Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmzstd/lib/compress/huf_compress.c
5028 views
1
/* ******************************************************************
2
* Huffman encoder, part of New Generation Entropy library
3
* Copyright (c) Meta Platforms, Inc. and affiliates.
4
*
5
* You can contact the author at :
6
* - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
7
* - Public forum : https://groups.google.com/forum/#!forum/lz4c
8
*
9
* This source code is licensed under both the BSD-style license (found in the
10
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
11
* in the COPYING file in the root directory of this source tree).
12
* You may select, at your option, one of the above-listed licenses.
13
****************************************************************** */
14
15
/* **************************************************************
16
* Compiler specifics
17
****************************************************************/
18
#ifdef _MSC_VER /* Visual Studio */
19
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
20
#endif
21
22
23
/* **************************************************************
24
* Includes
25
****************************************************************/
26
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
27
#include "../common/compiler.h"
28
#include "../common/bitstream.h"
29
#include "hist.h"
30
#define FSE_STATIC_LINKING_ONLY /* FSE_optimalTableLog_internal */
31
#include "../common/fse.h" /* header compression */
32
#include "../common/huf.h"
33
#include "../common/error_private.h"
34
#include "../common/bits.h" /* ZSTD_highbit32 */
35
36
37
/* **************************************************************
38
* Error Management
39
****************************************************************/
40
#define HUF_isError ERR_isError
41
#define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */
42
43
44
/* **************************************************************
45
* Required declarations
46
****************************************************************/
47
typedef struct nodeElt_s {
48
U32 count;
49
U16 parent;
50
BYTE byte;
51
BYTE nbBits;
52
} nodeElt;
53
54
55
/* **************************************************************
56
* Debug Traces
57
****************************************************************/
58
59
#if DEBUGLEVEL >= 2
60
61
static size_t showU32(const U32* arr, size_t size)
62
{
63
size_t u;
64
for (u=0; u<size; u++) {
65
RAWLOG(6, " %u", arr[u]); (void)arr;
66
}
67
RAWLOG(6, " \n");
68
return size;
69
}
70
71
static size_t HUF_getNbBits(HUF_CElt elt);
72
73
static size_t showCTableBits(const HUF_CElt* ctable, size_t size)
74
{
75
size_t u;
76
for (u=0; u<size; u++) {
77
RAWLOG(6, " %zu", HUF_getNbBits(ctable[u])); (void)ctable;
78
}
79
RAWLOG(6, " \n");
80
return size;
81
82
}
83
84
static size_t showHNodeSymbols(const nodeElt* hnode, size_t size)
85
{
86
size_t u;
87
for (u=0; u<size; u++) {
88
RAWLOG(6, " %u", hnode[u].byte); (void)hnode;
89
}
90
RAWLOG(6, " \n");
91
return size;
92
}
93
94
static size_t showHNodeBits(const nodeElt* hnode, size_t size)
95
{
96
size_t u;
97
for (u=0; u<size; u++) {
98
RAWLOG(6, " %u", hnode[u].nbBits); (void)hnode;
99
}
100
RAWLOG(6, " \n");
101
return size;
102
}
103
104
#endif
105
106
107
/* *******************************************************
108
* HUF : Huffman block compression
109
*********************************************************/
110
#define HUF_WORKSPACE_MAX_ALIGNMENT 8
111
112
static void* HUF_alignUpWorkspace(void* workspace, size_t* workspaceSizePtr, size_t align)
113
{
114
size_t const mask = align - 1;
115
size_t const rem = (size_t)workspace & mask;
116
size_t const add = (align - rem) & mask;
117
BYTE* const aligned = (BYTE*)workspace + add;
118
assert((align & (align - 1)) == 0); /* pow 2 */
119
assert(align <= HUF_WORKSPACE_MAX_ALIGNMENT);
120
if (*workspaceSizePtr >= add) {
121
assert(add < align);
122
assert(((size_t)aligned & mask) == 0);
123
*workspaceSizePtr -= add;
124
return aligned;
125
} else {
126
*workspaceSizePtr = 0;
127
return NULL;
128
}
129
}
130
131
132
/* HUF_compressWeights() :
133
* Same as FSE_compress(), but dedicated to huff0's weights compression.
134
* The use case needs much less stack memory.
135
* Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
136
*/
137
#define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
138
139
typedef struct {
140
FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
141
U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)];
142
unsigned count[HUF_TABLELOG_MAX+1];
143
S16 norm[HUF_TABLELOG_MAX+1];
144
} HUF_CompressWeightsWksp;
145
146
static size_t
147
HUF_compressWeights(void* dst, size_t dstSize,
148
const void* weightTable, size_t wtSize,
149
void* workspace, size_t workspaceSize)
150
{
151
BYTE* const ostart = (BYTE*) dst;
152
BYTE* op = ostart;
153
BYTE* const oend = ostart + dstSize;
154
155
unsigned maxSymbolValue = HUF_TABLELOG_MAX;
156
U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
157
HUF_CompressWeightsWksp* wksp = (HUF_CompressWeightsWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
158
159
if (workspaceSize < sizeof(HUF_CompressWeightsWksp)) return ERROR(GENERIC);
160
161
/* init conditions */
162
if (wtSize <= 1) return 0; /* Not compressible */
163
164
/* Scan input and build symbol stats */
165
{ unsigned const maxCount = HIST_count_simple(wksp->count, &maxSymbolValue, weightTable, wtSize); /* never fails */
166
if (maxCount == wtSize) return 1; /* only a single symbol in src : rle */
167
if (maxCount == 1) return 0; /* each symbol present maximum once => not compressible */
168
}
169
170
tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
171
CHECK_F( FSE_normalizeCount(wksp->norm, tableLog, wksp->count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) );
172
173
/* Write table description header */
174
{ CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), wksp->norm, maxSymbolValue, tableLog) );
175
op += hSize;
176
}
177
178
/* Compress */
179
CHECK_F( FSE_buildCTable_wksp(wksp->CTable, wksp->norm, maxSymbolValue, tableLog, wksp->scratchBuffer, sizeof(wksp->scratchBuffer)) );
180
{ CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, wksp->CTable) );
181
if (cSize == 0) return 0; /* not enough space for compressed data */
182
op += cSize;
183
}
184
185
return (size_t)(op-ostart);
186
}
187
188
static size_t HUF_getNbBits(HUF_CElt elt)
189
{
190
return elt & 0xFF;
191
}
192
193
static size_t HUF_getNbBitsFast(HUF_CElt elt)
194
{
195
return elt;
196
}
197
198
static size_t HUF_getValue(HUF_CElt elt)
199
{
200
return elt & ~(size_t)0xFF;
201
}
202
203
static size_t HUF_getValueFast(HUF_CElt elt)
204
{
205
return elt;
206
}
207
208
static void HUF_setNbBits(HUF_CElt* elt, size_t nbBits)
209
{
210
assert(nbBits <= HUF_TABLELOG_ABSOLUTEMAX);
211
*elt = nbBits;
212
}
213
214
static void HUF_setValue(HUF_CElt* elt, size_t value)
215
{
216
size_t const nbBits = HUF_getNbBits(*elt);
217
if (nbBits > 0) {
218
assert((value >> nbBits) == 0);
219
*elt |= value << (sizeof(HUF_CElt) * 8 - nbBits);
220
}
221
}
222
223
HUF_CTableHeader HUF_readCTableHeader(HUF_CElt const* ctable)
224
{
225
HUF_CTableHeader header;
226
ZSTD_memcpy(&header, ctable, sizeof(header));
227
return header;
228
}
229
230
static void HUF_writeCTableHeader(HUF_CElt* ctable, U32 tableLog, U32 maxSymbolValue)
231
{
232
HUF_CTableHeader header;
233
HUF_STATIC_ASSERT(sizeof(ctable[0]) == sizeof(header));
234
ZSTD_memset(&header, 0, sizeof(header));
235
assert(tableLog < 256);
236
header.tableLog = (BYTE)tableLog;
237
assert(maxSymbolValue < 256);
238
header.maxSymbolValue = (BYTE)maxSymbolValue;
239
ZSTD_memcpy(ctable, &header, sizeof(header));
240
}
241
242
typedef struct {
243
HUF_CompressWeightsWksp wksp;
244
BYTE bitsToWeight[HUF_TABLELOG_MAX + 1]; /* precomputed conversion table */
245
BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
246
} HUF_WriteCTableWksp;
247
248
size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize,
249
const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog,
250
void* workspace, size_t workspaceSize)
251
{
252
HUF_CElt const* const ct = CTable + 1;
253
BYTE* op = (BYTE*)dst;
254
U32 n;
255
HUF_WriteCTableWksp* wksp = (HUF_WriteCTableWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
256
257
HUF_STATIC_ASSERT(HUF_CTABLE_WORKSPACE_SIZE >= sizeof(HUF_WriteCTableWksp));
258
259
assert(HUF_readCTableHeader(CTable).maxSymbolValue == maxSymbolValue);
260
assert(HUF_readCTableHeader(CTable).tableLog == huffLog);
261
262
/* check conditions */
263
if (workspaceSize < sizeof(HUF_WriteCTableWksp)) return ERROR(GENERIC);
264
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
265
266
/* convert to weight */
267
wksp->bitsToWeight[0] = 0;
268
for (n=1; n<huffLog+1; n++)
269
wksp->bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
270
for (n=0; n<maxSymbolValue; n++)
271
wksp->huffWeight[n] = wksp->bitsToWeight[HUF_getNbBits(ct[n])];
272
273
/* attempt weights compression by FSE */
274
if (maxDstSize < 1) return ERROR(dstSize_tooSmall);
275
{ CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, wksp->huffWeight, maxSymbolValue, &wksp->wksp, sizeof(wksp->wksp)) );
276
if ((hSize>1) & (hSize < maxSymbolValue/2)) { /* FSE compressed */
277
op[0] = (BYTE)hSize;
278
return hSize+1;
279
} }
280
281
/* write raw values as 4-bits (max : 15) */
282
if (maxSymbolValue > (256-128)) return ERROR(GENERIC); /* should not happen : likely means source cannot be compressed */
283
if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */
284
op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
285
wksp->huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause msan issue in final combination */
286
for (n=0; n<maxSymbolValue; n+=2)
287
op[(n/2)+1] = (BYTE)((wksp->huffWeight[n] << 4) + wksp->huffWeight[n+1]);
288
return ((maxSymbolValue+1)/2) + 1;
289
}
290
291
292
size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights)
293
{
294
BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1]; /* init not required, even though some static analyzer may complain */
295
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */
296
U32 tableLog = 0;
297
U32 nbSymbols = 0;
298
HUF_CElt* const ct = CTable + 1;
299
300
/* get symbol weights */
301
CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
302
*hasZeroWeights = (rankVal[0] > 0);
303
304
/* check result */
305
if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
306
if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
307
308
*maxSymbolValuePtr = nbSymbols - 1;
309
310
HUF_writeCTableHeader(CTable, tableLog, *maxSymbolValuePtr);
311
312
/* Prepare base value per rank */
313
{ U32 n, nextRankStart = 0;
314
for (n=1; n<=tableLog; n++) {
315
U32 curr = nextRankStart;
316
nextRankStart += (rankVal[n] << (n-1));
317
rankVal[n] = curr;
318
} }
319
320
/* fill nbBits */
321
{ U32 n; for (n=0; n<nbSymbols; n++) {
322
const U32 w = huffWeight[n];
323
HUF_setNbBits(ct + n, (BYTE)(tableLog + 1 - w) & -(w != 0));
324
} }
325
326
/* fill val */
327
{ U16 nbPerRank[HUF_TABLELOG_MAX+2] = {0}; /* support w=0=>n=tableLog+1 */
328
U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
329
{ U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[HUF_getNbBits(ct[n])]++; }
330
/* determine stating value per rank */
331
valPerRank[tableLog+1] = 0; /* for w==0 */
332
{ U16 min = 0;
333
U32 n; for (n=tableLog; n>0; n--) { /* start at n=tablelog <-> w=1 */
334
valPerRank[n] = min; /* get starting value within each rank */
335
min += nbPerRank[n];
336
min >>= 1;
337
} }
338
/* assign value within rank, symbol order */
339
{ U32 n; for (n=0; n<nbSymbols; n++) HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); }
340
}
341
342
return readSize;
343
}
344
345
U32 HUF_getNbBitsFromCTable(HUF_CElt const* CTable, U32 symbolValue)
346
{
347
const HUF_CElt* const ct = CTable + 1;
348
assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
349
if (symbolValue > HUF_readCTableHeader(CTable).maxSymbolValue)
350
return 0;
351
return (U32)HUF_getNbBits(ct[symbolValue]);
352
}
353
354
355
/**
356
* HUF_setMaxHeight():
357
* Try to enforce @targetNbBits on the Huffman tree described in @huffNode.
358
*
359
* It attempts to convert all nodes with nbBits > @targetNbBits
360
* to employ @targetNbBits instead. Then it adjusts the tree
361
* so that it remains a valid canonical Huffman tree.
362
*
363
* @pre The sum of the ranks of each symbol == 2^largestBits,
364
* where largestBits == huffNode[lastNonNull].nbBits.
365
* @post The sum of the ranks of each symbol == 2^largestBits,
366
* where largestBits is the return value (expected <= targetNbBits).
367
*
368
* @param huffNode The Huffman tree modified in place to enforce targetNbBits.
369
* It's presumed sorted, from most frequent to rarest symbol.
370
* @param lastNonNull The symbol with the lowest count in the Huffman tree.
371
* @param targetNbBits The allowed number of bits, which the Huffman tree
372
* may not respect. After this function the Huffman tree will
373
* respect targetNbBits.
374
* @return The maximum number of bits of the Huffman tree after adjustment.
375
*/
376
static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 targetNbBits)
377
{
378
const U32 largestBits = huffNode[lastNonNull].nbBits;
379
/* early exit : no elt > targetNbBits, so the tree is already valid. */
380
if (largestBits <= targetNbBits) return largestBits;
381
382
DEBUGLOG(5, "HUF_setMaxHeight (targetNbBits = %u)", targetNbBits);
383
384
/* there are several too large elements (at least >= 2) */
385
{ int totalCost = 0;
386
const U32 baseCost = 1 << (largestBits - targetNbBits);
387
int n = (int)lastNonNull;
388
389
/* Adjust any ranks > targetNbBits to targetNbBits.
390
* Compute totalCost, which is how far the sum of the ranks is
391
* we are over 2^largestBits after adjust the offending ranks.
392
*/
393
while (huffNode[n].nbBits > targetNbBits) {
394
totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
395
huffNode[n].nbBits = (BYTE)targetNbBits;
396
n--;
397
}
398
/* n stops at huffNode[n].nbBits <= targetNbBits */
399
assert(huffNode[n].nbBits <= targetNbBits);
400
/* n end at index of smallest symbol using < targetNbBits */
401
while (huffNode[n].nbBits == targetNbBits) --n;
402
403
/* renorm totalCost from 2^largestBits to 2^targetNbBits
404
* note : totalCost is necessarily a multiple of baseCost */
405
assert(((U32)totalCost & (baseCost - 1)) == 0);
406
totalCost >>= (largestBits - targetNbBits);
407
assert(totalCost > 0);
408
409
/* repay normalized cost */
410
{ U32 const noSymbol = 0xF0F0F0F0;
411
U32 rankLast[HUF_TABLELOG_MAX+2];
412
413
/* Get pos of last (smallest = lowest cum. count) symbol per rank */
414
ZSTD_memset(rankLast, 0xF0, sizeof(rankLast));
415
{ U32 currentNbBits = targetNbBits;
416
int pos;
417
for (pos=n ; pos >= 0; pos--) {
418
if (huffNode[pos].nbBits >= currentNbBits) continue;
419
currentNbBits = huffNode[pos].nbBits; /* < targetNbBits */
420
rankLast[targetNbBits-currentNbBits] = (U32)pos;
421
} }
422
423
while (totalCost > 0) {
424
/* Try to reduce the next power of 2 above totalCost because we
425
* gain back half the rank.
426
*/
427
U32 nBitsToDecrease = ZSTD_highbit32((U32)totalCost) + 1;
428
for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
429
U32 const highPos = rankLast[nBitsToDecrease];
430
U32 const lowPos = rankLast[nBitsToDecrease-1];
431
if (highPos == noSymbol) continue;
432
/* Decrease highPos if no symbols of lowPos or if it is
433
* not cheaper to remove 2 lowPos than highPos.
434
*/
435
if (lowPos == noSymbol) break;
436
{ U32 const highTotal = huffNode[highPos].count;
437
U32 const lowTotal = 2 * huffNode[lowPos].count;
438
if (highTotal <= lowTotal) break;
439
} }
440
/* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
441
assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1);
442
/* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
443
while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
444
nBitsToDecrease++;
445
assert(rankLast[nBitsToDecrease] != noSymbol);
446
/* Increase the number of bits to gain back half the rank cost. */
447
totalCost -= 1 << (nBitsToDecrease-1);
448
huffNode[rankLast[nBitsToDecrease]].nbBits++;
449
450
/* Fix up the new rank.
451
* If the new rank was empty, this symbol is now its smallest.
452
* Otherwise, this symbol will be the largest in the new rank so no adjustment.
453
*/
454
if (rankLast[nBitsToDecrease-1] == noSymbol)
455
rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];
456
/* Fix up the old rank.
457
* If the symbol was at position 0, meaning it was the highest weight symbol in the tree,
458
* it must be the only symbol in its rank, so the old rank now has no symbols.
459
* Otherwise, since the Huffman nodes are sorted by count, the previous position is now
460
* the smallest node in the rank. If the previous position belongs to a different rank,
461
* then the rank is now empty.
462
*/
463
if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */
464
rankLast[nBitsToDecrease] = noSymbol;
465
else {
466
rankLast[nBitsToDecrease]--;
467
if (huffNode[rankLast[nBitsToDecrease]].nbBits != targetNbBits-nBitsToDecrease)
468
rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */
469
}
470
} /* while (totalCost > 0) */
471
472
/* If we've removed too much weight, then we have to add it back.
473
* To avoid overshooting again, we only adjust the smallest rank.
474
* We take the largest nodes from the lowest rank 0 and move them
475
* to rank 1. There's guaranteed to be enough rank 0 symbols because
476
* TODO.
477
*/
478
while (totalCost < 0) { /* Sometimes, cost correction overshoot */
479
/* special case : no rank 1 symbol (using targetNbBits-1);
480
* let's create one from largest rank 0 (using targetNbBits).
481
*/
482
if (rankLast[1] == noSymbol) {
483
while (huffNode[n].nbBits == targetNbBits) n--;
484
huffNode[n+1].nbBits--;
485
assert(n >= 0);
486
rankLast[1] = (U32)(n+1);
487
totalCost++;
488
continue;
489
}
490
huffNode[ rankLast[1] + 1 ].nbBits--;
491
rankLast[1]++;
492
totalCost ++;
493
}
494
} /* repay normalized cost */
495
} /* there are several too large elements (at least >= 2) */
496
497
return targetNbBits;
498
}
499
500
typedef struct {
501
U16 base;
502
U16 curr;
503
} rankPos;
504
505
typedef nodeElt huffNodeTable[2 * (HUF_SYMBOLVALUE_MAX + 1)];
506
507
/* Number of buckets available for HUF_sort() */
508
#define RANK_POSITION_TABLE_SIZE 192
509
510
typedef struct {
511
huffNodeTable huffNodeTbl;
512
rankPos rankPosition[RANK_POSITION_TABLE_SIZE];
513
} HUF_buildCTable_wksp_tables;
514
515
/* RANK_POSITION_DISTINCT_COUNT_CUTOFF == Cutoff point in HUF_sort() buckets for which we use log2 bucketing.
516
* Strategy is to use as many buckets as possible for representing distinct
517
* counts while using the remainder to represent all "large" counts.
518
*
519
* To satisfy this requirement for 192 buckets, we can do the following:
520
* Let buckets 0-166 represent distinct counts of [0, 166]
521
* Let buckets 166 to 192 represent all remaining counts up to RANK_POSITION_MAX_COUNT_LOG using log2 bucketing.
522
*/
523
#define RANK_POSITION_MAX_COUNT_LOG 32
524
#define RANK_POSITION_LOG_BUCKETS_BEGIN ((RANK_POSITION_TABLE_SIZE - 1) - RANK_POSITION_MAX_COUNT_LOG - 1 /* == 158 */)
525
#define RANK_POSITION_DISTINCT_COUNT_CUTOFF (RANK_POSITION_LOG_BUCKETS_BEGIN + ZSTD_highbit32(RANK_POSITION_LOG_BUCKETS_BEGIN) /* == 166 */)
526
527
/* Return the appropriate bucket index for a given count. See definition of
528
* RANK_POSITION_DISTINCT_COUNT_CUTOFF for explanation of bucketing strategy.
529
*/
530
static U32 HUF_getIndex(U32 const count) {
531
return (count < RANK_POSITION_DISTINCT_COUNT_CUTOFF)
532
? count
533
: ZSTD_highbit32(count) + RANK_POSITION_LOG_BUCKETS_BEGIN;
534
}
535
536
/* Helper swap function for HUF_quickSortPartition() */
537
static void HUF_swapNodes(nodeElt* a, nodeElt* b) {
538
nodeElt tmp = *a;
539
*a = *b;
540
*b = tmp;
541
}
542
543
/* Returns 0 if the huffNode array is not sorted by descending count */
544
MEM_STATIC int HUF_isSorted(nodeElt huffNode[], U32 const maxSymbolValue1) {
545
U32 i;
546
for (i = 1; i < maxSymbolValue1; ++i) {
547
if (huffNode[i].count > huffNode[i-1].count) {
548
return 0;
549
}
550
}
551
return 1;
552
}
553
554
/* Insertion sort by descending order */
555
HINT_INLINE void HUF_insertionSort(nodeElt huffNode[], int const low, int const high) {
556
int i;
557
int const size = high-low+1;
558
huffNode += low;
559
for (i = 1; i < size; ++i) {
560
nodeElt const key = huffNode[i];
561
int j = i - 1;
562
while (j >= 0 && huffNode[j].count < key.count) {
563
huffNode[j + 1] = huffNode[j];
564
j--;
565
}
566
huffNode[j + 1] = key;
567
}
568
}
569
570
/* Pivot helper function for quicksort. */
571
static int HUF_quickSortPartition(nodeElt arr[], int const low, int const high) {
572
/* Simply select rightmost element as pivot. "Better" selectors like
573
* median-of-three don't experimentally appear to have any benefit.
574
*/
575
U32 const pivot = arr[high].count;
576
int i = low - 1;
577
int j = low;
578
for ( ; j < high; j++) {
579
if (arr[j].count > pivot) {
580
i++;
581
HUF_swapNodes(&arr[i], &arr[j]);
582
}
583
}
584
HUF_swapNodes(&arr[i + 1], &arr[high]);
585
return i + 1;
586
}
587
588
/* Classic quicksort by descending with partially iterative calls
589
* to reduce worst case callstack size.
590
*/
591
static void HUF_simpleQuickSort(nodeElt arr[], int low, int high) {
592
int const kInsertionSortThreshold = 8;
593
if (high - low < kInsertionSortThreshold) {
594
HUF_insertionSort(arr, low, high);
595
return;
596
}
597
while (low < high) {
598
int const idx = HUF_quickSortPartition(arr, low, high);
599
if (idx - low < high - idx) {
600
HUF_simpleQuickSort(arr, low, idx - 1);
601
low = idx + 1;
602
} else {
603
HUF_simpleQuickSort(arr, idx + 1, high);
604
high = idx - 1;
605
}
606
}
607
}
608
609
/**
610
* HUF_sort():
611
* Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order.
612
* This is a typical bucket sorting strategy that uses either quicksort or insertion sort to sort each bucket.
613
*
614
* @param[out] huffNode Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled.
615
* Must have (maxSymbolValue + 1) entries.
616
* @param[in] count Histogram of the symbols.
617
* @param[in] maxSymbolValue Maximum symbol value.
618
* @param rankPosition This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries.
619
*/
620
static void HUF_sort(nodeElt huffNode[], const unsigned count[], U32 const maxSymbolValue, rankPos rankPosition[]) {
621
U32 n;
622
U32 const maxSymbolValue1 = maxSymbolValue+1;
623
624
/* Compute base and set curr to base.
625
* For symbol s let lowerRank = HUF_getIndex(count[n]) and rank = lowerRank + 1.
626
* See HUF_getIndex to see bucketing strategy.
627
* We attribute each symbol to lowerRank's base value, because we want to know where
628
* each rank begins in the output, so for rank R we want to count ranks R+1 and above.
629
*/
630
ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE);
631
for (n = 0; n < maxSymbolValue1; ++n) {
632
U32 lowerRank = HUF_getIndex(count[n]);
633
assert(lowerRank < RANK_POSITION_TABLE_SIZE - 1);
634
rankPosition[lowerRank].base++;
635
}
636
637
assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0);
638
/* Set up the rankPosition table */
639
for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) {
640
rankPosition[n-1].base += rankPosition[n].base;
641
rankPosition[n-1].curr = rankPosition[n-1].base;
642
}
643
644
/* Insert each symbol into their appropriate bucket, setting up rankPosition table. */
645
for (n = 0; n < maxSymbolValue1; ++n) {
646
U32 const c = count[n];
647
U32 const r = HUF_getIndex(c) + 1;
648
U32 const pos = rankPosition[r].curr++;
649
assert(pos < maxSymbolValue1);
650
huffNode[pos].count = c;
651
huffNode[pos].byte = (BYTE)n;
652
}
653
654
/* Sort each bucket. */
655
for (n = RANK_POSITION_DISTINCT_COUNT_CUTOFF; n < RANK_POSITION_TABLE_SIZE - 1; ++n) {
656
int const bucketSize = rankPosition[n].curr - rankPosition[n].base;
657
U32 const bucketStartIdx = rankPosition[n].base;
658
if (bucketSize > 1) {
659
assert(bucketStartIdx < maxSymbolValue1);
660
HUF_simpleQuickSort(huffNode + bucketStartIdx, 0, bucketSize-1);
661
}
662
}
663
664
assert(HUF_isSorted(huffNode, maxSymbolValue1));
665
}
666
667
668
/** HUF_buildCTable_wksp() :
669
* Same as HUF_buildCTable(), but using externally allocated scratch buffer.
670
* `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables).
671
*/
672
#define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
673
674
/* HUF_buildTree():
675
* Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree.
676
*
677
* @param huffNode The array sorted by HUF_sort(). Builds the Huffman tree in this array.
678
* @param maxSymbolValue The maximum symbol value.
679
* @return The smallest node in the Huffman tree (by count).
680
*/
681
static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue)
682
{
683
nodeElt* const huffNode0 = huffNode - 1;
684
int nonNullRank;
685
int lowS, lowN;
686
int nodeNb = STARTNODE;
687
int n, nodeRoot;
688
DEBUGLOG(5, "HUF_buildTree (alphabet size = %u)", maxSymbolValue + 1);
689
/* init for parents */
690
nonNullRank = (int)maxSymbolValue;
691
while(huffNode[nonNullRank].count == 0) nonNullRank--;
692
lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
693
huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
694
huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb;
695
nodeNb++; lowS-=2;
696
for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
697
huffNode0[0].count = (U32)(1U<<31); /* fake entry, strong barrier */
698
699
/* create parents */
700
while (nodeNb <= nodeRoot) {
701
int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
702
int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
703
huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
704
huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb;
705
nodeNb++;
706
}
707
708
/* distribute weights (unlimited tree height) */
709
huffNode[nodeRoot].nbBits = 0;
710
for (n=nodeRoot-1; n>=STARTNODE; n--)
711
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
712
for (n=0; n<=nonNullRank; n++)
713
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
714
715
DEBUGLOG(6, "Initial distribution of bits completed (%zu sorted symbols)", showHNodeBits(huffNode, maxSymbolValue+1));
716
717
return nonNullRank;
718
}
719
720
/**
721
* HUF_buildCTableFromTree():
722
* Build the CTable given the Huffman tree in huffNode.
723
*
724
* @param[out] CTable The output Huffman CTable.
725
* @param huffNode The Huffman tree.
726
* @param nonNullRank The last and smallest node in the Huffman tree.
727
* @param maxSymbolValue The maximum symbol value.
728
* @param maxNbBits The exact maximum number of bits used in the Huffman tree.
729
*/
730
static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits)
731
{
732
HUF_CElt* const ct = CTable + 1;
733
/* fill result into ctable (val, nbBits) */
734
int n;
735
U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
736
U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
737
int const alphabetSize = (int)(maxSymbolValue + 1);
738
for (n=0; n<=nonNullRank; n++)
739
nbPerRank[huffNode[n].nbBits]++;
740
/* determine starting value per rank */
741
{ U16 min = 0;
742
for (n=(int)maxNbBits; n>0; n--) {
743
valPerRank[n] = min; /* get starting value within each rank */
744
min += nbPerRank[n];
745
min >>= 1;
746
} }
747
for (n=0; n<alphabetSize; n++)
748
HUF_setNbBits(ct + huffNode[n].byte, huffNode[n].nbBits); /* push nbBits per symbol, symbol order */
749
for (n=0; n<alphabetSize; n++)
750
HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); /* assign value within rank, symbol order */
751
752
HUF_writeCTableHeader(CTable, maxNbBits, maxSymbolValue);
753
}
754
755
size_t
756
HUF_buildCTable_wksp(HUF_CElt* CTable, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits,
757
void* workSpace, size_t wkspSize)
758
{
759
HUF_buildCTable_wksp_tables* const wksp_tables =
760
(HUF_buildCTable_wksp_tables*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(U32));
761
nodeElt* const huffNode0 = wksp_tables->huffNodeTbl;
762
nodeElt* const huffNode = huffNode0+1;
763
int nonNullRank;
764
765
HUF_STATIC_ASSERT(HUF_CTABLE_WORKSPACE_SIZE == sizeof(HUF_buildCTable_wksp_tables));
766
767
DEBUGLOG(5, "HUF_buildCTable_wksp (alphabet size = %u)", maxSymbolValue+1);
768
769
/* safety checks */
770
if (wkspSize < sizeof(HUF_buildCTable_wksp_tables))
771
return ERROR(workSpace_tooSmall);
772
if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
773
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
774
return ERROR(maxSymbolValue_tooLarge);
775
ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable));
776
777
/* sort, decreasing order */
778
HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition);
779
DEBUGLOG(6, "sorted symbols completed (%zu symbols)", showHNodeSymbols(huffNode, maxSymbolValue+1));
780
781
/* build tree */
782
nonNullRank = HUF_buildTree(huffNode, maxSymbolValue);
783
784
/* determine and enforce maxTableLog */
785
maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits);
786
if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC); /* check fit into table */
787
788
HUF_buildCTableFromTree(CTable, huffNode, nonNullRank, maxSymbolValue, maxNbBits);
789
790
return maxNbBits;
791
}
792
793
size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
794
{
795
HUF_CElt const* ct = CTable + 1;
796
size_t nbBits = 0;
797
int s;
798
for (s = 0; s <= (int)maxSymbolValue; ++s) {
799
nbBits += HUF_getNbBits(ct[s]) * count[s];
800
}
801
return nbBits >> 3;
802
}
803
804
int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
805
HUF_CTableHeader header = HUF_readCTableHeader(CTable);
806
HUF_CElt const* ct = CTable + 1;
807
int bad = 0;
808
int s;
809
810
assert(header.tableLog <= HUF_TABLELOG_ABSOLUTEMAX);
811
812
if (header.maxSymbolValue < maxSymbolValue)
813
return 0;
814
815
for (s = 0; s <= (int)maxSymbolValue; ++s) {
816
bad |= (count[s] != 0) & (HUF_getNbBits(ct[s]) == 0);
817
}
818
return !bad;
819
}
820
821
size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
822
823
/** HUF_CStream_t:
824
* Huffman uses its own BIT_CStream_t implementation.
825
* There are three major differences from BIT_CStream_t:
826
* 1. HUF_addBits() takes a HUF_CElt (size_t) which is
827
* the pair (nbBits, value) in the format:
828
* format:
829
* - Bits [0, 4) = nbBits
830
* - Bits [4, 64 - nbBits) = 0
831
* - Bits [64 - nbBits, 64) = value
832
* 2. The bitContainer is built from the upper bits and
833
* right shifted. E.g. to add a new value of N bits
834
* you right shift the bitContainer by N, then or in
835
* the new value into the N upper bits.
836
* 3. The bitstream has two bit containers. You can add
837
* bits to the second container and merge them into
838
* the first container.
839
*/
840
841
#define HUF_BITS_IN_CONTAINER (sizeof(size_t) * 8)
842
843
typedef struct {
844
size_t bitContainer[2];
845
size_t bitPos[2];
846
847
BYTE* startPtr;
848
BYTE* ptr;
849
BYTE* endPtr;
850
} HUF_CStream_t;
851
852
/**! HUF_initCStream():
853
* Initializes the bitstream.
854
* @returns 0 or an error code.
855
*/
856
static size_t HUF_initCStream(HUF_CStream_t* bitC,
857
void* startPtr, size_t dstCapacity)
858
{
859
ZSTD_memset(bitC, 0, sizeof(*bitC));
860
bitC->startPtr = (BYTE*)startPtr;
861
bitC->ptr = bitC->startPtr;
862
bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer[0]);
863
if (dstCapacity <= sizeof(bitC->bitContainer[0])) return ERROR(dstSize_tooSmall);
864
return 0;
865
}
866
867
/*! HUF_addBits():
868
* Adds the symbol stored in HUF_CElt elt to the bitstream.
869
*
870
* @param elt The element we're adding. This is a (nbBits, value) pair.
871
* See the HUF_CStream_t docs for the format.
872
* @param idx Insert into the bitstream at this idx.
873
* @param kFast This is a template parameter. If the bitstream is guaranteed
874
* to have at least 4 unused bits after this call it may be 1,
875
* otherwise it must be 0. HUF_addBits() is faster when fast is set.
876
*/
877
FORCE_INLINE_TEMPLATE void HUF_addBits(HUF_CStream_t* bitC, HUF_CElt elt, int idx, int kFast)
878
{
879
assert(idx <= 1);
880
assert(HUF_getNbBits(elt) <= HUF_TABLELOG_ABSOLUTEMAX);
881
/* This is efficient on x86-64 with BMI2 because shrx
882
* only reads the low 6 bits of the register. The compiler
883
* knows this and elides the mask. When fast is set,
884
* every operation can use the same value loaded from elt.
885
*/
886
bitC->bitContainer[idx] >>= HUF_getNbBits(elt);
887
bitC->bitContainer[idx] |= kFast ? HUF_getValueFast(elt) : HUF_getValue(elt);
888
/* We only read the low 8 bits of bitC->bitPos[idx] so it
889
* doesn't matter that the high bits have noise from the value.
890
*/
891
bitC->bitPos[idx] += HUF_getNbBitsFast(elt);
892
assert((bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
893
/* The last 4-bits of elt are dirty if fast is set,
894
* so we must not be overwriting bits that have already been
895
* inserted into the bit container.
896
*/
897
#if DEBUGLEVEL >= 1
898
{
899
size_t const nbBits = HUF_getNbBits(elt);
900
size_t const dirtyBits = nbBits == 0 ? 0 : ZSTD_highbit32((U32)nbBits) + 1;
901
(void)dirtyBits;
902
/* Middle bits are 0. */
903
assert(((elt >> dirtyBits) << (dirtyBits + nbBits)) == 0);
904
/* We didn't overwrite any bits in the bit container. */
905
assert(!kFast || (bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
906
(void)dirtyBits;
907
}
908
#endif
909
}
910
911
FORCE_INLINE_TEMPLATE void HUF_zeroIndex1(HUF_CStream_t* bitC)
912
{
913
bitC->bitContainer[1] = 0;
914
bitC->bitPos[1] = 0;
915
}
916
917
/*! HUF_mergeIndex1() :
918
* Merges the bit container @ index 1 into the bit container @ index 0
919
* and zeros the bit container @ index 1.
920
*/
921
FORCE_INLINE_TEMPLATE void HUF_mergeIndex1(HUF_CStream_t* bitC)
922
{
923
assert((bitC->bitPos[1] & 0xFF) < HUF_BITS_IN_CONTAINER);
924
bitC->bitContainer[0] >>= (bitC->bitPos[1] & 0xFF);
925
bitC->bitContainer[0] |= bitC->bitContainer[1];
926
bitC->bitPos[0] += bitC->bitPos[1];
927
assert((bitC->bitPos[0] & 0xFF) <= HUF_BITS_IN_CONTAINER);
928
}
929
930
/*! HUF_flushBits() :
931
* Flushes the bits in the bit container @ index 0.
932
*
933
* @post bitPos will be < 8.
934
* @param kFast If kFast is set then we must know a-priori that
935
* the bit container will not overflow.
936
*/
937
FORCE_INLINE_TEMPLATE void HUF_flushBits(HUF_CStream_t* bitC, int kFast)
938
{
939
/* The upper bits of bitPos are noisy, so we must mask by 0xFF. */
940
size_t const nbBits = bitC->bitPos[0] & 0xFF;
941
size_t const nbBytes = nbBits >> 3;
942
/* The top nbBits bits of bitContainer are the ones we need. */
943
size_t const bitContainer = bitC->bitContainer[0] >> (HUF_BITS_IN_CONTAINER - nbBits);
944
/* Mask bitPos to account for the bytes we consumed. */
945
bitC->bitPos[0] &= 7;
946
assert(nbBits > 0);
947
assert(nbBits <= sizeof(bitC->bitContainer[0]) * 8);
948
assert(bitC->ptr <= bitC->endPtr);
949
MEM_writeLEST(bitC->ptr, bitContainer);
950
bitC->ptr += nbBytes;
951
assert(!kFast || bitC->ptr <= bitC->endPtr);
952
if (!kFast && bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
953
/* bitContainer doesn't need to be modified because the leftover
954
* bits are already the top bitPos bits. And we don't care about
955
* noise in the lower values.
956
*/
957
}
958
959
/*! HUF_endMark()
960
* @returns The Huffman stream end mark: A 1-bit value = 1.
961
*/
962
static HUF_CElt HUF_endMark(void)
963
{
964
HUF_CElt endMark;
965
HUF_setNbBits(&endMark, 1);
966
HUF_setValue(&endMark, 1);
967
return endMark;
968
}
969
970
/*! HUF_closeCStream() :
971
* @return Size of CStream, in bytes,
972
* or 0 if it could not fit into dstBuffer */
973
static size_t HUF_closeCStream(HUF_CStream_t* bitC)
974
{
975
HUF_addBits(bitC, HUF_endMark(), /* idx */ 0, /* kFast */ 0);
976
HUF_flushBits(bitC, /* kFast */ 0);
977
{
978
size_t const nbBits = bitC->bitPos[0] & 0xFF;
979
if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
980
return (size_t)(bitC->ptr - bitC->startPtr) + (nbBits > 0);
981
}
982
}
983
984
FORCE_INLINE_TEMPLATE void
985
HUF_encodeSymbol(HUF_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable, int idx, int fast)
986
{
987
HUF_addBits(bitCPtr, CTable[symbol], idx, fast);
988
}
989
990
FORCE_INLINE_TEMPLATE void
991
HUF_compress1X_usingCTable_internal_body_loop(HUF_CStream_t* bitC,
992
const BYTE* ip, size_t srcSize,
993
const HUF_CElt* ct,
994
int kUnroll, int kFastFlush, int kLastFast)
995
{
996
/* Join to kUnroll */
997
int n = (int)srcSize;
998
int rem = n % kUnroll;
999
if (rem > 0) {
1000
for (; rem > 0; --rem) {
1001
HUF_encodeSymbol(bitC, ip[--n], ct, 0, /* fast */ 0);
1002
}
1003
HUF_flushBits(bitC, kFastFlush);
1004
}
1005
assert(n % kUnroll == 0);
1006
1007
/* Join to 2 * kUnroll */
1008
if (n % (2 * kUnroll)) {
1009
int u;
1010
for (u = 1; u < kUnroll; ++u) {
1011
HUF_encodeSymbol(bitC, ip[n - u], ct, 0, 1);
1012
}
1013
HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, 0, kLastFast);
1014
HUF_flushBits(bitC, kFastFlush);
1015
n -= kUnroll;
1016
}
1017
assert(n % (2 * kUnroll) == 0);
1018
1019
for (; n>0; n-= 2 * kUnroll) {
1020
/* Encode kUnroll symbols into the bitstream @ index 0. */
1021
int u;
1022
for (u = 1; u < kUnroll; ++u) {
1023
HUF_encodeSymbol(bitC, ip[n - u], ct, /* idx */ 0, /* fast */ 1);
1024
}
1025
HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, /* idx */ 0, /* fast */ kLastFast);
1026
HUF_flushBits(bitC, kFastFlush);
1027
/* Encode kUnroll symbols into the bitstream @ index 1.
1028
* This allows us to start filling the bit container
1029
* without any data dependencies.
1030
*/
1031
HUF_zeroIndex1(bitC);
1032
for (u = 1; u < kUnroll; ++u) {
1033
HUF_encodeSymbol(bitC, ip[n - kUnroll - u], ct, /* idx */ 1, /* fast */ 1);
1034
}
1035
HUF_encodeSymbol(bitC, ip[n - kUnroll - kUnroll], ct, /* idx */ 1, /* fast */ kLastFast);
1036
/* Merge bitstream @ index 1 into the bitstream @ index 0 */
1037
HUF_mergeIndex1(bitC);
1038
HUF_flushBits(bitC, kFastFlush);
1039
}
1040
assert(n == 0);
1041
1042
}
1043
1044
/**
1045
* Returns a tight upper bound on the output space needed by Huffman
1046
* with 8 bytes buffer to handle over-writes. If the output is at least
1047
* this large we don't need to do bounds checks during Huffman encoding.
1048
*/
1049
static size_t HUF_tightCompressBound(size_t srcSize, size_t tableLog)
1050
{
1051
return ((srcSize * tableLog) >> 3) + 8;
1052
}
1053
1054
1055
FORCE_INLINE_TEMPLATE size_t
1056
HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
1057
const void* src, size_t srcSize,
1058
const HUF_CElt* CTable)
1059
{
1060
U32 const tableLog = HUF_readCTableHeader(CTable).tableLog;
1061
HUF_CElt const* ct = CTable + 1;
1062
const BYTE* ip = (const BYTE*) src;
1063
BYTE* const ostart = (BYTE*)dst;
1064
BYTE* const oend = ostart + dstSize;
1065
HUF_CStream_t bitC;
1066
1067
/* init */
1068
if (dstSize < 8) return 0; /* not enough space to compress */
1069
{ BYTE* op = ostart;
1070
size_t const initErr = HUF_initCStream(&bitC, op, (size_t)(oend-op));
1071
if (HUF_isError(initErr)) return 0; }
1072
1073
if (dstSize < HUF_tightCompressBound(srcSize, (size_t)tableLog) || tableLog > 11)
1074
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ MEM_32bits() ? 2 : 4, /* kFast */ 0, /* kLastFast */ 0);
1075
else {
1076
if (MEM_32bits()) {
1077
switch (tableLog) {
1078
case 11:
1079
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 0);
1080
break;
1081
case 10: ZSTD_FALLTHROUGH;
1082
case 9: ZSTD_FALLTHROUGH;
1083
case 8:
1084
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 1);
1085
break;
1086
case 7: ZSTD_FALLTHROUGH;
1087
default:
1088
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 3, /* kFastFlush */ 1, /* kLastFast */ 1);
1089
break;
1090
}
1091
} else {
1092
switch (tableLog) {
1093
case 11:
1094
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 0);
1095
break;
1096
case 10:
1097
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 1);
1098
break;
1099
case 9:
1100
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 6, /* kFastFlush */ 1, /* kLastFast */ 0);
1101
break;
1102
case 8:
1103
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 7, /* kFastFlush */ 1, /* kLastFast */ 0);
1104
break;
1105
case 7:
1106
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 8, /* kFastFlush */ 1, /* kLastFast */ 0);
1107
break;
1108
case 6: ZSTD_FALLTHROUGH;
1109
default:
1110
HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 9, /* kFastFlush */ 1, /* kLastFast */ 1);
1111
break;
1112
}
1113
}
1114
}
1115
assert(bitC.ptr <= bitC.endPtr);
1116
1117
return HUF_closeCStream(&bitC);
1118
}
1119
1120
#if DYNAMIC_BMI2
1121
1122
static BMI2_TARGET_ATTRIBUTE size_t
1123
HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
1124
const void* src, size_t srcSize,
1125
const HUF_CElt* CTable)
1126
{
1127
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
1128
}
1129
1130
static size_t
1131
HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
1132
const void* src, size_t srcSize,
1133
const HUF_CElt* CTable)
1134
{
1135
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
1136
}
1137
1138
static size_t
1139
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
1140
const void* src, size_t srcSize,
1141
const HUF_CElt* CTable, const int flags)
1142
{
1143
if (flags & HUF_flags_bmi2) {
1144
return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
1145
}
1146
return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
1147
}
1148
1149
#else
1150
1151
static size_t
1152
HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
1153
const void* src, size_t srcSize,
1154
const HUF_CElt* CTable, const int flags)
1155
{
1156
(void)flags;
1157
return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
1158
}
1159
1160
#endif
1161
1162
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int flags)
1163
{
1164
return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, flags);
1165
}
1166
1167
static size_t
1168
HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
1169
const void* src, size_t srcSize,
1170
const HUF_CElt* CTable, int flags)
1171
{
1172
size_t const segmentSize = (srcSize+3)/4; /* first 3 segments */
1173
const BYTE* ip = (const BYTE*) src;
1174
const BYTE* const iend = ip + srcSize;
1175
BYTE* const ostart = (BYTE*) dst;
1176
BYTE* const oend = ostart + dstSize;
1177
BYTE* op = ostart;
1178
1179
if (dstSize < 6 + 1 + 1 + 1 + 8) return 0; /* minimum space to compress successfully */
1180
if (srcSize < 12) return 0; /* no saving possible : too small input */
1181
op += 6; /* jumpTable */
1182
1183
assert(op <= oend);
1184
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, flags) );
1185
if (cSize == 0 || cSize > 65535) return 0;
1186
MEM_writeLE16(ostart, (U16)cSize);
1187
op += cSize;
1188
}
1189
1190
ip += segmentSize;
1191
assert(op <= oend);
1192
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, flags) );
1193
if (cSize == 0 || cSize > 65535) return 0;
1194
MEM_writeLE16(ostart+2, (U16)cSize);
1195
op += cSize;
1196
}
1197
1198
ip += segmentSize;
1199
assert(op <= oend);
1200
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, flags) );
1201
if (cSize == 0 || cSize > 65535) return 0;
1202
MEM_writeLE16(ostart+4, (U16)cSize);
1203
op += cSize;
1204
}
1205
1206
ip += segmentSize;
1207
assert(op <= oend);
1208
assert(ip <= iend);
1209
{ CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, flags) );
1210
if (cSize == 0 || cSize > 65535) return 0;
1211
op += cSize;
1212
}
1213
1214
return (size_t)(op-ostart);
1215
}
1216
1217
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int flags)
1218
{
1219
return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, flags);
1220
}
1221
1222
typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;
1223
1224
static size_t HUF_compressCTable_internal(
1225
BYTE* const ostart, BYTE* op, BYTE* const oend,
1226
const void* src, size_t srcSize,
1227
HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int flags)
1228
{
1229
size_t const cSize = (nbStreams==HUF_singleStream) ?
1230
HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, flags) :
1231
HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, flags);
1232
if (HUF_isError(cSize)) { return cSize; }
1233
if (cSize==0) { return 0; } /* uncompressible */
1234
op += cSize;
1235
/* check compressibility */
1236
assert(op >= ostart);
1237
if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
1238
return (size_t)(op-ostart);
1239
}
1240
1241
typedef struct {
1242
unsigned count[HUF_SYMBOLVALUE_MAX + 1];
1243
HUF_CElt CTable[HUF_CTABLE_SIZE_ST(HUF_SYMBOLVALUE_MAX)];
1244
union {
1245
HUF_buildCTable_wksp_tables buildCTable_wksp;
1246
HUF_WriteCTableWksp writeCTable_wksp;
1247
U32 hist_wksp[HIST_WKSP_SIZE_U32];
1248
} wksps;
1249
} HUF_compress_tables_t;
1250
1251
#define SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE 4096
1252
#define SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO 10 /* Must be >= 2 */
1253
1254
unsigned HUF_cardinality(const unsigned* count, unsigned maxSymbolValue)
1255
{
1256
unsigned cardinality = 0;
1257
unsigned i;
1258
1259
for (i = 0; i < maxSymbolValue + 1; i++) {
1260
if (count[i] != 0) cardinality += 1;
1261
}
1262
1263
return cardinality;
1264
}
1265
1266
unsigned HUF_minTableLog(unsigned symbolCardinality)
1267
{
1268
U32 minBitsSymbols = ZSTD_highbit32(symbolCardinality) + 1;
1269
return minBitsSymbols;
1270
}
1271
1272
unsigned HUF_optimalTableLog(
1273
unsigned maxTableLog,
1274
size_t srcSize,
1275
unsigned maxSymbolValue,
1276
void* workSpace, size_t wkspSize,
1277
HUF_CElt* table,
1278
const unsigned* count,
1279
int flags)
1280
{
1281
assert(srcSize > 1); /* Not supported, RLE should be used instead */
1282
assert(wkspSize >= sizeof(HUF_buildCTable_wksp_tables));
1283
1284
if (!(flags & HUF_flags_optimalDepth)) {
1285
/* cheap evaluation, based on FSE */
1286
return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
1287
}
1288
1289
{ BYTE* dst = (BYTE*)workSpace + sizeof(HUF_WriteCTableWksp);
1290
size_t dstSize = wkspSize - sizeof(HUF_WriteCTableWksp);
1291
size_t hSize, newSize;
1292
const unsigned symbolCardinality = HUF_cardinality(count, maxSymbolValue);
1293
const unsigned minTableLog = HUF_minTableLog(symbolCardinality);
1294
size_t optSize = ((size_t) ~0) - 1;
1295
unsigned optLog = maxTableLog, optLogGuess;
1296
1297
DEBUGLOG(6, "HUF_optimalTableLog: probing huf depth (srcSize=%zu)", srcSize);
1298
1299
/* Search until size increases */
1300
for (optLogGuess = minTableLog; optLogGuess <= maxTableLog; optLogGuess++) {
1301
DEBUGLOG(7, "checking for huffLog=%u", optLogGuess);
1302
1303
{ size_t maxBits = HUF_buildCTable_wksp(table, count, maxSymbolValue, optLogGuess, workSpace, wkspSize);
1304
if (ERR_isError(maxBits)) continue;
1305
1306
if (maxBits < optLogGuess && optLogGuess > minTableLog) break;
1307
1308
hSize = HUF_writeCTable_wksp(dst, dstSize, table, maxSymbolValue, (U32)maxBits, workSpace, wkspSize);
1309
}
1310
1311
if (ERR_isError(hSize)) continue;
1312
1313
newSize = HUF_estimateCompressedSize(table, count, maxSymbolValue) + hSize;
1314
1315
if (newSize > optSize + 1) {
1316
break;
1317
}
1318
1319
if (newSize < optSize) {
1320
optSize = newSize;
1321
optLog = optLogGuess;
1322
}
1323
}
1324
assert(optLog <= HUF_TABLELOG_MAX);
1325
return optLog;
1326
}
1327
}
1328
1329
/* HUF_compress_internal() :
1330
* `workSpace_align4` must be aligned on 4-bytes boundaries,
1331
* and occupies the same space as a table of HUF_WORKSPACE_SIZE_U64 unsigned */
1332
static size_t
1333
HUF_compress_internal (void* dst, size_t dstSize,
1334
const void* src, size_t srcSize,
1335
unsigned maxSymbolValue, unsigned huffLog,
1336
HUF_nbStreams_e nbStreams,
1337
void* workSpace, size_t wkspSize,
1338
HUF_CElt* oldHufTable, HUF_repeat* repeat, int flags)
1339
{
1340
HUF_compress_tables_t* const table = (HUF_compress_tables_t*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(size_t));
1341
BYTE* const ostart = (BYTE*)dst;
1342
BYTE* const oend = ostart + dstSize;
1343
BYTE* op = ostart;
1344
1345
DEBUGLOG(5, "HUF_compress_internal (srcSize=%zu)", srcSize);
1346
HUF_STATIC_ASSERT(sizeof(*table) + HUF_WORKSPACE_MAX_ALIGNMENT <= HUF_WORKSPACE_SIZE);
1347
1348
/* checks & inits */
1349
if (wkspSize < sizeof(*table)) return ERROR(workSpace_tooSmall);
1350
if (!srcSize) return 0; /* Uncompressed */
1351
if (!dstSize) return 0; /* cannot fit anything within dst budget */
1352
if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong); /* current block size limit */
1353
if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
1354
if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
1355
if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
1356
if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
1357
1358
/* Heuristic : If old table is valid, use it for small inputs */
1359
if ((flags & HUF_flags_preferRepeat) && repeat && *repeat == HUF_repeat_valid) {
1360
return HUF_compressCTable_internal(ostart, op, oend,
1361
src, srcSize,
1362
nbStreams, oldHufTable, flags);
1363
}
1364
1365
/* If uncompressible data is suspected, do a smaller sampling first */
1366
DEBUG_STATIC_ASSERT(SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO >= 2);
1367
if ((flags & HUF_flags_suspectUncompressible) && srcSize >= (SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE * SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO)) {
1368
size_t largestTotal = 0;
1369
DEBUGLOG(5, "input suspected incompressible : sampling to check");
1370
{ unsigned maxSymbolValueBegin = maxSymbolValue;
1371
CHECK_V_F(largestBegin, HIST_count_simple (table->count, &maxSymbolValueBegin, (const BYTE*)src, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
1372
largestTotal += largestBegin;
1373
}
1374
{ unsigned maxSymbolValueEnd = maxSymbolValue;
1375
CHECK_V_F(largestEnd, HIST_count_simple (table->count, &maxSymbolValueEnd, (const BYTE*)src + srcSize - SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
1376
largestTotal += largestEnd;
1377
}
1378
if (largestTotal <= ((2 * SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) >> 7)+4) return 0; /* heuristic : probably not compressible enough */
1379
}
1380
1381
/* Scan input and build symbol stats */
1382
{ CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, table->wksps.hist_wksp, sizeof(table->wksps.hist_wksp)) );
1383
if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; } /* single symbol, rle */
1384
if (largest <= (srcSize >> 7)+4) return 0; /* heuristic : probably not compressible enough */
1385
}
1386
DEBUGLOG(6, "histogram detail completed (%zu symbols)", showU32(table->count, maxSymbolValue+1));
1387
1388
/* Check validity of previous table */
1389
if ( repeat
1390
&& *repeat == HUF_repeat_check
1391
&& !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
1392
*repeat = HUF_repeat_none;
1393
}
1394
/* Heuristic : use existing table for small inputs */
1395
if ((flags & HUF_flags_preferRepeat) && repeat && *repeat != HUF_repeat_none) {
1396
return HUF_compressCTable_internal(ostart, op, oend,
1397
src, srcSize,
1398
nbStreams, oldHufTable, flags);
1399
}
1400
1401
/* Build Huffman Tree */
1402
huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue, &table->wksps, sizeof(table->wksps), table->CTable, table->count, flags);
1403
{ size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count,
1404
maxSymbolValue, huffLog,
1405
&table->wksps.buildCTable_wksp, sizeof(table->wksps.buildCTable_wksp));
1406
CHECK_F(maxBits);
1407
huffLog = (U32)maxBits;
1408
DEBUGLOG(6, "bit distribution completed (%zu symbols)", showCTableBits(table->CTable + 1, maxSymbolValue+1));
1409
}
1410
1411
/* Write table description header */
1412
{ CHECK_V_F(hSize, HUF_writeCTable_wksp(op, dstSize, table->CTable, maxSymbolValue, huffLog,
1413
&table->wksps.writeCTable_wksp, sizeof(table->wksps.writeCTable_wksp)) );
1414
/* Check if using previous huffman table is beneficial */
1415
if (repeat && *repeat != HUF_repeat_none) {
1416
size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
1417
size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
1418
if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
1419
return HUF_compressCTable_internal(ostart, op, oend,
1420
src, srcSize,
1421
nbStreams, oldHufTable, flags);
1422
} }
1423
1424
/* Use the new huffman table */
1425
if (hSize + 12ul >= srcSize) { return 0; }
1426
op += hSize;
1427
if (repeat) { *repeat = HUF_repeat_none; }
1428
if (oldHufTable)
1429
ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable)); /* Save new table */
1430
}
1431
return HUF_compressCTable_internal(ostart, op, oend,
1432
src, srcSize,
1433
nbStreams, table->CTable, flags);
1434
}
1435
1436
size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
1437
const void* src, size_t srcSize,
1438
unsigned maxSymbolValue, unsigned huffLog,
1439
void* workSpace, size_t wkspSize,
1440
HUF_CElt* hufTable, HUF_repeat* repeat, int flags)
1441
{
1442
DEBUGLOG(5, "HUF_compress1X_repeat (srcSize = %zu)", srcSize);
1443
return HUF_compress_internal(dst, dstSize, src, srcSize,
1444
maxSymbolValue, huffLog, HUF_singleStream,
1445
workSpace, wkspSize, hufTable,
1446
repeat, flags);
1447
}
1448
1449
/* HUF_compress4X_repeat():
1450
* compress input using 4 streams.
1451
* consider skipping quickly
1452
* reuse an existing huffman compression table */
1453
size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
1454
const void* src, size_t srcSize,
1455
unsigned maxSymbolValue, unsigned huffLog,
1456
void* workSpace, size_t wkspSize,
1457
HUF_CElt* hufTable, HUF_repeat* repeat, int flags)
1458
{
1459
DEBUGLOG(5, "HUF_compress4X_repeat (srcSize = %zu)", srcSize);
1460
return HUF_compress_internal(dst, dstSize, src, srcSize,
1461
maxSymbolValue, huffLog, HUF_fourStreams,
1462
workSpace, wkspSize,
1463
hufTable, repeat, flags);
1464
}
1465
1466