ds->pending_buf, ss->pending_buf, ds->lit_bufsize * LIT_BUFS);
1328
1329
ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1330
#ifdef LIT_MEM
1331
ds->d_buf = (ushf *)(ds->pending_buf + (ds->lit_bufsize << 1));
1332
ds->l_buf = ds->pending_buf + (ds->lit_bufsize << 2);
1333
#else
1334
ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1335
#endif
1336
1337
ds->l_desc.dyn_tree = ds->dyn_ltree;
1338
ds->d_desc.dyn_tree = ds->dyn_dtree;
1339
ds->bl_desc.dyn_tree = ds->bl_tree;
1340
1341
return Z_OK;
1342
#endif /* MAXSEG_64K */
1343
}
1344
1345
#ifndef FASTEST
1346
/* ===========================================================================
1347
* Set match_start to the longest match starting at the given string and
1348
* return its length. Matches shorter or equal to prev_length are discarded,
1349
* in which case the result is equal to prev_length and match_start is
1350
* garbage.
1351
* IN assertions: cur_match is the head of the hash chain for the current
1352
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1353
* OUT assertion: the match length is not greater than s->lookahead.
1354
*/
1355
local uInt longest_match(deflate_state *s, IPos cur_match) {
1356
unsigned chain_length = s->max_chain_length;/* max hash chain length */
1357
register Bytef *scan = s->window + s->strstart; /* current string */
1358
register Bytef *match; /* matched string */
1359
register int len; /* length of current match */
1360
int best_len = (int)s->prev_length; /* best match length so far */
1361
int nice_match = s->nice_match; /* stop if match long enough */
1362
IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1363
s->strstart - (IPos)MAX_DIST(s) : NIL;
1364
/* Stop when cur_match becomes <= limit. To simplify the code,
1365
* we prevent matches with the string of window index 0.
1366
*/
1367
Posf *prev = s->prev;
1368
uInt wmask = s->w_mask;
1369
1370
#ifdef UNALIGNED_OK
1371
/* Compare two bytes at a time. Note: this is not always beneficial.
1372
* Try with and without -DUNALIGNED_OK to check.
1373
*/
1374
register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1375
register ush scan_start = *(ushf*)scan;
1376
register ush scan_end = *(ushf*)(scan + best_len - 1);
1377
#else
1378
register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1379
register Byte scan_end1 = scan[best_len - 1];
1380
register Byte scan_end = scan[best_len];
1381
#endif
1382
1383
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1384
* It is easy to get rid of this optimization if necessary.
1385
*/
1386
Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1387
1388
/* Do not waste too much time if we already have a good match: */
1389
if (s->prev_length >= s->good_match) {
1390
chain_length >>= 2;
1391
}
1392
/* Do not look for matches beyond the end of the input. This is necessary
1393
* to make deflate deterministic.
1394
*/
1395
if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;
1396
1397
Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1398
"need lookahead");
1399
1400
do {
1401
Assert(cur_match < s->strstart, "no future");
1402
match = s->window + cur_match;
1403
1404
/* Skip to next match if the match length cannot increase
1405
* or if the match length is less than 2. Note that the checks below
1406
* for insufficient lookahead only occur occasionally for performance
1407
* reasons. Therefore uninitialized memory will be accessed, and
1408
* conditional jumps will be made that depend on those values.
1409
* However the length of the match is limited to the lookahead, so
1410
* the output of deflate is not affected by the uninitialized values.
1411
*/
1412
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1413
/* This code assumes sizeof(unsigned short) == 2. Do not use
1414
* UNALIGNED_OK if your compiler uses a different size.
1415
*/
1416
if (*(ushf*)(match + best_len - 1) != scan_end ||
1417
*(ushf*)match != scan_start) continue;
1418
1419
/* It is not necessary to compare scan[2] and match[2] since they are
1420
* always equal when the other bytes match, given that the hash keys
1421
* are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1422
* strstart + 3, + 5, up to strstart + 257. We check for insufficient
1423
* lookahead only every 4th comparison; the 128th check will be made
1424
* at strstart + 257. If MAX_MATCH-2 is not a multiple of 8, it is
1425
* necessary to put more guard bytes at the end of the window, or
1426
* to check more often for insufficient lookahead.
1427
*/
1428
Assert(scan[2] == match[2], "scan[2]?");
1429
scan++, match++;
1430
do {
1431
} while (*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1432
*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1433
*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1434
*(ushf*)(scan += 2) == *(ushf*)(match += 2) &&
1435
scan < strend);
1436
/* The funny "do {}" generates better code on most compilers */
1437
1438
/* Here, scan <= window + strstart + 257 */
1439
Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1440
"wild scan");
1441
if (*scan == *match) scan++;
1442
1443
len = (MAX_MATCH - 1) - (int)(strend - scan);
1444
scan = strend - (MAX_MATCH-1);
1445
1446
#else /* UNALIGNED_OK */
1447
1448
if (match[best_len] != scan_end ||
1449
match[best_len - 1] != scan_end1 ||
1450
*match != *scan ||
1451
*++match != scan[1]) continue;
1452
1453
/* The check at best_len - 1 can be removed because it will be made
1454
* again later. (This heuristic is not always a win.)
1455
* It is not necessary to compare scan[2] and match[2] since they
1456
* are always equal when the other bytes match, given that
1457
* the hash keys are equal and that HASH_BITS >= 8.
1458
*/
1459
scan += 2, match++;
1460
Assert(*scan == *match, "match[2]?");
1461
1462
/* We check for insufficient lookahead only every 8th comparison;
1463
* the 256th check will be made at strstart + 258.
1464
*/
1465
do {
1466
} while (*++scan == *++match && *++scan == *++match &&
1467
*++scan == *++match && *++scan == *++match &&
1468
*++scan == *++match && *++scan == *++match &&
1469
*++scan == *++match && *++scan == *++match &&
1470
scan < strend);
1471
1472
Assert(scan <= s->window + (unsigned)(s->window_size - 1),
1473
"wild scan");
1474
1475
len = MAX_MATCH - (int)(strend - scan);
1476
scan = strend - MAX_MATCH;
1477
1478
#endif /* UNALIGNED_OK */
1479
1480
if (len > best_len) {
1481
s->match_start = cur_match;
1482
best_len = len;
1483
if (len >= nice_match) break;
1484
#ifdef UNALIGNED_OK
1485
scan_end = *(ushf*)(scan + best_len - 1);
1486
#else
1487
scan_end1 = scan[best_len - 1];
1488
scan_end = scan[best_len];
1489
#endif
1490
}
1491
} while ((cur_match = prev[cur_match & wmask]) > limit
1492
&& --chain_length != 0);
1493
1494
if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1495
return s->lookahead;
1496
}
1497
1498
#else /* FASTEST */
1499
1500
/* ---------------------------------------------------------------------------
1501
* Optimized version for FASTEST only
1502
*/
1503
local uInt longest_match(deflate_state *s, IPos cur_match) {
1504
register Bytef *scan = s->window + s->strstart; /* current string */
1505
register Bytef *match; /* matched string */
1506
register int len; /* length of current match */
1507
register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1508
1509
/* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1510
* It is easy to get rid of this optimization if necessary.
1511
*/
1512
Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1513
1514
Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
1515
"need lookahead");
1516
1517
Assert(cur_match < s->strstart, "no future");
1518
1519
match = s->window + cur_match;
1520
1521
/* Return failure if the match length is less than 2:
1522
*/
1523
if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1524
1525
/* The check at best_len - 1 can be removed because it will be made
1526
* again later. (This heuristic is not always a win.)
1527
* It is not necessary to compare scan[2] and match[2] since they
1528
* are always equal when the other bytes match, given that
1529
* the hash keys are equal and that HASH_BITS >= 8.
1530
*/
1531
scan += 2, match += 2;
1532
Assert(*scan == *match, "match[2]?");
1533
1534
/* We check for insufficient lookahead only every 8th comparison;
1535
* the 256th check will be made at strstart + 258.
1536
*/
1537
do {
1538
} while (*++scan == *++match && *++scan == *++match &&
1539
*++scan == *++match && *++scan == *++match &&
1540
*++scan == *++match && *++scan == *++match &&
1541
*++scan == *++match && *++scan == *++match &&
1542
scan < strend);
1543
1544
Assert(scan <= s->window + (unsigned)(s->window_size - 1), "wild scan");
1545
1546
len = MAX_MATCH - (int)(strend - scan);
1547
1548
if (len < MIN_MATCH) return MIN_MATCH - 1;
1549
1550
s->match_start = cur_match;
1551
return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1552
}
1553
1554
#endif /* FASTEST */
1555
1556
#ifdef ZLIB_DEBUG
1557
1558
#define EQUAL 0
1559
/* result of memcmp for equal strings */
1560
1561
/* ===========================================================================
1562
* Check that the match at match_start is indeed a match.
1563
*/
1564
local void check_match(deflate_state *s, IPos start, IPos match, int length) {
1565
/* check that the match is indeed a match */
1566
Bytef *back = s->window + (int)match, *here = s->window + start;
1567
IPos len = length;
1568
if (match == (IPos)-1) {
1569
/* match starts one byte before the current window -- just compare the
1570
subsequent length-1 bytes */
1571
back++;
1572
here++;
1573
len--;
1574
}
1575
if (zmemcmp(back, here, len) != EQUAL) {
1576
fprintf(stderr, " start %u, match %d, length %d\n",
1577
start, (int)match, length);
1578
do {
1579
fprintf(stderr, "(%02x %02x)", *back++, *here++);
1580
} while (--len != 0);
1581
z_error("invalid match");
1582
}
1583
if (z_verbose > 1) {
1584
fprintf(stderr,"\\[%d,%d]", start - match, length);
1585
do { putc(s->window[start++], stderr); } while (--length != 0);
1586
}
1587
}
1588
#else
1589
# define check_match(s, start, match, length)
1590
#endif /* ZLIB_DEBUG */
1591
1592
/* ===========================================================================
1593
* Flush the current block, with given end-of-file flag.
1594
* IN assertion: strstart is set to the end of the current match.
1595
*/
1596
#define FLUSH_BLOCK_ONLY(s, last) { \
1597
_tr_flush_block(s, (s->block_start >= 0L ? \
1598
(charf *)&s->window[(unsigned)s->block_start] : \
1599
(charf *)Z_NULL), \
1600
(ulg)((long)s->strstart - s->block_start), \
1601
(last)); \
1602
s->block_start = s->strstart; \
1603
flush_pending(s->strm); \
1604
Tracev((stderr,"[FLUSH]")); \
1605
}
1606
1607
/* Same but force premature exit if necessary. */
1608
#define FLUSH_BLOCK(s, last) { \
1609
FLUSH_BLOCK_ONLY(s, last); \
1610
if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1611
}
1612
1613
/* Maximum stored block length in deflate format (not including header). */
1614
#define MAX_STORED 65535
1615
1616
/* Minimum of a and b. */
1617
#define MIN(a, b) ((a) > (b) ? (b) : (a))
1618
1619
/* ===========================================================================
1620
* Copy without compression as much as possible from the input stream, return
1621
* the current block state.
1622
*
1623
* In case deflateParams() is used to later switch to a non-zero compression
1624
* level, s->matches (otherwise unused when storing) keeps track of the number
1625
* of hash table slides to perform. If s->matches is 1, then one hash table
1626
* slide will be done when switching. If s->matches is 2, the maximum value
1627
* allowed here, then the hash table will be cleared, since two or more slides
1628
* is the same as a clear.
1629
*
1630
* deflate_stored() is written to minimize the number of times an input byte is
1631
* copied. It is most efficient with large input and output buffers, which
1632
* maximizes the opportunities to have a single copy from next_in to next_out.
1633
*/
1634
local block_state deflate_stored(deflate_state *s, int flush) {
1635
/* Smallest worthy block size when not flushing or finishing. By default
1636
* this is 32K. This can be as small as 507 bytes for memLevel == 1. For
1637
* large input and output buffers, the stored block size will be larger.
1638
*/
1639
unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);
1640
1641
/* Copy as many min_block or larger stored blocks directly to next_out as
1642
* possible. If flushing, copy the remaining available input to next_out as
1643
* stored blocks, if there is enough space.
1644
*/
1645
unsigned len, left, have, last = 0;
1646
unsigned used = s->strm->avail_in;
1647
do {
1648
/* Set len to the maximum size block that we can copy directly with the
1649
* available input data and output space. Set left to how much of that
1650
* would be copied from what's left in the window.
1651
*/
1652
len = MAX_STORED; /* maximum deflate stored block length */
1653
have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1654
if (s->strm->avail_out < have) /* need room for header */
1655
break;
1656
/* maximum stored block length that will fit in avail_out: */
1657
have = s->strm->avail_out - have;
1658
left = s->strstart - s->block_start; /* bytes left in window */
1659
if (len > (ulg)left + s->strm->avail_in)
1660
len = left + s->strm->avail_in; /* limit len to the input */
1661
if (len > have)
1662
len = have; /* limit len to the output */
1663
1664
/* If the stored block would be less than min_block in length, or if
1665
* unable to copy all of the available input when flushing, then try
1666
* copying to the window and the pending buffer instead. Also don't
1667
* write an empty block when flushing -- deflate() does that.
1668
*/
1669
if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
1670
flush == Z_NO_FLUSH ||
1671
len != left + s->strm->avail_in))
1672
break;
1673
1674
/* Make a dummy stored block in pending to get the header bytes,
1675
* including any pending bits. This also updates the debugging counts.
1676
*/
1677
last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
1678
_tr_stored_block(s, (char *)0, 0L, last);
1679
1680
/* Replace the lengths in the dummy stored block with len. */
1681
s->pending_buf[s->pending - 4] = len;
1682
s->pending_buf[s->pending - 3] = len >> 8;
1683
s->pending_buf[s->pending - 2] = ~len;
1684
s->pending_buf[s->pending - 1] = ~len >> 8;
1685
1686
/* Write the stored block header bytes. */
1687
flush_pending(s->strm);
1688
1689
#ifdef ZLIB_DEBUG
1690
/* Update debugging counts for the data about to be copied. */
1691
s->compressed_len += len << 3;
1692
s->bits_sent += len << 3;
1693
#endif
1694
1695
/* Copy uncompressed bytes from the window to next_out. */
1696
if (left) {
1697
if (left > len)
1698
left = len;
1699
zmemcpy(s->strm->next_out, s->window + s->block_start, left);
1700
s->strm->next_out += left;
1701
s->strm->avail_out -= left;
1702
s->strm->total_out += left;
1703
s->block_start += left;
1704
len -= left;
1705
}
1706
1707
/* Copy uncompressed bytes directly from next_in to next_out, updating
1708
* the check value.
1709
*/
1710
if (len) {
1711
read_buf(s->strm, s->strm->next_out, len);
1712
s->strm->next_out += len;
1713
s->strm->avail_out -= len;
1714
s->strm->total_out += len;
1715
}
1716
} while (last == 0);
1717
1718
/* Update the sliding window with the last s->w_size bytes of the copied
1719
* data, or append all of the copied data to the existing window if less
1720
* than s->w_size bytes were copied. Also update the number of bytes to
1721
* insert in the hash tables, in the event that deflateParams() switches to
1722
* a non-zero compression level.
1723
*/
1724
used -= s->strm->avail_in; /* number of input bytes directly copied */
1725
if (used) {
1726
/* If any input was used, then no unused input remains in the window,
1727
* therefore s->block_start == s->strstart.
1728
*/
1729
if (used >= s->w_size) { /* supplant the previous history */
1730
s->matches = 2; /* clear hash */
1731
zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
1732
s->strstart = s->w_size;
1733
s->insert = s->strstart;
1734
}
1735
else {
1736
if (s->window_size - s->strstart <= used) {
1737
/* Slide the window down. */
1738
s->strstart -= s->w_size;
1739
zmemcpy(s->window, s->window + s->w_size, s->strstart);
1740
if (s->matches < 2)
1741
s->matches++; /* add a pending slide_hash() */
1742
if (s->insert > s->strstart)
1743
s->insert = s->strstart;
1744
}
1745
zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
1746
s->strstart += used;
1747
s->insert += MIN(used, s->w_size - s->insert);
1748
}
1749
s->block_start = s->strstart;
1750
}
1751
if (s->high_water < s->strstart)
1752
s->high_water = s->strstart;
1753
1754
/* If the last block was written to next_out, then done. */
1755
if (last)
1756
return finish_done;
1757
1758
/* If flushing and all input has been consumed, then done. */
1759
if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
1760
s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
1761
return block_done;
1762
1763
/* Fill the window with any remaining input. */
1764
have = s->window_size - s->strstart;
1765
if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
1766
/* Slide the window down. */
1767
s->block_start -= s->w_size;
1768
s->strstart -= s->w_size;
1769
zmemcpy(s->window, s->window + s->w_size, s->strstart);
1770
if (s->matches < 2)
1771
s->matches++; /* add a pending slide_hash() */
1772
have += s->w_size; /* more space now */
1773
if (s->insert > s->strstart)
1774
s->insert = s->strstart;
1775
}
1776
if (have > s->strm->avail_in)
1777
have = s->strm->avail_in;
1778
if (have) {
1779
read_buf(s->strm, s->window + s->strstart, have);
1780
s->strstart += have;
1781
s->insert += MIN(have, s->w_size - s->insert);
1782
}
1783
if (s->high_water < s->strstart)
1784
s->high_water = s->strstart;
1785
1786
/* There was not enough avail_out to write a complete worthy or flushed
1787
* stored block to next_out. Write a stored block to pending instead, if we
1788
* have enough input for a worthy block, or if flushing and there is enough
1789
* room for the remaining input as a stored block in the pending buffer.
1790
*/
1791
have = (s->bi_valid + 42) >> 3; /* number of header bytes */
1792
/* maximum stored block length that will fit in pending: */
1793
have = MIN(s->pending_buf_size - have, MAX_STORED);
1794
min_block = MIN(have, s->w_size);
1795
left = s->strstart - s->block_start;
1796
if (left >= min_block ||
1797
((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
1798
s->strm->avail_in == 0 && left <= have)) {
1799
len = MIN(left, have);
1800
last = flush == Z_FINISH && s->strm->avail_in == 0 &&
1801
len == left ? 1 : 0;
1802
_tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
1803
s->block_start += len;
1804
flush_pending(s->strm);
1805
}
1806
1807
/* We've done all we can with the available input and output. */
1808
return last ? finish_started : need_more;
1809
}
1810
1811
/* ===========================================================================
1812
* Compress as much as possible from the input stream, return the current
1813
* block state.
1814
* This function does not perform lazy evaluation of matches and inserts
1815
* new strings in the dictionary only for unmatched strings or for short
1816
* matches. It is used only for the fast compression options.
1817
*/
1818
local block_state deflate_fast(deflate_state *s, int flush) {
1819
IPos hash_head; /* head of the hash chain */
1820
int bflush; /* set if current block must be flushed */
1821
1822
for (;;) {
1823
/* Make sure that we always have enough lookahead, except
1824
* at the end of the input file. We need MAX_MATCH bytes
1825
* for the next match, plus MIN_MATCH bytes to insert the
1826
* string following the next match.
1827
*/
1828
if (s->lookahead < MIN_LOOKAHEAD) {
1829
fill_window(s);
1830
if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1831
return need_more;
1832
}
1833
if (s->lookahead == 0) break; /* flush the current block */
1834
}
1835
1836
/* Insert the string window[strstart .. strstart + 2] in the
1837
* dictionary, and set hash_head to the head of the hash chain:
1838
*/
1839
hash_head = NIL;
1840
if (s->lookahead >= MIN_MATCH) {
1841
INSERT_STRING(s, s->strstart, hash_head);
1842
}
1843
1844
/* Find the longest match, discarding those <= prev_length.
1845
* At this point we have always match_length < MIN_MATCH
1846
*/
1847
if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1848
/* To simplify the code, we prevent matches with the string
1849
* of window index 0 (in particular we have to avoid a match
1850
* of the string with itself at the start of the input file).
1851
*/
1852
s->match_length = longest_match (s, hash_head);
1853
/* longest_match() sets match_start */
1854
}
1855
if (s->match_length >= MIN_MATCH) {
1856
check_match(s, s->strstart, s->match_start, s->match_length);
1857
1858
_tr_tally_dist(s, s->strstart - s->match_start,
1859
s->match_length - MIN_MATCH, bflush);
1860
1861
s->lookahead -= s->match_length;
1862
1863
/* Insert new strings in the hash table only if the match length
1864
* is not too large. This saves time but degrades compression.
1865
*/
1866
#ifndef FASTEST
1867
if (s->match_length <= s->max_insert_length &&
1868
s->lookahead >= MIN_MATCH) {
1869
s->match_length--; /* string at strstart already in table */
1870
do {
1871
s->strstart++;
1872
INSERT_STRING(s, s->strstart, hash_head);
1873
/* strstart never exceeds WSIZE-MAX_MATCH, so there are
1874
* always MIN_MATCH bytes ahead.
1875
*/
1876
} while (--s->match_length != 0);
1877
s->strstart++;
1878
} else
1879
#endif
1880
{
1881
s->strstart += s->match_length;
1882
s->match_length = 0;
1883
s->ins_h = s->window[s->strstart];
1884
UPDATE_HASH(s, s->ins_h, s->window[s->strstart + 1]);
1885
#if MIN_MATCH != 3
1886
Call UPDATE_HASH() MIN_MATCH-3 more times
1887
#endif
1888
/* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1889
* matter since it will be recomputed at next deflate call.
1890
*/
1891
}
1892
} else {
1893
/* No match, output a literal byte */
1894
Tracevv((stderr,"%c", s->window[s->strstart]));
1895
_tr_tally_lit(s, s->window[s->strstart], bflush);
1896
s->lookahead--;
1897
s->strstart++;
1898
}
1899
if (bflush) FLUSH_BLOCK(s, 0);
1900
}
1901
s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1902
if (flush == Z_FINISH) {
1903
FLUSH_BLOCK(s, 1);
1904
return finish_done;
1905
}
1906
if (s->sym_next)
1907
FLUSH_BLOCK(s, 0);
1908
return block_done;
1909
}
1910
1911
#ifndef FASTEST
1912
/* ===========================================================================
1913
* Same as above, but achieves better compression. We use a lazy
1914
* evaluation for matches: a match is finally adopted only if there is
1915
* no better match at the next window position.
1916
*/
1917
local block_state deflate_slow(deflate_state *s, int flush) {
1918
IPos hash_head; /* head of hash chain */
1919
int bflush; /* set if current block must be flushed */
1920
1921
/* Process the input block. */
1922
for (;;) {
1923
/* Make sure that we always have enough lookahead, except
1924
* at the end of the input file. We need MAX_MATCH bytes
1925
* for the next match, plus MIN_MATCH bytes to insert the
1926
* string following the next match.
1927
*/
1928
if (s->lookahead < MIN_LOOKAHEAD) {
1929
fill_window(s);
1930
if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1931
return need_more;
1932
}
1933
if (s->lookahead == 0) break; /* flush the current block */
1934
}
1935
1936
/* Insert the string window[strstart .. strstart + 2] in the
1937
* dictionary, and set hash_head to the head of the hash chain:
1938
*/
1939
hash_head = NIL;
1940
if (s->lookahead >= MIN_MATCH) {
1941
INSERT_STRING(s, s->strstart, hash_head);
1942
}
1943
1944
/* Find the longest match, discarding those <= prev_length.
1945
*/
1946
s->prev_length = s->match_length, s->prev_match = s->match_start;
1947
s->match_length = MIN_MATCH-1;
1948
1949
if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1950
s->strstart - hash_head <= MAX_DIST(s)) {
1951
/* To simplify the code, we prevent matches with the string
1952
* of window index 0 (in particular we have to avoid a match
1953
* of the string with itself at the start of the input file).
1954
*/
1955
s->match_length = longest_match (s, hash_head);
1956
/* longest_match() sets match_start */
1957
1958
if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1959
#if TOO_FAR <= 32767
1960
|| (s->match_length == MIN_MATCH &&
1961
s->strstart - s->match_start > TOO_FAR)
1962
#endif
1963
)) {
1964
1965
/* If prev_match is also MIN_MATCH, match_start is garbage
1966
* but we will ignore the current match anyway.
1967
*/
1968
s->match_length = MIN_MATCH-1;
1969
}
1970
}
1971
/* If there was a match at the previous step and the current
1972
* match is not better, output the previous match:
1973
*/
1974
if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1975
uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1976
/* Do not insert strings in hash table beyond this. */
1977
1978
check_match(s, s->strstart - 1, s->prev_match, s->prev_length);
1979
1980
_tr_tally_dist(s, s->strstart - 1 - s->prev_match,
1981
s->prev_length - MIN_MATCH, bflush);
1982
1983
/* Insert in hash table all strings up to the end of the match.
1984
* strstart - 1 and strstart are already inserted. If there is not
1985
* enough lookahead, the last two strings are not inserted in
1986
* the hash table.
1987
*/
1988
s->lookahead -= s->prev_length - 1;
1989
s->prev_length -= 2;
1990
do {
1991
if (++s->strstart <= max_insert) {
1992
INSERT_STRING(s, s->strstart, hash_head);
1993
}
1994
} while (--s->prev_length != 0);
1995
s->match_available = 0;
1996
s->match_length = MIN_MATCH-1;
1997
s->strstart++;
1998
1999
if (bflush) FLUSH_BLOCK(s, 0);
2000
2001
} else if (s->match_available) {
2002
/* If there was no match at the previous position, output a
2003
* single literal. If there was a match but the current match
2004
* is longer, truncate the previous match to a single literal.
2005
*/
2006
Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2007
_tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2008
if (bflush) {
2009
FLUSH_BLOCK_ONLY(s, 0);
2010
}
2011
s->strstart++;
2012
s->lookahead--;
2013
if (s->strm->avail_out == 0) return need_more;
2014
} else {
2015
/* There is no previous match to compare with, wait for
2016
* the next step to decide.
2017
*/
2018
s->match_available = 1;
2019
s->strstart++;
2020
s->lookahead--;
2021
}
2022
}
2023
Assert (flush != Z_NO_FLUSH, "no flush?");
2024
if (s->match_available) {
2025
Tracevv((stderr,"%c", s->window[s->strstart - 1]));
2026
_tr_tally_lit(s, s->window[s->strstart - 1], bflush);
2027
s->match_available = 0;
2028
}
2029
s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
2030
if (flush == Z_FINISH) {
2031
FLUSH_BLOCK(s, 1);
2032
return finish_done;
2033
}
2034
if (s->sym_next)
2035
FLUSH_BLOCK(s, 0);
2036
return block_done;
2037
}
2038
#endif /* FASTEST */
2039
2040
/* ===========================================================================
2041
* For Z_RLE, simply look for runs of bytes, generate matches only of distance
2042
* one. Do not maintain a hash table. (It will be regenerated if this run of
2043
* deflate switches away from Z_RLE.)
2044
*/
2045
local block_state deflate_rle(deflate_state *s, int flush) {
2046
int bflush; /* set if current block must be flushed */
2047
uInt prev; /* byte at distance one to match */
2048
Bytef *scan, *strend; /* scan goes up to strend for length of run */
2049
2050
for (;;) {
2051
/* Make sure that we always have enough lookahead, except
2052
* at the end of the input file. We need MAX_MATCH bytes
2053
* for the longest run, plus one for the unrolled loop.
2054
*/
2055
if (s->lookahead <= MAX_MATCH) {
2056
fill_window(s);
2057
if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
2058
return need_more;
2059
}
2060
if (s->lookahead == 0) break; /* flush the current block */
2061
}
2062
2063
/* See how many times the previous byte repeats */
2064
s->match_length = 0;
2065
if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
2066
scan = s->window + s->strstart - 1;
2067
prev = *scan;
2068
if (prev == *++scan && prev == *++scan && prev == *++scan) {
2069
strend = s->window + s->strstart + MAX_MATCH;
2070
do {
2071
} while (prev == *++scan && prev == *++scan &&
2072
prev == *++scan && prev == *++scan &&
2073
prev == *++scan && prev == *++scan &&
2074
prev == *++scan && prev == *++scan &&
2075
scan < strend);
2076
s->match_length = MAX_MATCH - (uInt)(strend - scan);
2077
if (s->match_length > s->lookahead)
2078
s->match_length = s->lookahead;
2079
}
2080
Assert(scan <= s->window + (uInt)(s->window_size - 1),
2081
"wild scan");
2082
}
2083
2084
/* Emit match if have run of MIN_MATCH or longer, else emit literal */
2085
if (s->match_length >= MIN_MATCH) {
2086
check_match(s, s->strstart, s->strstart - 1, s->match_length);
2087
2088
_tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
2089
2090
s->lookahead -= s->match_length;
2091
s->strstart += s->match_length;
2092
s->match_length = 0;
2093
} else {
2094
/* No match, output a literal byte */
2095
Tracevv((stderr,"%c", s->window[s->strstart]));
2096
_tr_tally_lit(s, s->window[s->strstart], bflush);
2097
s->lookahead--;
2098
s->strstart++;
2099
}
2100
if (bflush) FLUSH_BLOCK(s, 0);
2101
}
2102
s->insert = 0;
2103
if (flush == Z_FINISH) {
2104
FLUSH_BLOCK(s, 1);
2105
return finish_done;
2106
}
2107
if (s->sym_next)
2108
FLUSH_BLOCK(s, 0);
2109
return block_done;
2110
}
2111
2112
/* ===========================================================================
2113
* For Z_HUFFMAN_ONLY, do not look for matches. Do not maintain a hash table.
2114
* (It will be regenerated if this run of deflate switches away from Huffman.)
2115
*/
2116
local block_state deflate_huff(deflate_state *s, int flush) {
2117
int bflush; /* set if current block must be flushed */
2118
2119
for (;;) {
2120
/* Make sure that we have a literal to write. */
2121
if (s->lookahead == 0) {
2122
fill_window(s);
2123
if (s->lookahead == 0) {
2124
if (flush == Z_NO_FLUSH)
2125
return need_more;
2126
break; /* flush the current block */
2127
}
2128
}
2129
2130
/* Output a literal byte */
2131
s->match_length = 0;
2132
Tracevv((stderr,"%c", s->window[s->strstart]));
2133
_tr_tally_lit(s, s->window[s->strstart], bflush);
2134
s->lookahead--;
2135
s->strstart++;
2136
if (bflush) FLUSH_BLOCK(s, 0);
2137
}
2138
s->insert = 0;
2139
if (flush == Z_FINISH) {
2140
FLUSH_BLOCK(s, 1);
2141
return finish_done;
2142
}
2143
if (s->sym_next)
2144
FLUSH_BLOCK(s, 0);
2145
return block_done;
2146
}
2147
2148