Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmzstd/lib/compress/zstd_compress_sequences.c
3158 views
1
/*
2
* Copyright (c) Meta Platforms, Inc. and affiliates.
3
* All rights reserved.
4
*
5
* This source code is licensed under both the BSD-style license (found in the
6
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
7
* in the COPYING file in the root directory of this source tree).
8
* You may select, at your option, one of the above-listed licenses.
9
*/
10
11
/*-*************************************
12
* Dependencies
13
***************************************/
14
#include "zstd_compress_sequences.h"
15
16
/**
17
* -log2(x / 256) lookup table for x in [0, 256).
18
* If x == 0: Return 0
19
* Else: Return floor(-log2(x / 256) * 256)
20
*/
21
static unsigned const kInverseProbabilityLog256[256] = {
22
0, 2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162,
23
1130, 1100, 1073, 1047, 1024, 1001, 980, 960, 941, 923, 906, 889,
24
874, 859, 844, 830, 817, 804, 791, 779, 768, 756, 745, 734,
25
724, 714, 704, 694, 685, 676, 667, 658, 650, 642, 633, 626,
26
618, 610, 603, 595, 588, 581, 574, 567, 561, 554, 548, 542,
27
535, 529, 523, 517, 512, 506, 500, 495, 489, 484, 478, 473,
28
468, 463, 458, 453, 448, 443, 438, 434, 429, 424, 420, 415,
29
411, 407, 402, 398, 394, 390, 386, 382, 377, 373, 370, 366,
30
362, 358, 354, 350, 347, 343, 339, 336, 332, 329, 325, 322,
31
318, 315, 311, 308, 305, 302, 298, 295, 292, 289, 286, 282,
32
279, 276, 273, 270, 267, 264, 261, 258, 256, 253, 250, 247,
33
244, 241, 239, 236, 233, 230, 228, 225, 222, 220, 217, 215,
34
212, 209, 207, 204, 202, 199, 197, 194, 192, 190, 187, 185,
35
182, 180, 178, 175, 173, 171, 168, 166, 164, 162, 159, 157,
36
155, 153, 151, 149, 146, 144, 142, 140, 138, 136, 134, 132,
37
130, 128, 126, 123, 121, 119, 117, 115, 114, 112, 110, 108,
38
106, 104, 102, 100, 98, 96, 94, 93, 91, 89, 87, 85,
39
83, 82, 80, 78, 76, 74, 73, 71, 69, 67, 66, 64,
40
62, 61, 59, 57, 55, 54, 52, 50, 49, 47, 46, 44,
41
42, 41, 39, 37, 36, 34, 33, 31, 30, 28, 26, 25,
42
23, 22, 20, 19, 17, 16, 14, 13, 11, 10, 8, 7,
43
5, 4, 2, 1,
44
};
45
46
static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) {
47
void const* ptr = ctable;
48
U16 const* u16ptr = (U16 const*)ptr;
49
U32 const maxSymbolValue = MEM_read16(u16ptr + 1);
50
return maxSymbolValue;
51
}
52
53
/**
54
* Returns true if we should use ncount=-1 else we should
55
* use ncount=1 for low probability symbols instead.
56
*/
57
static unsigned ZSTD_useLowProbCount(size_t const nbSeq)
58
{
59
/* Heuristic: This should cover most blocks <= 16K and
60
* start to fade out after 16K to about 32K depending on
61
* compressibility.
62
*/
63
return nbSeq >= 2048;
64
}
65
66
/**
67
* Returns the cost in bytes of encoding the normalized count header.
68
* Returns an error if any of the helper functions return an error.
69
*/
70
static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max,
71
size_t const nbSeq, unsigned const FSELog)
72
{
73
BYTE wksp[FSE_NCOUNTBOUND];
74
S16 norm[MaxSeq + 1];
75
const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
76
FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max, ZSTD_useLowProbCount(nbSeq)), "");
77
return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog);
78
}
79
80
/**
81
* Returns the cost in bits of encoding the distribution described by count
82
* using the entropy bound.
83
*/
84
static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total)
85
{
86
unsigned cost = 0;
87
unsigned s;
88
89
assert(total > 0);
90
for (s = 0; s <= max; ++s) {
91
unsigned norm = (unsigned)((256 * count[s]) / total);
92
if (count[s] != 0 && norm == 0)
93
norm = 1;
94
assert(count[s] < total);
95
cost += count[s] * kInverseProbabilityLog256[norm];
96
}
97
return cost >> 8;
98
}
99
100
/**
101
* Returns the cost in bits of encoding the distribution in count using ctable.
102
* Returns an error if ctable cannot represent all the symbols in count.
103
*/
104
size_t ZSTD_fseBitCost(
105
FSE_CTable const* ctable,
106
unsigned const* count,
107
unsigned const max)
108
{
109
unsigned const kAccuracyLog = 8;
110
size_t cost = 0;
111
unsigned s;
112
FSE_CState_t cstate;
113
FSE_initCState(&cstate, ctable);
114
if (ZSTD_getFSEMaxSymbolValue(ctable) < max) {
115
DEBUGLOG(5, "Repeat FSE_CTable has maxSymbolValue %u < %u",
116
ZSTD_getFSEMaxSymbolValue(ctable), max);
117
return ERROR(GENERIC);
118
}
119
for (s = 0; s <= max; ++s) {
120
unsigned const tableLog = cstate.stateLog;
121
unsigned const badCost = (tableLog + 1) << kAccuracyLog;
122
unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog);
123
if (count[s] == 0)
124
continue;
125
if (bitCost >= badCost) {
126
DEBUGLOG(5, "Repeat FSE_CTable has Prob[%u] == 0", s);
127
return ERROR(GENERIC);
128
}
129
cost += (size_t)count[s] * bitCost;
130
}
131
return cost >> kAccuracyLog;
132
}
133
134
/**
135
* Returns the cost in bits of encoding the distribution in count using the
136
* table described by norm. The max symbol support by norm is assumed >= max.
137
* norm must be valid for every symbol with non-zero probability in count.
138
*/
139
size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
140
unsigned const* count, unsigned const max)
141
{
142
unsigned const shift = 8 - accuracyLog;
143
size_t cost = 0;
144
unsigned s;
145
assert(accuracyLog <= 8);
146
for (s = 0; s <= max; ++s) {
147
unsigned const normAcc = (norm[s] != -1) ? (unsigned)norm[s] : 1;
148
unsigned const norm256 = normAcc << shift;
149
assert(norm256 > 0);
150
assert(norm256 < 256);
151
cost += count[s] * kInverseProbabilityLog256[norm256];
152
}
153
return cost >> 8;
154
}
155
156
symbolEncodingType_e
157
ZSTD_selectEncodingType(
158
FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
159
size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
160
FSE_CTable const* prevCTable,
161
short const* defaultNorm, U32 defaultNormLog,
162
ZSTD_defaultPolicy_e const isDefaultAllowed,
163
ZSTD_strategy const strategy)
164
{
165
ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0);
166
if (mostFrequent == nbSeq) {
167
*repeatMode = FSE_repeat_none;
168
if (isDefaultAllowed && nbSeq <= 2) {
169
/* Prefer set_basic over set_rle when there are 2 or fewer symbols,
170
* since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
171
* If basic encoding isn't possible, always choose RLE.
172
*/
173
DEBUGLOG(5, "Selected set_basic");
174
return set_basic;
175
}
176
DEBUGLOG(5, "Selected set_rle");
177
return set_rle;
178
}
179
if (strategy < ZSTD_lazy) {
180
if (isDefaultAllowed) {
181
size_t const staticFse_nbSeq_max = 1000;
182
size_t const mult = 10 - strategy;
183
size_t const baseLog = 3;
184
size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog; /* 28-36 for offset, 56-72 for lengths */
185
assert(defaultNormLog >= 5 && defaultNormLog <= 6); /* xx_DEFAULTNORMLOG */
186
assert(mult <= 9 && mult >= 7);
187
if ( (*repeatMode == FSE_repeat_valid)
188
&& (nbSeq < staticFse_nbSeq_max) ) {
189
DEBUGLOG(5, "Selected set_repeat");
190
return set_repeat;
191
}
192
if ( (nbSeq < dynamicFse_nbSeq_min)
193
|| (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) {
194
DEBUGLOG(5, "Selected set_basic");
195
/* The format allows default tables to be repeated, but it isn't useful.
196
* When using simple heuristics to select encoding type, we don't want
197
* to confuse these tables with dictionaries. When running more careful
198
* analysis, we don't need to waste time checking both repeating tables
199
* and default tables.
200
*/
201
*repeatMode = FSE_repeat_none;
202
return set_basic;
203
}
204
}
205
} else {
206
size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC);
207
size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC);
208
size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog);
209
size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq);
210
211
if (isDefaultAllowed) {
212
assert(!ZSTD_isError(basicCost));
213
assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost)));
214
}
215
assert(!ZSTD_isError(NCountCost));
216
assert(compressedCost < ERROR(maxCode));
217
DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u",
218
(unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost);
219
if (basicCost <= repeatCost && basicCost <= compressedCost) {
220
DEBUGLOG(5, "Selected set_basic");
221
assert(isDefaultAllowed);
222
*repeatMode = FSE_repeat_none;
223
return set_basic;
224
}
225
if (repeatCost <= compressedCost) {
226
DEBUGLOG(5, "Selected set_repeat");
227
assert(!ZSTD_isError(repeatCost));
228
return set_repeat;
229
}
230
assert(compressedCost < basicCost && compressedCost < repeatCost);
231
}
232
DEBUGLOG(5, "Selected set_compressed");
233
*repeatMode = FSE_repeat_check;
234
return set_compressed;
235
}
236
237
typedef struct {
238
S16 norm[MaxSeq + 1];
239
U32 wksp[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(MaxSeq, MaxFSELog)];
240
} ZSTD_BuildCTableWksp;
241
242
size_t
243
ZSTD_buildCTable(void* dst, size_t dstCapacity,
244
FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
245
unsigned* count, U32 max,
246
const BYTE* codeTable, size_t nbSeq,
247
const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
248
const FSE_CTable* prevCTable, size_t prevCTableSize,
249
void* entropyWorkspace, size_t entropyWorkspaceSize)
250
{
251
BYTE* op = (BYTE*)dst;
252
const BYTE* const oend = op + dstCapacity;
253
DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity);
254
255
switch (type) {
256
case set_rle:
257
FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max), "");
258
RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall, "not enough space");
259
*op = codeTable[0];
260
return 1;
261
case set_repeat:
262
ZSTD_memcpy(nextCTable, prevCTable, prevCTableSize);
263
return 0;
264
case set_basic:
265
FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, entropyWorkspace, entropyWorkspaceSize), ""); /* note : could be pre-calculated */
266
return 0;
267
case set_compressed: {
268
ZSTD_BuildCTableWksp* wksp = (ZSTD_BuildCTableWksp*)entropyWorkspace;
269
size_t nbSeq_1 = nbSeq;
270
const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
271
if (count[codeTable[nbSeq-1]] > 1) {
272
count[codeTable[nbSeq-1]]--;
273
nbSeq_1--;
274
}
275
assert(nbSeq_1 > 1);
276
assert(entropyWorkspaceSize >= sizeof(ZSTD_BuildCTableWksp));
277
(void)entropyWorkspaceSize;
278
FORWARD_IF_ERROR(FSE_normalizeCount(wksp->norm, tableLog, count, nbSeq_1, max, ZSTD_useLowProbCount(nbSeq_1)), "FSE_normalizeCount failed");
279
assert(oend >= op);
280
{ size_t const NCountSize = FSE_writeNCount(op, (size_t)(oend - op), wksp->norm, max, tableLog); /* overflow protected */
281
FORWARD_IF_ERROR(NCountSize, "FSE_writeNCount failed");
282
FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, wksp->norm, max, tableLog, wksp->wksp, sizeof(wksp->wksp)), "FSE_buildCTable_wksp failed");
283
return NCountSize;
284
}
285
}
286
default: assert(0); RETURN_ERROR(GENERIC, "impossible to reach");
287
}
288
}
289
290
FORCE_INLINE_TEMPLATE size_t
291
ZSTD_encodeSequences_body(
292
void* dst, size_t dstCapacity,
293
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
294
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
295
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
296
seqDef const* sequences, size_t nbSeq, int longOffsets)
297
{
298
BIT_CStream_t blockStream;
299
FSE_CState_t stateMatchLength;
300
FSE_CState_t stateOffsetBits;
301
FSE_CState_t stateLitLength;
302
303
RETURN_ERROR_IF(
304
ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)),
305
dstSize_tooSmall, "not enough space remaining");
306
DEBUGLOG(6, "available space for bitstream : %i (dstCapacity=%u)",
307
(int)(blockStream.endPtr - blockStream.startPtr),
308
(unsigned)dstCapacity);
309
310
/* first symbols */
311
FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
312
FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]);
313
FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]);
314
BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
315
if (MEM_32bits()) BIT_flushBits(&blockStream);
316
BIT_addBits(&blockStream, sequences[nbSeq-1].mlBase, ML_bits[mlCodeTable[nbSeq-1]]);
317
if (MEM_32bits()) BIT_flushBits(&blockStream);
318
if (longOffsets) {
319
U32 const ofBits = ofCodeTable[nbSeq-1];
320
unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
321
if (extraBits) {
322
BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, extraBits);
323
BIT_flushBits(&blockStream);
324
}
325
BIT_addBits(&blockStream, sequences[nbSeq-1].offBase >> extraBits,
326
ofBits - extraBits);
327
} else {
328
BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, ofCodeTable[nbSeq-1]);
329
}
330
BIT_flushBits(&blockStream);
331
332
{ size_t n;
333
for (n=nbSeq-2 ; n<nbSeq ; n--) { /* intentional underflow */
334
BYTE const llCode = llCodeTable[n];
335
BYTE const ofCode = ofCodeTable[n];
336
BYTE const mlCode = mlCodeTable[n];
337
U32 const llBits = LL_bits[llCode];
338
U32 const ofBits = ofCode;
339
U32 const mlBits = ML_bits[mlCode];
340
DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
341
(unsigned)sequences[n].litLength,
342
(unsigned)sequences[n].mlBase + MINMATCH,
343
(unsigned)sequences[n].offBase);
344
/* 32b*/ /* 64b*/
345
/* (7)*/ /* (7)*/
346
FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */
347
FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */
348
if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/
349
FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */
350
if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
351
BIT_flushBits(&blockStream); /* (7)*/
352
BIT_addBits(&blockStream, sequences[n].litLength, llBits);
353
if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
354
BIT_addBits(&blockStream, sequences[n].mlBase, mlBits);
355
if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
356
if (longOffsets) {
357
unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
358
if (extraBits) {
359
BIT_addBits(&blockStream, sequences[n].offBase, extraBits);
360
BIT_flushBits(&blockStream); /* (7)*/
361
}
362
BIT_addBits(&blockStream, sequences[n].offBase >> extraBits,
363
ofBits - extraBits); /* 31 */
364
} else {
365
BIT_addBits(&blockStream, sequences[n].offBase, ofBits); /* 31 */
366
}
367
BIT_flushBits(&blockStream); /* (7)*/
368
DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr));
369
} }
370
371
DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog);
372
FSE_flushCState(&blockStream, &stateMatchLength);
373
DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog);
374
FSE_flushCState(&blockStream, &stateOffsetBits);
375
DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog);
376
FSE_flushCState(&blockStream, &stateLitLength);
377
378
{ size_t const streamSize = BIT_closeCStream(&blockStream);
379
RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space");
380
return streamSize;
381
}
382
}
383
384
static size_t
385
ZSTD_encodeSequences_default(
386
void* dst, size_t dstCapacity,
387
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
388
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
389
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
390
seqDef const* sequences, size_t nbSeq, int longOffsets)
391
{
392
return ZSTD_encodeSequences_body(dst, dstCapacity,
393
CTable_MatchLength, mlCodeTable,
394
CTable_OffsetBits, ofCodeTable,
395
CTable_LitLength, llCodeTable,
396
sequences, nbSeq, longOffsets);
397
}
398
399
400
#if DYNAMIC_BMI2
401
402
static BMI2_TARGET_ATTRIBUTE size_t
403
ZSTD_encodeSequences_bmi2(
404
void* dst, size_t dstCapacity,
405
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
406
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
407
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
408
seqDef const* sequences, size_t nbSeq, int longOffsets)
409
{
410
return ZSTD_encodeSequences_body(dst, dstCapacity,
411
CTable_MatchLength, mlCodeTable,
412
CTable_OffsetBits, ofCodeTable,
413
CTable_LitLength, llCodeTable,
414
sequences, nbSeq, longOffsets);
415
}
416
417
#endif
418
419
size_t ZSTD_encodeSequences(
420
void* dst, size_t dstCapacity,
421
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
422
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
423
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
424
seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2)
425
{
426
DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity);
427
#if DYNAMIC_BMI2
428
if (bmi2) {
429
return ZSTD_encodeSequences_bmi2(dst, dstCapacity,
430
CTable_MatchLength, mlCodeTable,
431
CTable_OffsetBits, ofCodeTable,
432
CTable_LitLength, llCodeTable,
433
sequences, nbSeq, longOffsets);
434
}
435
#endif
436
(void)bmi2;
437
return ZSTD_encodeSequences_default(dst, dstCapacity,
438
CTable_MatchLength, mlCodeTable,
439
CTable_OffsetBits, ofCodeTable,
440
CTable_LitLength, llCodeTable,
441
sequences, nbSeq, longOffsets);
442
}
443
444