Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmzstd/lib/compress/huf_compress.c
3158 views
1
/* ******************************************************************
2
* Huffman encoder, part of New Generation Entropy library
3
* Copyright (c) Meta Platforms, Inc. and affiliates.
4
*
5
* You can contact the author at :
6
* - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
7
* - Public forum : https://groups.google.com/forum/#!forum/lz4c
8
*
9
* This source code is licensed under both the BSD-style license (found in the
10
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
11
* in the COPYING file in the root directory of this source tree).
12
* You may select, at your option, one of the above-listed licenses.
13
****************************************************************** */
14
15
/* **************************************************************
16
* Compiler specifics
17
****************************************************************/
18
#ifdef _MSC_VER /* Visual Studio */
19
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
20
#endif
21
22
23
/* **************************************************************
24
* Includes
25
****************************************************************/
26
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
27
#include "../common/compiler.h"
28
#include "../common/bitstream.h"
29
#include "hist.h"
30
#define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */
31
#include "../common/fse.h" /* header compression */
32
#include "../common/huf.h"
33
#include "../common/error_private.h"
34
#include "../common/bits.h" /* ZSTD_highbit32 */
35
36
37
/* **************************************************************
38
* Error Management
39
****************************************************************/
40
#define HUF_isError ERR_isError
41
#define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */
42
43
44
/* **************************************************************
45
* Required declarations
46
****************************************************************/
47
typedef struct nodeElt_s {
48
U32 count;
49
U16 parent;
50
BYTE byte;
51
BYTE nbBits;
52
} nodeElt;
53
54
55
/* **************************************************************
56
* Debug Traces
57
****************************************************************/
58
59
#if DEBUGLEVEL >= 2
60
61
static size_t showU32(const U32* arr, size_t size)
62
{
63
size_t u;
64
for (u=0; u<size; u++) {
65
RAWLOG(6, " %u", arr[u]); (void)arr;
66
}
67
RAWLOG(6, " \n");
68
return size;
69
}
70
71
static size_t HUF_getNbBits(HUF_CElt elt);
72
73
static size_t showCTableBits(const HUF_CElt* ctable, size_t size)
74
{
75
size_t u;
76
for (u=0; u<size; u++) {
77
RAWLOG(6, " %zu", HUF_getNbBits(ctable[u])); (void)ctable;
78
}
79
RAWLOG(6, " \n");
80
return size;
81
82
}
83
84
static size_t showHNodeSymbols(const nodeElt* hnode, size_t size)
85
{
86
size_t u;
87
for (u=0; u<size; u++) {
88
RAWLOG(6, " %u", hnode[u].byte); (void)hnode;
89
}
90
RAWLOG(6, " \n");
91
return size;
92
}
93
94
static size_t showHNodeBits(const nodeElt* hnode, size_t size)
95
{
96
size_t u;
97
for (u=0; u<size; u++) {
98
RAWLOG(6, " %u", hnode[u].nbBits); (void)hnode;
99
}
100
RAWLOG(6, " \n");
101
return size;
102
}
103
104
#endif
105
106
107
/* *******************************************************
108
* HUF : Huffman block compression
109
*********************************************************/
110
#define HUF_WORKSPACE_MAX_ALIGNMENT 8
111
112
static void* HUF_alignUpWorkspace(void* workspace, size_t* workspaceSizePtr, size_t align)
113
{
114
size_t const mask = align - 1;
115
size_t const rem = (size_t)workspace & mask;
116
size_t const add = (align - rem) & mask;
117
BYTE* const aligned = (BYTE*)workspace + add;
118
assert((align & (align - 1)) == 0); /* pow 2 */
119
assert(align <= HUF_WORKSPACE_MAX_ALIGNMENT);
120
if (*workspaceSizePtr >= add) {
121
assert(add < align);
122
assert(((size_t)aligned & mask) == 0);
123
*workspaceSizePtr -= add;
124
return aligned;
125
} else {
126
*workspaceSizePtr = 0;
127
return NULL;
128
}
129
}
130
131
132
/* HUF_compressWeights() :
133
* Same as FSE_compress(), but dedicated to huff0's weights compression.
134
* The use case needs much less stack memory.
135
* Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
136
*/
137
#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
138
139
typedef struct {
140
FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
141
U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)];
142
unsigned count[HUF_TABLELOG_MAX+1];
143
S16 norm[HUF_TABLELOG_MAX+1];
144
} HUF_CompressWeightsWksp;
145
146
static size_t
147
HUF_compressWeights(void* dst, size_t dstSize,
148
const void* weightTable, size_t wtSize,
149
void* workspace, size_t workspaceSize)
150
{
151
BYTE* const ostart = (BYTE*) dst;
152
BYTE* op = ostart;
153
BYTE* const oend = ostart + dstSize;
154
155
unsigned maxSymbolValue = HUF_TABLELOG_MAX;
156
U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
157
HUF_CompressWeightsWksp* wksp = (HUF_CompressWeightsWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
158
159
if (workspaceSize < sizeof(HUF_CompressWeightsWksp)) return ERROR(GENERIC);
160
161
/* init conditions */
162
if (wtSize <= 1) return 0; /* Not compressible */
163
164
/* Scan input and build symbol stats */
165
{ unsigned const maxCount = HIST_count_simple(wksp->count, &maxSymbolValue, weightTable, wtSize); /* never fails */
166
if (maxCount == wtSize) return 1; /* only a single symbol in src : rle */
167
if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
168
}
169
170
tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
171
CHECK_F( FSE_normalizeCount(wksp->norm, tableLog, wksp->count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) );
172
173
/* Write table description header */
174
{ CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), wksp->norm, maxSymbolValue, tableLog) );
175
op += hSize;
176
}
177
178
/* Compress */
179
CHECK_F( FSE_buildCTable_wksp(wksp->CTable, wksp->norm, maxSymbolValue, tableLog, wksp->scratchBuffer, sizeof(wksp->scratchBuffer)) );
180
{ CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, wksp->CTable) );
181
if (cSize == 0) return 0; /* not enough space for compressed data */
182
op += cSize;
183
}
184
185
return (size_t)(op-ostart);
186
}
187
188
static size_t HUF_getNbBits(HUF_CElt elt)
189
{
190
return elt & 0xFF;
191
}
192
193
static size_t HUF_getNbBitsFast(HUF_CElt elt)
194
{
195
return elt;
196
}
197
198
static size_t HUF_getValue(HUF_CElt elt)
199
{
200
return elt & ~(size_t)0xFF;
201
}
202
203
static size_t HUF_getValueFast(HUF_CElt elt)
204
{
205
return elt;
206
}
207
208
static void HUF_setNbBits(HUF_CElt* elt, size_t nbBits)
209
{
210
assert(nbBits <= HUF_TABLELOG_ABSOLUTEMAX);
211
*elt = nbBits;
212
}
213
214
static void HUF_setValue(HUF_CElt* elt, size_t value)
215
{
216
size_t const nbBits = HUF_getNbBits(*elt);
217
if (nbBits > 0) {
218
assert((value >> nbBits) == 0);
219
*elt |= value << (sizeof(HUF_CElt) * 8 - nbBits);
220
}
221
}
222
223
typedef struct {
224
HUF_CompressWeightsWksp wksp;
225
BYTE bitsToWeight[HUF_TABLELOG_MAX + 1]; /* precomputed conversion table */
226
BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
227
} HUF_WriteCTableWksp;
228
229
size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize,
230
const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog,
231
void* workspace, size_t workspaceSize)
232
{
233
HUF_CElt const* const ct = CTable + 1;
234
BYTE* op = (BYTE*)dst;
235
U32 n;
236
HUF_WriteCTableWksp* wksp = (HUF_WriteCTableWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
237
238
HUF_STATIC_ASSERT(HUF_CTABLE_WORKSPACE_SIZE >= sizeof(HUF_WriteCTableWksp));
239
240
/* check conditions */
241
if (workspaceSize < sizeof(HUF_WriteCTableWksp)) return ERROR(GENERIC);
242
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
243
244
/* convert to weight */
245
wksp->bitsToWeight[0] = 0;
246
for (n=1; n<huffLog+1; n++)
247
wksp->bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
248
for (n=0; n<maxSymbolValue; n++)
249
wksp->huffWeight[n] = wksp->bitsToWeight[HUF_getNbBits(ct[n])];
250
251
/* attempt weights compression by FSE */
252
if (maxDstSize < 1) return ERROR(dstSize_tooSmall);
253
{ CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, wksp->huffWeight, maxSymbolValue, &wksp->wksp, sizeof(wksp->wksp)) );
254
if ((hSize>1) & (hSize < maxSymbolValue/2)) { /* FSE compressed */
255
op[0] = (BYTE)hSize;
256
return hSize+1;
257
} }
258
259
/* write raw values as 4-bits (max : 15) */
260
if (maxSymbolValue > (256-128)) return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */
261
if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */
262
op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
263
wksp->huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */
264
for (n=0; n<maxSymbolValue; n+=2)
265
op[(n/2)+1] = (BYTE)((wksp->huffWeight[n] << 4) + wksp->huffWeight[n+1]);
266
return ((maxSymbolValue+1)/2) + 1;
267
}
268
269
270
size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights)
271
{
272
BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; /* init not required, even though some static analyzer may complain */
273
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */
274
U32 tableLog = 0;
275
U32 nbSymbols = 0;
276
HUF_CElt* const ct = CTable + 1;
277
278
/* get symbol weights */
279
CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
280
*hasZeroWeights = (rankVal[0] > 0);
281
282
/* check result */
283
if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
284
if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
285
286
CTable[0] = tableLog;
287
288
/* Prepare base value per rank */
289
{ U32 n, nextRankStart = 0;
290
for (n=1; n<=tableLog; n++) {
291
U32 curr = nextRankStart;
292
nextRankStart += (rankVal[n] << (n-1));
293
rankVal[n] = curr;
294
} }
295
296
/* fill nbBits */
297
{ U32 n; for (n=0; n<nbSymbols; n++) {
298
const U32 w = huffWeight[n];
299
HUF_setNbBits(ct + n, (BYTE)(tableLog + 1 - w) & -(w != 0));
300
} }
301
302
/* fill val */
303
{ U16 nbPerRank[HUF_TABLELOG_MAX+2] = {0}; /* support w=0=>n=tableLog+1 */
304
U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
305
{ U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[HUF_getNbBits(ct[n])]++; }
306
/* determine stating value per rank */
307
valPerRank[tableLog+1] = 0; /* for w==0 */
308
{ U16 min = 0;
309
U32 n; for (n=tableLog; n>0; n--) { /* start at n=tablelog <-> w=1 */
310
valPerRank[n] = min; /* get starting value within each rank */
311
min += nbPerRank[n];
312
min >>= 1;
313
} }
314
/* assign value within rank, symbol order */
315
{ U32 n; for (n=0; n<nbSymbols; n++) HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); }
316
}
317
318
*maxSymbolValuePtr = nbSymbols - 1;
319
return readSize;
320
}
321
322
U32 HUF_getNbBitsFromCTable(HUF_CElt const* CTable, U32 symbolValue)
323
{
324
const HUF_CElt* const ct = CTable + 1;
325
assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
326
return (U32)HUF_getNbBits(ct[symbolValue]);
327
}
328
329
330
/**
331
* HUF_setMaxHeight():
332
* Try to enforce @targetNbBits on the Huffman tree described in @huffNode.
333
*
334
* It attempts to convert all nodes with nbBits > @targetNbBits
335
* to employ @targetNbBits instead. Then it adjusts the tree
336
* so that it remains a valid canonical Huffman tree.
337
*
338
* @pre The sum of the ranks of each symbol == 2^largestBits,
339
* where largestBits == huffNode[lastNonNull].nbBits.
340
* @post The sum of the ranks of each symbol == 2^largestBits,
341
* where largestBits is the return value (expected <= targetNbBits).
342
*
343
* @param huffNode The Huffman tree modified in place to enforce targetNbBits.
344
* It's presumed sorted, from most frequent to rarest symbol.
345
* @param lastNonNull The symbol with the lowest count in the Huffman tree.
346
* @param targetNbBits The allowed number of bits, which the Huffman tree
347
* may not respect. After this function the Huffman tree will
348
* respect targetNbBits.
349
* @return The maximum number of bits of the Huffman tree after adjustment.
350
*/
351
static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 targetNbBits)
352
{
353
const U32 largestBits = huffNode[lastNonNull].nbBits;
354
/* early exit : no elt > targetNbBits, so the tree is already valid. */
355
if (largestBits <= targetNbBits) return largestBits;
356
357
DEBUGLOG(5, "HUF_setMaxHeight (targetNbBits = %u)", targetNbBits);
358
359
/* there are several too large elements (at least >= 2) */
360
{ int totalCost = 0;
361
const U32 baseCost = 1 << (largestBits - targetNbBits);
362
int n = (int)lastNonNull;
363
364
/* Adjust any ranks > targetNbBits to targetNbBits.
365
* Compute totalCost, which is how far the sum of the ranks is
366
* we are over 2^largestBits after adjust the offending ranks.
367
*/
368
while (huffNode[n].nbBits > targetNbBits) {
369
totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
370
huffNode[n].nbBits = (BYTE)targetNbBits;
371
n--;
372
}
373
/* n stops at huffNode[n].nbBits <= targetNbBits */
374
assert(huffNode[n].nbBits <= targetNbBits);
375
/* n end at index of smallest symbol using < targetNbBits */
376
while (huffNode[n].nbBits == targetNbBits) --n;
377
378
/* renorm totalCost from 2^largestBits to 2^targetNbBits
379
* note : totalCost is necessarily a multiple of baseCost */
380
assert(((U32)totalCost & (baseCost - 1)) == 0);
381
totalCost >>= (largestBits - targetNbBits);
382
assert(totalCost > 0);
383
384
/* repay normalized cost */
385
{ U32 const noSymbol = 0xF0F0F0F0;
386
U32 rankLast[HUF_TABLELOG_MAX+2];
387
388
/* Get pos of last (smallest = lowest cum. count) symbol per rank */
389
ZSTD_memset(rankLast, 0xF0, sizeof(rankLast));
390
{ U32 currentNbBits = targetNbBits;
391
int pos;
392
for (pos=n ; pos >= 0; pos--) {
393
if (huffNode[pos].nbBits >= currentNbBits) continue;
394
currentNbBits = huffNode[pos].nbBits; /* < targetNbBits */
395
rankLast[targetNbBits-currentNbBits] = (U32)pos;
396
} }
397
398
while (totalCost > 0) {
399
/* Try to reduce the next power of 2 above totalCost because we
400
* gain back half the rank.
401
*/
402
U32 nBitsToDecrease = ZSTD_highbit32((U32)totalCost) + 1;
403
for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
404
U32 const highPos = rankLast[nBitsToDecrease];
405
U32 const lowPos = rankLast[nBitsToDecrease-1];
406
if (highPos == noSymbol) continue;
407
/* Decrease highPos if no symbols of lowPos or if it is
408
* not cheaper to remove 2 lowPos than highPos.
409
*/
410
if (lowPos == noSymbol) break;
411
{ U32 const highTotal = huffNode[highPos].count;
412
U32 const lowTotal = 2 * huffNode[lowPos].count;
413
if (highTotal <= lowTotal) break;
414
} }
415
/* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
416
assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1);
417
/* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
418
while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
419
nBitsToDecrease++;
420
assert(rankLast[nBitsToDecrease] != noSymbol);
421
/* Increase the number of bits to gain back half the rank cost. */
422
totalCost -= 1 << (nBitsToDecrease-1);
423
huffNode[rankLast[nBitsToDecrease]].nbBits++;
424
425
/* Fix up the new rank.
426
* If the new rank was empty, this symbol is now its smallest.
427
* Otherwise, this symbol will be the largest in the new rank so no adjustment.
428
*/
429
if (rankLast[nBitsToDecrease-1] == noSymbol)
430
rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];
431
/* Fix up the old rank.
432
* If the symbol was at position 0, meaning it was the highest weight symbol in the tree,
433
* it must be the only symbol in its rank, so the old rank now has no symbols.
434
* Otherwise, since the Huffman nodes are sorted by count, the previous position is now
435
* the smallest node in the rank. If the previous position belongs to a different rank,
436
* then the rank is now empty.
437
*/
438
if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */
439
rankLast[nBitsToDecrease] = noSymbol;
440
else {
441
rankLast[nBitsToDecrease]--;
442
if (huffNode[rankLast[nBitsToDecrease]].nbBits != targetNbBits-nBitsToDecrease)
443
rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */
444
}
445
} /* while (totalCost > 0) */
446
447
/* If we've removed too much weight, then we have to add it back.
448
* To avoid overshooting again, we only adjust the smallest rank.
449
* We take the largest nodes from the lowest rank 0 and move them
450
* to rank 1. There's guaranteed to be enough rank 0 symbols because
451
* TODO.
452
*/
453
while (totalCost < 0) { /* Sometimes, cost correction overshoot */
454
/* special case : no rank 1 symbol (using targetNbBits-1);
455
* let's create one from largest rank 0 (using targetNbBits).
456
*/
457
if (rankLast[1] == noSymbol) {
458
while (huffNode[n].nbBits == targetNbBits) n--;
459
huffNode[n+1].nbBits--;
460
assert(n >= 0);
461
rankLast[1] = (U32)(n+1);
462
totalCost++;
463
continue;
464
}
465
huffNode[ rankLast[1] + 1 ].nbBits--;
466
rankLast[1]++;
467
totalCost ++;
468
}
469
} /* repay normalized cost */
470
} /* there are several too large elements (at least >= 2) */
471
472
return targetNbBits;
473
}
474
475
typedef struct {
476
U16 base;
477
U16 curr;
478
} rankPos;
479
480
typedef nodeElt huffNodeTable[2 * (HUF_SYMBOLVALUE_MAX + 1)];
481
482
/* Number of buckets available for HUF_sort() */
483
#define RANK_POSITION_TABLE_SIZE 192
484
485
typedef struct {
486
huffNodeTable huffNodeTbl;
487
rankPos rankPosition[RANK_POSITION_TABLE_SIZE];
488
} HUF_buildCTable_wksp_tables;
489
490
/* RANK_POSITION_DISTINCT_COUNT_CUTOFF == Cutoff point in HUF_sort() buckets for which we use log2 bucketing.
491
* Strategy is to use as many buckets as possible for representing distinct
492
* counts while using the remainder to represent all "large" counts.
493
*
494
* To satisfy this requirement for 192 buckets, we can do the following:
495
* Let buckets 0-166 represent distinct counts of [0, 166]
496
* Let buckets 166 to 192 represent all remaining counts up to RANK_POSITION_MAX_COUNT_LOG using log2 bucketing.
497
*/
498
#define RANK_POSITION_MAX_COUNT_LOG 32
499
#define RANK_POSITION_LOG_BUCKETS_BEGIN ((RANK_POSITION_TABLE_SIZE - 1) - RANK_POSITION_MAX_COUNT_LOG - 1 /* == 158 */)
500
#define RANK_POSITION_DISTINCT_COUNT_CUTOFF (RANK_POSITION_LOG_BUCKETS_BEGIN + ZSTD_highbit32(RANK_POSITION_LOG_BUCKETS_BEGIN) /* == 166 */)
501
502
/* Return the appropriate bucket index for a given count. See definition of
503
* RANK_POSITION_DISTINCT_COUNT_CUTOFF for explanation of bucketing strategy.
504
*/
505
static U32 HUF_getIndex(U32 const count) {
506
return (count < RANK_POSITION_DISTINCT_COUNT_CUTOFF)
507
? count
508
: ZSTD_highbit32(count) + RANK_POSITION_LOG_BUCKETS_BEGIN;
509
}
510
511
/* Helper swap function for HUF_quickSortPartition() */
512
static void HUF_swapNodes(nodeElt* a, nodeElt* b) {
513
nodeElt tmp = *a;
514
*a = *b;
515
*b = tmp;
516
}
517
518
/* Returns 0 if the huffNode array is not sorted by descending count */
519
MEM_STATIC int HUF_isSorted(nodeElt huffNode[], U32 const maxSymbolValue1) {
520
U32 i;
521
for (i = 1; i < maxSymbolValue1; ++i) {
522
if (huffNode[i].count > huffNode[i-1].count) {
523
return 0;
524
}
525
}
526
return 1;
527
}
528
529
/* Insertion sort by descending order */
530
HINT_INLINE void HUF_insertionSort(nodeElt huffNode[], int const low, int const high) {
531
int i;
532
int const size = high-low+1;
533
huffNode += low;
534
for (i = 1; i < size; ++i) {
535
nodeElt const key = huffNode[i];
536
int j = i - 1;
537
while (j >= 0 && huffNode[j].count < key.count) {
538
huffNode[j + 1] = huffNode[j];
539
j--;
540
}
541
huffNode[j + 1] = key;
542
}
543
}
544
545
/* Pivot helper function for quicksort. */
546
static int HUF_quickSortPartition(nodeElt arr[], int const low, int const high) {
547
/* Simply select rightmost element as pivot. "Better" selectors like
548
* median-of-three don't experimentally appear to have any benefit.
549
*/
550
U32 const pivot = arr[high].count;
551
int i = low - 1;
552
int j = low;
553
for ( ; j < high; j++) {
554
if (arr[j].count > pivot) {
555
i++;
556
HUF_swapNodes(&arr[i], &arr[j]);
557
}
558
}
559
HUF_swapNodes(&arr[i + 1], &arr[high]);
560
return i + 1;
561
}
562
563
/* Classic quicksort by descending with partially iterative calls
564
* to reduce worst case callstack size.
565
*/
566
static void HUF_simpleQuickSort(nodeElt arr[], int low, int high) {
567
int const kInsertionSortThreshold = 8;
568
if (high - low < kInsertionSortThreshold) {
569
HUF_insertionSort(arr, low, high);
570
return;
571
}
572
while (low < high) {
573
int const idx = HUF_quickSortPartition(arr, low, high);
574
if (idx - low < high - idx) {
575
HUF_simpleQuickSort(arr, low, idx - 1);
576
low = idx + 1;
577
} else {
578
HUF_simpleQuickSort(arr, idx + 1, high);
579
high = idx - 1;
580
}
581
}
582
}
583
584
/**
585
* HUF_sort():
586
* Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order.
587
* This is a typical bucket sorting strategy that uses either quicksort or insertion sort to sort each bucket.
588
*
589
* @param[out] huffNode Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled.
590
* Must have (maxSymbolValue + 1) entries.
591
* @param[in] count Histogram of the symbols.
592
* @param[in] maxSymbolValue Maximum symbol value.
593
* @param rankPosition This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries.
594
*/
595
static void HUF_sort(nodeElt huffNode[], const unsigned count[], U32 const maxSymbolValue, rankPos rankPosition[]) {
596
U32 n;
597
U32 const maxSymbolValue1 = maxSymbolValue+1;
598
599
/* Compute base and set curr to base.
600
* For symbol s let lowerRank = HUF_getIndex(count[n]) and rank = lowerRank + 1.
601
* See HUF_getIndex to see bucketing strategy.
602
* We attribute each symbol to lowerRank's base value, because we want to know where
603
* each rank begins in the output, so for rank R we want to count ranks R+1 and above.
604
*/
605
ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE);
606
for (n = 0; n < maxSymbolValue1; ++n) {
607
U32 lowerRank = HUF_getIndex(count[n]);
608
assert(lowerRank < RANK_POSITION_TABLE_SIZE - 1);
609
rankPosition[lowerRank].base++;
610
}
611
612
assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0);
613
/* Set up the rankPosition table */
614
for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) {
615
rankPosition[n-1].base += rankPosition[n].base;
616
rankPosition[n-1].curr = rankPosition[n-1].base;
617
}
618
619
/* Insert each symbol into their appropriate bucket, setting up rankPosition table. */
620
for (n = 0; n < maxSymbolValue1; ++n) {
621
U32 const c = count[n];
622
U32 const r = HUF_getIndex(c) + 1;
623
U32 const pos = rankPosition[r].curr++;
624
assert(pos < maxSymbolValue1);
625
huffNode[pos].count = c;
626
huffNode[pos].byte = (BYTE)n;
627
}
628
629
/* Sort each bucket. */
630
for (n = RANK_POSITION_DISTINCT_COUNT_CUTOFF; n < RANK_POSITION_TABLE_SIZE - 1; ++n) {
631
int const bucketSize = rankPosition[n].curr - rankPosition[n].base;
632
U32 const bucketStartIdx = rankPosition[n].base;
633
if (bucketSize > 1) {
634
assert(bucketStartIdx < maxSymbolValue1);
635
HUF_simpleQuickSort(huffNode + bucketStartIdx, 0, bucketSize-1);
636
}
637
}
638
639
assert(HUF_isSorted(huffNode, maxSymbolValue1));
640
}
641
642
643
/** HUF_buildCTable_wksp() :
644
* Same as HUF_buildCTable(), but using externally allocated scratch buffer.
645
* `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables).
646
*/
647
#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
648
649
/* HUF_buildTree():
650
* Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree.
651
*
652
* @param huffNode The array sorted by HUF_sort(). Builds the Huffman tree in this array.
653
* @param maxSymbolValue The maximum symbol value.
654
* @return The smallest node in the Huffman tree (by count).
655
*/
656
static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue)
657
{
658
nodeElt* const huffNode0 = huffNode - 1;
659
int nonNullRank;
660
int lowS, lowN;
661
int nodeNb = STARTNODE;
662
int n, nodeRoot;
663
DEBUGLOG(5, "HUF_buildTree (alphabet size = %u)", maxSymbolValue + 1);
664
/* init for parents */
665
nonNullRank = (int)maxSymbolValue;
666
while(huffNode[nonNullRank].count == 0) nonNullRank--;
667
lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
668
huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
669
huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb;
670
nodeNb++; lowS-=2;
671
for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
672
huffNode0[0].count = (U32)(1U<<31); /* fake entry, strong barrier */
673
674
/* create parents */
675
while (nodeNb <= nodeRoot) {
676
int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
677
int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
678
huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
679
huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb;
680
nodeNb++;
681
}
682
683
/* distribute weights (unlimited tree height) */
684
huffNode[nodeRoot].nbBits = 0;
685
for (n=nodeRoot-1; n>=STARTNODE; n--)
686
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
687
for (n=0; n<=nonNullRank; n++)
688
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
689
690
DEBUGLOG(6, "Initial distribution of bits completed (%zu sorted symbols)", showHNodeBits(huffNode, maxSymbolValue+1));
691
692
return nonNullRank;
693
}
694
695
/**
696
* HUF_buildCTableFromTree():
697
* Build the CTable given the Huffman tree in huffNode.
698
*
699
* @param[out] CTable The output Huffman CTable.
700
* @param huffNode The Huffman tree.
701
* @param nonNullRank The last and smallest node in the Huffman tree.
702
* @param maxSymbolValue The maximum symbol value.
703
* @param maxNbBits The exact maximum number of bits used in the Huffman tree.
704
*/
705
static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits)
706
{
707
HUF_CElt* const ct = CTable + 1;
708
/* fill result into ctable (val, nbBits) */
709
int n;
710
U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
711
U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
712
int const alphabetSize = (int)(maxSymbolValue + 1);
713
for (n=0; n<=nonNullRank; n++)
714
nbPerRank[huffNode[n].nbBits]++;
715
/* determine starting value per rank */
716
{ U16 min = 0;
717
for (n=(int)maxNbBits; n>0; n--) {
718
valPerRank[n] = min; /* get starting value within each rank */
719
min += nbPerRank[n];
720
min >>= 1;
721
} }
722
for (n=0; n<alphabetSize; n++)
723
HUF_setNbBits(ct + huffNode[n].byte, huffNode[n].nbBits); /* push nbBits per symbol, symbol order */
724
for (n=0; n<alphabetSize; n++)
725
HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); /* assign value within rank, symbol order */
726
CTable[0] = maxNbBits;
727
}
728
729
size_t
730
HUF_buildCTable_wksp(HUF_CElt* CTable, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits,
731
void* workSpace, size_t wkspSize)
732
{
733
HUF_buildCTable_wksp_tables* const wksp_tables =
734
(HUF_buildCTable_wksp_tables*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(U32));
735
nodeElt* const huffNode0 = wksp_tables->huffNodeTbl;
736
nodeElt* const huffNode = huffNode0+1;
737
int nonNullRank;
738
739
HUF_STATIC_ASSERT(HUF_CTABLE_WORKSPACE_SIZE == sizeof(HUF_buildCTable_wksp_tables));
740
741
DEBUGLOG(5, "HUF_buildCTable_wksp (alphabet size = %u)", maxSymbolValue+1);
742
743
/* safety checks */
744
if (wkspSize < sizeof(HUF_buildCTable_wksp_tables))
745
return ERROR(workSpace_tooSmall);
746
if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
747
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
748
return ERROR(maxSymbolValue_tooLarge);
749
ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable));
750
751
/* sort, decreasing order */
752
HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition);
753
DEBUGLOG(6, "sorted symbols completed (%zu symbols)", showHNodeSymbols(huffNode, maxSymbolValue+1));
754
755
/* build tree */
756
nonNullRank = HUF_buildTree(huffNode, maxSymbolValue);
757
758
/* determine and enforce maxTableLog */
759
maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits);
760
if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */
761
762
HUF_buildCTableFromTree(CTable, huffNode, nonNullRank, maxSymbolValue, maxNbBits);
763
764
return maxNbBits;
765
}
766
767
size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
768
{
769
HUF_CElt const* ct = CTable + 1;
770
size_t nbBits = 0;
771
int s;
772
for (s = 0; s <= (int)maxSymbolValue; ++s) {
773
nbBits += HUF_getNbBits(ct[s]) * count[s];
774
}
775
return nbBits >> 3;
776
}
777
778
int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
779
HUF_CElt const* ct = CTable + 1;
780
int bad = 0;
781
int s;
782
for (s = 0; s <= (int)maxSymbolValue; ++s) {
783
bad |= (count[s] != 0) & (HUF_getNbBits(ct[s]) == 0);
784
}
785
return !bad;
786
}
787
788
size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
789
790
/** HUF_CStream_t:
791
* Huffman uses its own BIT_CStream_t implementation.
792
* There are three major differences from BIT_CStream_t:
793
* 1. HUF_addBits() takes a HUF_CElt (size_t) which is
794
* the pair (nbBits, value) in the format:
795
* format:
796
* - Bits [0, 4) = nbBits
797
* - Bits [4, 64 - nbBits) = 0
798
* - Bits [64 - nbBits, 64) = value
799
* 2. The bitContainer is built from the upper bits and
800
* right shifted. E.g. to add a new value of N bits
801
* you right shift the bitContainer by N, then or in
802
* the new value into the N upper bits.
803
* 3. The bitstream has two bit containers. You can add
804
* bits to the second container and merge them into
805
* the first container.
806
*/
807
808
#define HUF_BITS_IN_CONTAINER (sizeof(size_t) * 8)
809
810
typedef struct {
811
size_t bitContainer[2];
812
size_t bitPos[2];
813
814
BYTE* startPtr;
815
BYTE* ptr;
816
BYTE* endPtr;
817
} HUF_CStream_t;
818
819
/**! HUF_initCStream():
820
* Initializes the bitstream.
821
* @returns 0 or an error code.
822
*/
823
static size_t HUF_initCStream(HUF_CStream_t* bitC,
824
void* startPtr, size_t dstCapacity)
825
{
826
ZSTD_memset(bitC, 0, sizeof(*bitC));
827
bitC->startPtr = (BYTE*)startPtr;
828
bitC->ptr = bitC->startPtr;
829
bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer[0]);
830
if (dstCapacity <= sizeof(bitC->bitContainer[0])) return ERROR(dstSize_tooSmall);
831
return 0;
832
}
833
834
/*! HUF_addBits():
835
* Adds the symbol stored in HUF_CElt elt to the bitstream.
836
*
837
* @param elt The element we're adding. This is a (nbBits, value) pair.
838
* See the HUF_CStream_t docs for the format.
839
* @param idx Insert into the bitstream at this idx.
840
* @param kFast This is a template parameter. If the bitstream is guaranteed
841
* to have at least 4 unused bits after this call it may be 1,
842
* otherwise it must be 0. HUF_addBits() is faster when fast is set.
843
*/
844
FORCE_INLINE_TEMPLATE void HUF_addBits(HUF_CStream_t* bitC, HUF_CElt elt, int idx, int kFast)
845
{
846
assert(idx <= 1);
847
assert(HUF_getNbBits(elt) <= HUF_TABLELOG_ABSOLUTEMAX);
848
/* This is efficient on x86-64 with BMI2 because shrx
849
* only reads the low 6 bits of the register. The compiler
850
* knows this and elides the mask. When fast is set,
851
* every operation can use the same value loaded from elt.
852
*/
853
bitC->bitContainer[idx] >>= HUF_getNbBits(elt);
854
bitC->bitContainer[idx] |= kFast ? HUF_getValueFast(elt) : HUF_getValue(elt);
855
/* We only read the low 8 bits of bitC->bitPos[idx] so it
856
* doesn't matter that the high bits have noise from the value.
857
*/
858
bitC->bitPos[idx] += HUF_getNbBitsFast(elt);
859
assert((bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
860
/* The last 4-bits of elt are dirty if fast is set,
861
* so we must not be overwriting bits that have already been
862
* inserted into the bit container.
863
*/
864
#if DEBUGLEVEL >= 1
865
{
866
size_t const nbBits = HUF_getNbBits(elt);
867
size_t const dirtyBits = nbBits == 0 ? 0 : ZSTD_highbit32((U32)nbBits) + 1;
868
(void)dirtyBits;
869
/* Middle bits are 0. */
870
assert(((elt >> dirtyBits) << (dirtyBits + nbBits)) == 0);
871
/* We didn't overwrite any bits in the bit container. */
872
assert(!kFast || (bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
873
(void)dirtyBits;
874
}
875
#endif
876
}
877
878
FORCE_INLINE_TEMPLATE void HUF_zeroIndex1(HUF_CStream_t* bitC)
879
{
880
bitC->bitContainer[1] = 0;
881
bitC->bitPos[1] = 0;
882
}
883
884
/*! HUF_mergeIndex1() :
885
* Merges the bit container @ index 1 into the bit container @ index 0
886
* and zeros the bit container @ index 1.
887
*/
888
FORCE_INLINE_TEMPLATE void HUF_mergeIndex1(HUF_CStream_t* bitC)
889
{
890
assert((bitC->bitPos[1] & 0xFF) < HUF_BITS_IN_CONTAINER);
891
bitC->bitContainer[0] >>= (bitC->bitPos[1] & 0xFF);
892
bitC->bitContainer[0] |= bitC->bitContainer[1];
893
bitC->bitPos[0] += bitC->bitPos[1];
894
assert((bitC->bitPos[0] & 0xFF) <= HUF_BITS_IN_CONTAINER);
895
}
896
897
/*! HUF_flushBits() :
898
* Flushes the bits in the bit container @ index 0.
899
*
900
* @post bitPos will be < 8.
901
* @param kFast If kFast is set then we must know a-priori that
902
* the bit container will not overflow.
903
*/
904
FORCE_INLINE_TEMPLATE void HUF_flushBits(HUF_CStream_t* bitC, int kFast)
905
{
906
/* The upper bits of bitPos are noisy, so we must mask by 0xFF. */
907
size_t const nbBits = bitC->bitPos[0] & 0xFF;
908
size_t const nbBytes = nbBits >> 3;
909
/* The top nbBits bits of bitContainer are the ones we need. */
910
size_t const bitContainer = bitC->bitContainer[0] >> (HUF_BITS_IN_CONTAINER - nbBits);
911
/* Mask bitPos to account for the bytes we consumed. */
912
bitC->bitPos[0] &= 7;
913
assert(nbBits > 0);
914
assert(nbBits <= sizeof(bitC->bitContainer[0]) * 8);
915
assert(bitC->ptr <= bitC->endPtr);
916
MEM_writeLEST(bitC->ptr, bitContainer);
917
bitC->ptr += nbBytes;
918
assert(!kFast || bitC->ptr <= bitC->endPtr);
919
if (!kFast && bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
920
/* bitContainer doesn't need to be modified because the leftover
921
* bits are already the top bitPos bits. And we don't care about
922
* noise in the lower values.
923
*/
924
}
925
926
/*! HUF_endMark()
927
* @returns The Huffman stream end mark: A 1-bit value = 1.
928
*/
929
static HUF_CElt HUF_endMark(void)
930
{
931
HUF_CElt endMark;
932
HUF_setNbBits(&endMark, 1);
933
HUF_setValue(&endMark, 1);
934
return endMark;
935
}
936
937
/*! HUF_closeCStream() :
938
* @return Size of CStream, in bytes,
939
* or 0 if it could not fit into dstBuffer */
940
static size_t HUF_closeCStream(HUF_CStream_t* bitC)
941
{
942
HUF_addBits(bitC, HUF_endMark(), /* idx */ 0, /* kFast */ 0);
943
HUF_flushBits(bitC, /* kFast */ 0);
944
{
945
size_t const nbBits = bitC->bitPos[0] & 0xFF;
946
if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
947
return (size_t)(bitC->ptr - bitC->startPtr) + (nbBits > 0);
948
}
949
}
950
951
FORCE_INLINE_TEMPLATE void
952
HUF_encodeSymbol(HUF_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable, int idx, int fast)
953
{
954
HUF_addBits(bitCPtr, CTable[symbol], idx, fast);
955
}
956
957
FORCE_INLINE_TEMPLATE void
958
HUF_compress1X_usingCTable_internal_body_loop(HUF_CStream_t* bitC,
959
const BYTE* ip, size_t srcSize,
960
const HUF_CElt* ct,
961
int kUnroll, int kFastFlush, int kLastFast)
962
{
963
/* Join to kUnroll */
964
int n = (int)srcSize;
965
int rem = n % kUnroll;
966
if (rem > 0) {
967
for (; rem > 0; --rem) {
968
HUF_encodeSymbol(bitC, ip[--n], ct, 0, /* fast */ 0);
969
}
970
HUF_flushBits(bitC, kFastFlush);
971
}
972
assert(n % kUnroll == 0);
973
974
/* Join to 2 * kUnroll */
975
if (n % (2 * kUnroll)) {
976
int u;
977
for (u = 1; u < kUnroll; ++u) {
978
HUF_encodeSymbol(bitC, ip[n - u], ct, 0, 1);
979
}
980
HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, 0, kLastFast);
981
HUF_flushBits(bitC, kFastFlush);
982
n -= kUnroll;
983
}
984
assert(n % (2 * kUnroll) == 0);
985
986
for (; n>0; n-= 2 * kUnroll) {
987
/* Encode kUnroll symbols into the bitstream @ index 0. */
988
int u;
989
for (u = 1; u < kUnroll; ++u) {
990
HUF_encodeSymbol(bitC, ip[n - u], ct, /* idx */ 0, /* fast */ 1);
991
}
992
HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, /* idx */ 0, /* fast */ kLastFast);
993
HUF_flushBits(bitC, kFastFlush);
994
/* Encode kUnroll symbols into the bitstream @ index 1.
995
* This allows us to start filling the bit container
996
* without any data dependencies.
997
*/
998
HUF_zeroIndex1(bitC);
999
for (u = 1; u < kUnroll; ++u) {
1000
HUF_encodeSymbol(bitC, ip[n - kUnroll - u], ct, /* idx */ 1, /* fast */ 1);
1001
}
1002
HUF_encodeSymbol(bitC, ip[n - kUnroll - kUnroll], ct, /* idx */ 1, /* fast */ kLastFast);
1003
/* Merge bitstream @ index 1 into the bitstream @ index 0 */
1004
HUF_mergeIndex1(bitC);
1005
HUF_flushBits(bitC, kFastFlush);
1006
}
1007
assert(n == 0);
1008
1009
}
1010
1011
/**
1012
* Returns a tight upper bound on the output space needed by Huffman
1013
* with 8 bytes buffer to handle over-writes. If the output is at least
1014
* this large we don't need to do bounds checks during Huffman encoding.
1015
*/
1016
static size_t HUF_tightCompressBound(size_t srcSize, size_t tableLog)
1017
{
1018
return ((srcSize * tableLog) >> 3) + 8;
1019
}
1020
1021
1022
FORCE_INLINE_TEMPLATE size_t
1023
HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
1024
const void* src, size_t srcSize,
1025
const HUF_CElt* CTable)
1026
{
1027
U32 const tableLog = (U32)CTable[0];
1028
HUF_CElt const* ct = CTable + 1;
1029
const BYTE* ip = (const BYTE*) src;
1030
BYTE* const ostart = (BYTE*)dst;
1031
BYTE* const oend = ostart + dstSize;
1032
BYTE* op = ostart;
1033
HUF_CStream_t bitC;
1034
1035
/* init */
1036
if (dstSize < 8) return 0; /* not enough space to compress */
1037
{ size_t const initErr = HUF_initCStream(&bitC, op, (size_t)(oend-op));
1038
if (HUF_isError(initErr)) return 0; }
1039
1040
if (dstSize < HUF_tightCompressBound(srcSize, (size_t)tableLog) || tableLog > 11)
1041
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ MEM_32bits() ? 2 : 4, /* kFast */ 0, /* kLastFast */ 0);
1042
else {
1043
if (MEM_32bits()) {
1044
switch (tableLog) {
1045
case 11:
1046
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 0);
1047
break;
1048
case 10: ZSTD_FALLTHROUGH;
1049
case 9: ZSTD_FALLTHROUGH;
1050
case 8:
1051
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 1);
1052
break;
1053
case 7: ZSTD_FALLTHROUGH;
1054
default:
1055
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 3, /* kFastFlush */ 1, /* kLastFast */ 1);
1056
break;
1057
}
1058
} else {
1059
switch (tableLog) {
1060
case 11:
1061
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 0);
1062
break;
1063
case 10:
1064
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 1);
1065
break;
1066
case 9:
1067
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 6, /* kFastFlush */ 1, /* kLastFast */ 0);
1068
break;
1069
case 8:
1070
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 7, /* kFastFlush */ 1, /* kLastFast */ 0);
1071
break;
1072
case 7:
1073
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 8, /* kFastFlush */ 1, /* kLastFast */ 0);
1074
break;
1075
case 6: ZSTD_FALLTHROUGH;
1076
default:
1077
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 9, /* kFastFlush */ 1, /* kLastFast */ 1);
1078
break;
1079
}
1080
}
1081
}
1082
assert(bitC.ptr <= bitC.endPtr);
1083
1084
return HUF_closeCStream(&bitC);
1085
}
1086
1087
#if DYNAMIC_BMI2
1088
1089
static BMI2_TARGET_ATTRIBUTE size_t
1090
HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
1091
const void* src, size_t srcSize,
1092
const HUF_CElt* CTable)
1093
{
1094
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
1095
}
1096
1097
static size_t
1098
HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
1099
const void* src, size_t srcSize,
1100
const HUF_CElt* CTable)
1101
{
1102
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
1103
}
1104
1105
static size_t
1106
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
1107
const void* src, size_t srcSize,
1108
const HUF_CElt* CTable, const int flags)
1109
{
1110
if (flags & HUF_flags_bmi2) {
1111
return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
1112
}
1113
return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
1114
}
1115
1116
#else
1117
1118
static size_t
1119
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
1120
const void* src, size_t srcSize,
1121
const HUF_CElt* CTable, const int flags)
1122
{
1123
(void)flags;
1124
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
1125
}
1126
1127
#endif
1128
1129
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int flags)
1130
{
1131
return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, flags);
1132
}
1133
1134
static size_t
1135
HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
1136
const void* src, size_t srcSize,
1137
const HUF_CElt* CTable, int flags)
1138
{
1139
size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */
1140
const BYTE* ip = (const BYTE*) src;
1141
const BYTE* const iend = ip + srcSize;
1142
BYTE* const ostart = (BYTE*) dst;
1143
BYTE* const oend = ostart + dstSize;
1144
BYTE* op = ostart;
1145
1146
if (dstSize < 6 + 1 + 1 + 1 + 8) return 0; /* minimum space to compress successfully */
1147
if (srcSize < 12) return 0; /* no saving possible : too small input */
1148
op += 6; /* jumpTable */
1149
1150
assert(op <= oend);
1151
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, flags) );
1152
if (cSize == 0 || cSize > 65535) return 0;
1153
MEM_writeLE16(ostart, (U16)cSize);
1154
op += cSize;
1155
}
1156
1157
ip += segmentSize;
1158
assert(op <= oend);
1159
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, flags) );
1160
if (cSize == 0 || cSize > 65535) return 0;
1161
MEM_writeLE16(ostart+2, (U16)cSize);
1162
op += cSize;
1163
}
1164
1165
ip += segmentSize;
1166
assert(op <= oend);
1167
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, flags) );
1168
if (cSize == 0 || cSize > 65535) return 0;
1169
MEM_writeLE16(ostart+4, (U16)cSize);
1170
op += cSize;
1171
}
1172
1173
ip += segmentSize;
1174
assert(op <= oend);
1175
assert(ip <= iend);
1176
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, flags) );
1177
if (cSize == 0 || cSize > 65535) return 0;
1178
op += cSize;
1179
}
1180
1181
return (size_t)(op-ostart);
1182
}
1183
1184
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int flags)
1185
{
1186
return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, flags);
1187
}
1188
1189
typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;
1190
1191
static size_t HUF_compressCTable_internal(
1192
BYTE* const ostart, BYTE* op, BYTE* const oend,
1193
const void* src, size_t srcSize,
1194
HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int flags)
1195
{
1196
size_t const cSize = (nbStreams==HUF_singleStream) ?
1197
HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, flags) :
1198
HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, flags);
1199
if (HUF_isError(cSize)) { return cSize; }
1200
if (cSize==0) { return 0; } /* uncompressible */
1201
op += cSize;
1202
/* check compressibility */
1203
assert(op >= ostart);
1204
if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
1205
return (size_t)(op-ostart);
1206
}
1207
1208
typedef struct {
1209
unsigned count[HUF_SYMBOLVALUE_MAX + 1];
1210
HUF_CElt CTable[HUF_CTABLE_SIZE_ST(HUF_SYMBOLVALUE_MAX)];
1211
union {
1212
HUF_buildCTable_wksp_tables buildCTable_wksp;
1213
HUF_WriteCTableWksp writeCTable_wksp;
1214
U32 hist_wksp[HIST_WKSP_SIZE_U32];
1215
} wksps;
1216
} HUF_compress_tables_t;
1217
1218
#define SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE 4096
1219
#define SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO 10 /* Must be >= 2 */
1220
1221
unsigned HUF_cardinality(const unsigned* count, unsigned maxSymbolValue)
1222
{
1223
unsigned cardinality = 0;
1224
unsigned i;
1225
1226
for (i = 0; i < maxSymbolValue + 1; i++) {
1227
if (count[i] != 0) cardinality += 1;
1228
}
1229
1230
return cardinality;
1231
}
1232
1233
unsigned HUF_minTableLog(unsigned symbolCardinality)
1234
{
1235
U32 minBitsSymbols = ZSTD_highbit32(symbolCardinality) + 1;
1236
return minBitsSymbols;
1237
}
1238
1239
unsigned HUF_optimalTableLog(
1240
unsigned maxTableLog,
1241
size_t srcSize,
1242
unsigned maxSymbolValue,
1243
void* workSpace, size_t wkspSize,
1244
HUF_CElt* table,
1245
const unsigned* count,
1246
int flags)
1247
{
1248
assert(srcSize > 1); /* Not supported, RLE should be used instead */
1249
assert(wkspSize >= sizeof(HUF_buildCTable_wksp_tables));
1250
1251
if (!(flags & HUF_flags_optimalDepth)) {
1252
/* cheap evaluation, based on FSE */
1253
return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
1254
}
1255
1256
{ BYTE* dst = (BYTE*)workSpace + sizeof(HUF_WriteCTableWksp);
1257
size_t dstSize = wkspSize - sizeof(HUF_WriteCTableWksp);
1258
size_t maxBits, hSize, newSize;
1259
const unsigned symbolCardinality = HUF_cardinality(count, maxSymbolValue);
1260
const unsigned minTableLog = HUF_minTableLog(symbolCardinality);
1261
size_t optSize = ((size_t) ~0) - 1;
1262
unsigned optLog = maxTableLog, optLogGuess;
1263
1264
DEBUGLOG(6, "HUF_optimalTableLog: probing huf depth (srcSize=%zu)", srcSize);
1265
1266
/* Search until size increases */
1267
for (optLogGuess = minTableLog; optLogGuess <= maxTableLog; optLogGuess++) {
1268
DEBUGLOG(7, "checking for huffLog=%u", optLogGuess);
1269
maxBits = HUF_buildCTable_wksp(table, count, maxSymbolValue, optLogGuess, workSpace, wkspSize);
1270
if (ERR_isError(maxBits)) continue;
1271
1272
if (maxBits < optLogGuess && optLogGuess > minTableLog) break;
1273
1274
hSize = HUF_writeCTable_wksp(dst, dstSize, table, maxSymbolValue, (U32)maxBits, workSpace, wkspSize);
1275
1276
if (ERR_isError(hSize)) continue;
1277
1278
newSize = HUF_estimateCompressedSize(table, count, maxSymbolValue) + hSize;
1279
1280
if (newSize > optSize + 1) {
1281
break;
1282
}
1283
1284
if (newSize < optSize) {
1285
optSize = newSize;
1286
optLog = optLogGuess;
1287
}
1288
}
1289
assert(optLog <= HUF_TABLELOG_MAX);
1290
return optLog;
1291
}
1292
}
1293
1294
/* HUF_compress_internal() :
1295
* `workSpace_align4` must be aligned on 4-bytes boundaries,
1296
* and occupies the same space as a table of HUF_WORKSPACE_SIZE_U64 unsigned */
1297
static size_t
1298
HUF_compress_internal (void* dst, size_t dstSize,
1299
const void* src, size_t srcSize,
1300
unsigned maxSymbolValue, unsigned huffLog,
1301
HUF_nbStreams_e nbStreams,
1302
void* workSpace, size_t wkspSize,
1303
HUF_CElt* oldHufTable, HUF_repeat* repeat, int flags)
1304
{
1305
HUF_compress_tables_t* const table = (HUF_compress_tables_t*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(size_t));
1306
BYTE* const ostart = (BYTE*)dst;
1307
BYTE* const oend = ostart + dstSize;
1308
BYTE* op = ostart;
1309
1310
DEBUGLOG(5, "HUF_compress_internal (srcSize=%zu)", srcSize);
1311
HUF_STATIC_ASSERT(sizeof(*table) + HUF_WORKSPACE_MAX_ALIGNMENT <= HUF_WORKSPACE_SIZE);
1312
1313
/* checks & inits */
1314
if (wkspSize < sizeof(*table)) return ERROR(workSpace_tooSmall);
1315
if (!srcSize) return 0; /* Uncompressed */
1316
if (!dstSize) return 0; /* cannot fit anything within dst budget */
1317
if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */
1318
if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
1319
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
1320
if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
1321
if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
1322
1323
/* Heuristic : If old table is valid, use it for small inputs */
1324
if ((flags & HUF_flags_preferRepeat) && repeat && *repeat == HUF_repeat_valid) {
1325
return HUF_compressCTable_internal(ostart, op, oend,
1326
src, srcSize,
1327
nbStreams, oldHufTable, flags);
1328
}
1329
1330
/* If uncompressible data is suspected, do a smaller sampling first */
1331
DEBUG_STATIC_ASSERT(SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO >= 2);
1332
if ((flags & HUF_flags_suspectUncompressible) && srcSize >= (SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE * SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO)) {
1333
size_t largestTotal = 0;
1334
DEBUGLOG(5, "input suspected incompressible : sampling to check");
1335
{ unsigned maxSymbolValueBegin = maxSymbolValue;
1336
CHECK_V_F(largestBegin, HIST_count_simple (table->count, &maxSymbolValueBegin, (const BYTE*)src, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
1337
largestTotal += largestBegin;
1338
}
1339
{ unsigned maxSymbolValueEnd = maxSymbolValue;
1340
CHECK_V_F(largestEnd, HIST_count_simple (table->count, &maxSymbolValueEnd, (const BYTE*)src + srcSize - SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
1341
largestTotal += largestEnd;
1342
}
1343
if (largestTotal <= ((2 * SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) >> 7)+4) return 0; /* heuristic : probably not compressible enough */
1344
}
1345
1346
/* Scan input and build symbol stats */
1347
{ CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, table->wksps.hist_wksp, sizeof(table->wksps.hist_wksp)) );
1348
if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */
1349
if (largest <= (srcSize >> 7)+4) return 0; /* heuristic : probably not compressible enough */
1350
}
1351
DEBUGLOG(6, "histogram detail completed (%zu symbols)", showU32(table->count, maxSymbolValue+1));
1352
1353
/* Check validity of previous table */
1354
if ( repeat
1355
&& *repeat == HUF_repeat_check
1356
&& !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
1357
*repeat = HUF_repeat_none;
1358
}
1359
/* Heuristic : use existing table for small inputs */
1360
if ((flags & HUF_flags_preferRepeat) && repeat && *repeat != HUF_repeat_none) {
1361
return HUF_compressCTable_internal(ostart, op, oend,
1362
src, srcSize,
1363
nbStreams, oldHufTable, flags);
1364
}
1365
1366
/* Build Huffman Tree */
1367
huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue, &table->wksps, sizeof(table->wksps), table->CTable, table->count, flags);
1368
{ size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count,
1369
maxSymbolValue, huffLog,
1370
&table->wksps.buildCTable_wksp, sizeof(table->wksps.buildCTable_wksp));
1371
CHECK_F(maxBits);
1372
huffLog = (U32)maxBits;
1373
DEBUGLOG(6, "bit distribution completed (%zu symbols)", showCTableBits(table->CTable + 1, maxSymbolValue+1));
1374
}
1375
/* Zero unused symbols in CTable, so we can check it for validity */
1376
{
1377
size_t const ctableSize = HUF_CTABLE_SIZE_ST(maxSymbolValue);
1378
size_t const unusedSize = sizeof(table->CTable) - ctableSize * sizeof(HUF_CElt);
1379
ZSTD_memset(table->CTable + ctableSize, 0, unusedSize);
1380
}
1381
1382
/* Write table description header */
1383
{ CHECK_V_F(hSize, HUF_writeCTable_wksp(op, dstSize, table->CTable, maxSymbolValue, huffLog,
1384
&table->wksps.writeCTable_wksp, sizeof(table->wksps.writeCTable_wksp)) );
1385
/* Check if using previous huffman table is beneficial */
1386
if (repeat && *repeat != HUF_repeat_none) {
1387
size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
1388
size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
1389
if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
1390
return HUF_compressCTable_internal(ostart, op, oend,
1391
src, srcSize,
1392
nbStreams, oldHufTable, flags);
1393
} }
1394
1395
/* Use the new huffman table */
1396
if (hSize + 12ul >= srcSize) { return 0; }
1397
op += hSize;
1398
if (repeat) { *repeat = HUF_repeat_none; }
1399
if (oldHufTable)
1400
ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable)); /* Save new table */
1401
}
1402
return HUF_compressCTable_internal(ostart, op, oend,
1403
src, srcSize,
1404
nbStreams, table->CTable, flags);
1405
}
1406
1407
size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
1408
const void* src, size_t srcSize,
1409
unsigned maxSymbolValue, unsigned huffLog,
1410
void* workSpace, size_t wkspSize,
1411
HUF_CElt* hufTable, HUF_repeat* repeat, int flags)
1412
{
1413
DEBUGLOG(5, "HUF_compress1X_repeat (srcSize = %zu)", srcSize);
1414
return HUF_compress_internal(dst, dstSize, src, srcSize,
1415
maxSymbolValue, huffLog, HUF_singleStream,
1416
workSpace, wkspSize, hufTable,
1417
repeat, flags);
1418
}
1419
1420
/* HUF_compress4X_repeat():
1421
* compress input using 4 streams.
1422
* consider skipping quickly
1423
* re-use an existing huffman compression table */
1424
size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
1425
const void* src, size_t srcSize,
1426
unsigned maxSymbolValue, unsigned huffLog,
1427
void* workSpace, size_t wkspSize,
1428
HUF_CElt* hufTable, HUF_repeat* repeat, int flags)
1429
{
1430
DEBUGLOG(5, "HUF_compress4X_repeat (srcSize = %zu)", srcSize);
1431
return HUF_compress_internal(dst, dstSize, src, srcSize,
1432
maxSymbolValue, huffLog, HUF_fourStreams,
1433
workSpace, wkspSize,
1434
hufTable, repeat, flags);
1435
}
1436
1437