Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmzstd/lib/compress/zstd_fast.c
3158 views
1
/*
2
* Copyright (c) Meta Platforms, Inc. and affiliates.
3
* All rights reserved.
4
*
5
* This source code is licensed under both the BSD-style license (found in the
6
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
7
* in the COPYING file in the root directory of this source tree).
8
* You may select, at your option, one of the above-listed licenses.
9
*/
10
11
#include "zstd_compress_internal.h" /* ZSTD_hashPtr, ZSTD_count, ZSTD_storeSeq */
12
#include "zstd_fast.h"
13
14
static void ZSTD_fillHashTableForCDict(ZSTD_matchState_t* ms,
15
const void* const end,
16
ZSTD_dictTableLoadMethod_e dtlm)
17
{
18
const ZSTD_compressionParameters* const cParams = &ms->cParams;
19
U32* const hashTable = ms->hashTable;
20
U32 const hBits = cParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS;
21
U32 const mls = cParams->minMatch;
22
const BYTE* const base = ms->window.base;
23
const BYTE* ip = base + ms->nextToUpdate;
24
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
25
const U32 fastHashFillStep = 3;
26
27
/* Currently, we always use ZSTD_dtlm_full for filling CDict tables.
28
* Feel free to remove this assert if there's a good reason! */
29
assert(dtlm == ZSTD_dtlm_full);
30
31
/* Always insert every fastHashFillStep position into the hash table.
32
* Insert the other positions if their hash entry is empty.
33
*/
34
for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) {
35
U32 const curr = (U32)(ip - base);
36
{ size_t const hashAndTag = ZSTD_hashPtr(ip, hBits, mls);
37
ZSTD_writeTaggedIndex(hashTable, hashAndTag, curr); }
38
39
if (dtlm == ZSTD_dtlm_fast) continue;
40
/* Only load extra positions for ZSTD_dtlm_full */
41
{ U32 p;
42
for (p = 1; p < fastHashFillStep; ++p) {
43
size_t const hashAndTag = ZSTD_hashPtr(ip + p, hBits, mls);
44
if (hashTable[hashAndTag >> ZSTD_SHORT_CACHE_TAG_BITS] == 0) { /* not yet filled */
45
ZSTD_writeTaggedIndex(hashTable, hashAndTag, curr + p);
46
} } } }
47
}
48
49
static void ZSTD_fillHashTableForCCtx(ZSTD_matchState_t* ms,
50
const void* const end,
51
ZSTD_dictTableLoadMethod_e dtlm)
52
{
53
const ZSTD_compressionParameters* const cParams = &ms->cParams;
54
U32* const hashTable = ms->hashTable;
55
U32 const hBits = cParams->hashLog;
56
U32 const mls = cParams->minMatch;
57
const BYTE* const base = ms->window.base;
58
const BYTE* ip = base + ms->nextToUpdate;
59
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
60
const U32 fastHashFillStep = 3;
61
62
/* Currently, we always use ZSTD_dtlm_fast for filling CCtx tables.
63
* Feel free to remove this assert if there's a good reason! */
64
assert(dtlm == ZSTD_dtlm_fast);
65
66
/* Always insert every fastHashFillStep position into the hash table.
67
* Insert the other positions if their hash entry is empty.
68
*/
69
for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) {
70
U32 const curr = (U32)(ip - base);
71
size_t const hash0 = ZSTD_hashPtr(ip, hBits, mls);
72
hashTable[hash0] = curr;
73
if (dtlm == ZSTD_dtlm_fast) continue;
74
/* Only load extra positions for ZSTD_dtlm_full */
75
{ U32 p;
76
for (p = 1; p < fastHashFillStep; ++p) {
77
size_t const hash = ZSTD_hashPtr(ip + p, hBits, mls);
78
if (hashTable[hash] == 0) { /* not yet filled */
79
hashTable[hash] = curr + p;
80
} } } }
81
}
82
83
void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
84
const void* const end,
85
ZSTD_dictTableLoadMethod_e dtlm,
86
ZSTD_tableFillPurpose_e tfp)
87
{
88
if (tfp == ZSTD_tfp_forCDict) {
89
ZSTD_fillHashTableForCDict(ms, end, dtlm);
90
} else {
91
ZSTD_fillHashTableForCCtx(ms, end, dtlm);
92
}
93
}
94
95
96
/**
97
* If you squint hard enough (and ignore repcodes), the search operation at any
98
* given position is broken into 4 stages:
99
*
100
* 1. Hash (map position to hash value via input read)
101
* 2. Lookup (map hash val to index via hashtable read)
102
* 3. Load (map index to value at that position via input read)
103
* 4. Compare
104
*
105
* Each of these steps involves a memory read at an address which is computed
106
* from the previous step. This means these steps must be sequenced and their
107
* latencies are cumulative.
108
*
109
* Rather than do 1->2->3->4 sequentially for a single position before moving
110
* onto the next, this implementation interleaves these operations across the
111
* next few positions:
112
*
113
* R = Repcode Read & Compare
114
* H = Hash
115
* T = Table Lookup
116
* M = Match Read & Compare
117
*
118
* Pos | Time -->
119
* ----+-------------------
120
* N | ... M
121
* N+1 | ... TM
122
* N+2 | R H T M
123
* N+3 | H TM
124
* N+4 | R H T M
125
* N+5 | H ...
126
* N+6 | R ...
127
*
128
* This is very much analogous to the pipelining of execution in a CPU. And just
129
* like a CPU, we have to dump the pipeline when we find a match (i.e., take a
130
* branch).
131
*
132
* When this happens, we throw away our current state, and do the following prep
133
* to re-enter the loop:
134
*
135
* Pos | Time -->
136
* ----+-------------------
137
* N | H T
138
* N+1 | H
139
*
140
* This is also the work we do at the beginning to enter the loop initially.
141
*/
142
FORCE_INLINE_TEMPLATE size_t
143
ZSTD_compressBlock_fast_noDict_generic(
144
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
145
void const* src, size_t srcSize,
146
U32 const mls, U32 const hasStep)
147
{
148
const ZSTD_compressionParameters* const cParams = &ms->cParams;
149
U32* const hashTable = ms->hashTable;
150
U32 const hlog = cParams->hashLog;
151
/* support stepSize of 0 */
152
size_t const stepSize = hasStep ? (cParams->targetLength + !(cParams->targetLength) + 1) : 2;
153
const BYTE* const base = ms->window.base;
154
const BYTE* const istart = (const BYTE*)src;
155
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
156
const U32 prefixStartIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog);
157
const BYTE* const prefixStart = base + prefixStartIndex;
158
const BYTE* const iend = istart + srcSize;
159
const BYTE* const ilimit = iend - HASH_READ_SIZE;
160
161
const BYTE* anchor = istart;
162
const BYTE* ip0 = istart;
163
const BYTE* ip1;
164
const BYTE* ip2;
165
const BYTE* ip3;
166
U32 current0;
167
168
U32 rep_offset1 = rep[0];
169
U32 rep_offset2 = rep[1];
170
U32 offsetSaved1 = 0, offsetSaved2 = 0;
171
172
size_t hash0; /* hash for ip0 */
173
size_t hash1; /* hash for ip1 */
174
U32 idx; /* match idx for ip0 */
175
U32 mval; /* src value at match idx */
176
177
U32 offcode;
178
const BYTE* match0;
179
size_t mLength;
180
181
/* ip0 and ip1 are always adjacent. The targetLength skipping and
182
* uncompressibility acceleration is applied to every other position,
183
* matching the behavior of #1562. step therefore represents the gap
184
* between pairs of positions, from ip0 to ip2 or ip1 to ip3. */
185
size_t step;
186
const BYTE* nextStep;
187
const size_t kStepIncr = (1 << (kSearchStrength - 1));
188
189
DEBUGLOG(5, "ZSTD_compressBlock_fast_generic");
190
ip0 += (ip0 == prefixStart);
191
{ U32 const curr = (U32)(ip0 - base);
192
U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, cParams->windowLog);
193
U32 const maxRep = curr - windowLow;
194
if (rep_offset2 > maxRep) offsetSaved2 = rep_offset2, rep_offset2 = 0;
195
if (rep_offset1 > maxRep) offsetSaved1 = rep_offset1, rep_offset1 = 0;
196
}
197
198
/* start each op */
199
_start: /* Requires: ip0 */
200
201
step = stepSize;
202
nextStep = ip0 + kStepIncr;
203
204
/* calculate positions, ip0 - anchor == 0, so we skip step calc */
205
ip1 = ip0 + 1;
206
ip2 = ip0 + step;
207
ip3 = ip2 + 1;
208
209
if (ip3 >= ilimit) {
210
goto _cleanup;
211
}
212
213
hash0 = ZSTD_hashPtr(ip0, hlog, mls);
214
hash1 = ZSTD_hashPtr(ip1, hlog, mls);
215
216
idx = hashTable[hash0];
217
218
do {
219
/* load repcode match for ip[2]*/
220
const U32 rval = MEM_read32(ip2 - rep_offset1);
221
222
/* write back hash table entry */
223
current0 = (U32)(ip0 - base);
224
hashTable[hash0] = current0;
225
226
/* check repcode at ip[2] */
227
if ((MEM_read32(ip2) == rval) & (rep_offset1 > 0)) {
228
ip0 = ip2;
229
match0 = ip0 - rep_offset1;
230
mLength = ip0[-1] == match0[-1];
231
ip0 -= mLength;
232
match0 -= mLength;
233
offcode = REPCODE1_TO_OFFBASE;
234
mLength += 4;
235
236
/* First write next hash table entry; we've already calculated it.
237
* This write is known to be safe because the ip1 is before the
238
* repcode (ip2). */
239
hashTable[hash1] = (U32)(ip1 - base);
240
241
goto _match;
242
}
243
244
/* load match for ip[0] */
245
if (idx >= prefixStartIndex) {
246
mval = MEM_read32(base + idx);
247
} else {
248
mval = MEM_read32(ip0) ^ 1; /* guaranteed to not match. */
249
}
250
251
/* check match at ip[0] */
252
if (MEM_read32(ip0) == mval) {
253
/* found a match! */
254
255
/* First write next hash table entry; we've already calculated it.
256
* This write is known to be safe because the ip1 == ip0 + 1, so
257
* we know we will resume searching after ip1 */
258
hashTable[hash1] = (U32)(ip1 - base);
259
260
goto _offset;
261
}
262
263
/* lookup ip[1] */
264
idx = hashTable[hash1];
265
266
/* hash ip[2] */
267
hash0 = hash1;
268
hash1 = ZSTD_hashPtr(ip2, hlog, mls);
269
270
/* advance to next positions */
271
ip0 = ip1;
272
ip1 = ip2;
273
ip2 = ip3;
274
275
/* write back hash table entry */
276
current0 = (U32)(ip0 - base);
277
hashTable[hash0] = current0;
278
279
/* load match for ip[0] */
280
if (idx >= prefixStartIndex) {
281
mval = MEM_read32(base + idx);
282
} else {
283
mval = MEM_read32(ip0) ^ 1; /* guaranteed to not match. */
284
}
285
286
/* check match at ip[0] */
287
if (MEM_read32(ip0) == mval) {
288
/* found a match! */
289
290
/* first write next hash table entry; we've already calculated it */
291
if (step <= 4) {
292
/* We need to avoid writing an index into the hash table >= the
293
* position at which we will pick up our searching after we've
294
* taken this match.
295
*
296
* The minimum possible match has length 4, so the earliest ip0
297
* can be after we take this match will be the current ip0 + 4.
298
* ip1 is ip0 + step - 1. If ip1 is >= ip0 + 4, we can't safely
299
* write this position.
300
*/
301
hashTable[hash1] = (U32)(ip1 - base);
302
}
303
304
goto _offset;
305
}
306
307
/* lookup ip[1] */
308
idx = hashTable[hash1];
309
310
/* hash ip[2] */
311
hash0 = hash1;
312
hash1 = ZSTD_hashPtr(ip2, hlog, mls);
313
314
/* advance to next positions */
315
ip0 = ip1;
316
ip1 = ip2;
317
ip2 = ip0 + step;
318
ip3 = ip1 + step;
319
320
/* calculate step */
321
if (ip2 >= nextStep) {
322
step++;
323
PREFETCH_L1(ip1 + 64);
324
PREFETCH_L1(ip1 + 128);
325
nextStep += kStepIncr;
326
}
327
} while (ip3 < ilimit);
328
329
_cleanup:
330
/* Note that there are probably still a couple positions we could search.
331
* However, it seems to be a meaningful performance hit to try to search
332
* them. So let's not. */
333
334
/* When the repcodes are outside of the prefix, we set them to zero before the loop.
335
* When the offsets are still zero, we need to restore them after the block to have a correct
336
* repcode history. If only one offset was invalid, it is easy. The tricky case is when both
337
* offsets were invalid. We need to figure out which offset to refill with.
338
* - If both offsets are zero they are in the same order.
339
* - If both offsets are non-zero, we won't restore the offsets from `offsetSaved[12]`.
340
* - If only one is zero, we need to decide which offset to restore.
341
* - If rep_offset1 is non-zero, then rep_offset2 must be offsetSaved1.
342
* - It is impossible for rep_offset2 to be non-zero.
343
*
344
* So if rep_offset1 started invalid (offsetSaved1 != 0) and became valid (rep_offset1 != 0), then
345
* set rep[0] = rep_offset1 and rep[1] = offsetSaved1.
346
*/
347
offsetSaved2 = ((offsetSaved1 != 0) && (rep_offset1 != 0)) ? offsetSaved1 : offsetSaved2;
348
349
/* save reps for next block */
350
rep[0] = rep_offset1 ? rep_offset1 : offsetSaved1;
351
rep[1] = rep_offset2 ? rep_offset2 : offsetSaved2;
352
353
/* Return the last literals size */
354
return (size_t)(iend - anchor);
355
356
_offset: /* Requires: ip0, idx */
357
358
/* Compute the offset code. */
359
match0 = base + idx;
360
rep_offset2 = rep_offset1;
361
rep_offset1 = (U32)(ip0-match0);
362
offcode = OFFSET_TO_OFFBASE(rep_offset1);
363
mLength = 4;
364
365
/* Count the backwards match length. */
366
while (((ip0>anchor) & (match0>prefixStart)) && (ip0[-1] == match0[-1])) {
367
ip0--;
368
match0--;
369
mLength++;
370
}
371
372
_match: /* Requires: ip0, match0, offcode */
373
374
/* Count the forward length. */
375
mLength += ZSTD_count(ip0 + mLength, match0 + mLength, iend);
376
377
ZSTD_storeSeq(seqStore, (size_t)(ip0 - anchor), anchor, iend, offcode, mLength);
378
379
ip0 += mLength;
380
anchor = ip0;
381
382
/* Fill table and check for immediate repcode. */
383
if (ip0 <= ilimit) {
384
/* Fill Table */
385
assert(base+current0+2 > istart); /* check base overflow */
386
hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */
387
hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base);
388
389
if (rep_offset2 > 0) { /* rep_offset2==0 means rep_offset2 is invalidated */
390
while ( (ip0 <= ilimit) && (MEM_read32(ip0) == MEM_read32(ip0 - rep_offset2)) ) {
391
/* store sequence */
392
size_t const rLength = ZSTD_count(ip0+4, ip0+4-rep_offset2, iend) + 4;
393
{ U32 const tmpOff = rep_offset2; rep_offset2 = rep_offset1; rep_offset1 = tmpOff; } /* swap rep_offset2 <=> rep_offset1 */
394
hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base);
395
ip0 += rLength;
396
ZSTD_storeSeq(seqStore, 0 /*litLen*/, anchor, iend, REPCODE1_TO_OFFBASE, rLength);
397
anchor = ip0;
398
continue; /* faster when present (confirmed on gcc-8) ... (?) */
399
} } }
400
401
goto _start;
402
}
403
404
#define ZSTD_GEN_FAST_FN(dictMode, mls, step) \
405
static size_t ZSTD_compressBlock_fast_##dictMode##_##mls##_##step( \
406
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], \
407
void const* src, size_t srcSize) \
408
{ \
409
return ZSTD_compressBlock_fast_##dictMode##_generic(ms, seqStore, rep, src, srcSize, mls, step); \
410
}
411
412
ZSTD_GEN_FAST_FN(noDict, 4, 1)
413
ZSTD_GEN_FAST_FN(noDict, 5, 1)
414
ZSTD_GEN_FAST_FN(noDict, 6, 1)
415
ZSTD_GEN_FAST_FN(noDict, 7, 1)
416
417
ZSTD_GEN_FAST_FN(noDict, 4, 0)
418
ZSTD_GEN_FAST_FN(noDict, 5, 0)
419
ZSTD_GEN_FAST_FN(noDict, 6, 0)
420
ZSTD_GEN_FAST_FN(noDict, 7, 0)
421
422
size_t ZSTD_compressBlock_fast(
423
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
424
void const* src, size_t srcSize)
425
{
426
U32 const mls = ms->cParams.minMatch;
427
assert(ms->dictMatchState == NULL);
428
if (ms->cParams.targetLength > 1) {
429
switch(mls)
430
{
431
default: /* includes case 3 */
432
case 4 :
433
return ZSTD_compressBlock_fast_noDict_4_1(ms, seqStore, rep, src, srcSize);
434
case 5 :
435
return ZSTD_compressBlock_fast_noDict_5_1(ms, seqStore, rep, src, srcSize);
436
case 6 :
437
return ZSTD_compressBlock_fast_noDict_6_1(ms, seqStore, rep, src, srcSize);
438
case 7 :
439
return ZSTD_compressBlock_fast_noDict_7_1(ms, seqStore, rep, src, srcSize);
440
}
441
} else {
442
switch(mls)
443
{
444
default: /* includes case 3 */
445
case 4 :
446
return ZSTD_compressBlock_fast_noDict_4_0(ms, seqStore, rep, src, srcSize);
447
case 5 :
448
return ZSTD_compressBlock_fast_noDict_5_0(ms, seqStore, rep, src, srcSize);
449
case 6 :
450
return ZSTD_compressBlock_fast_noDict_6_0(ms, seqStore, rep, src, srcSize);
451
case 7 :
452
return ZSTD_compressBlock_fast_noDict_7_0(ms, seqStore, rep, src, srcSize);
453
}
454
455
}
456
}
457
458
FORCE_INLINE_TEMPLATE
459
size_t ZSTD_compressBlock_fast_dictMatchState_generic(
460
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
461
void const* src, size_t srcSize, U32 const mls, U32 const hasStep)
462
{
463
const ZSTD_compressionParameters* const cParams = &ms->cParams;
464
U32* const hashTable = ms->hashTable;
465
U32 const hlog = cParams->hashLog;
466
/* support stepSize of 0 */
467
U32 const stepSize = cParams->targetLength + !(cParams->targetLength);
468
const BYTE* const base = ms->window.base;
469
const BYTE* const istart = (const BYTE*)src;
470
const BYTE* ip0 = istart;
471
const BYTE* ip1 = ip0 + stepSize; /* we assert below that stepSize >= 1 */
472
const BYTE* anchor = istart;
473
const U32 prefixStartIndex = ms->window.dictLimit;
474
const BYTE* const prefixStart = base + prefixStartIndex;
475
const BYTE* const iend = istart + srcSize;
476
const BYTE* const ilimit = iend - HASH_READ_SIZE;
477
U32 offset_1=rep[0], offset_2=rep[1];
478
479
const ZSTD_matchState_t* const dms = ms->dictMatchState;
480
const ZSTD_compressionParameters* const dictCParams = &dms->cParams ;
481
const U32* const dictHashTable = dms->hashTable;
482
const U32 dictStartIndex = dms->window.dictLimit;
483
const BYTE* const dictBase = dms->window.base;
484
const BYTE* const dictStart = dictBase + dictStartIndex;
485
const BYTE* const dictEnd = dms->window.nextSrc;
486
const U32 dictIndexDelta = prefixStartIndex - (U32)(dictEnd - dictBase);
487
const U32 dictAndPrefixLength = (U32)(istart - prefixStart + dictEnd - dictStart);
488
const U32 dictHBits = dictCParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS;
489
490
/* if a dictionary is still attached, it necessarily means that
491
* it is within window size. So we just check it. */
492
const U32 maxDistance = 1U << cParams->windowLog;
493
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
494
assert(endIndex - prefixStartIndex <= maxDistance);
495
(void)maxDistance; (void)endIndex; /* these variables are not used when assert() is disabled */
496
497
(void)hasStep; /* not currently specialized on whether it's accelerated */
498
499
/* ensure there will be no underflow
500
* when translating a dict index into a local index */
501
assert(prefixStartIndex >= (U32)(dictEnd - dictBase));
502
503
if (ms->prefetchCDictTables) {
504
size_t const hashTableBytes = (((size_t)1) << dictCParams->hashLog) * sizeof(U32);
505
PREFETCH_AREA(dictHashTable, hashTableBytes)
506
}
507
508
/* init */
509
DEBUGLOG(5, "ZSTD_compressBlock_fast_dictMatchState_generic");
510
ip0 += (dictAndPrefixLength == 0);
511
/* dictMatchState repCode checks don't currently handle repCode == 0
512
* disabling. */
513
assert(offset_1 <= dictAndPrefixLength);
514
assert(offset_2 <= dictAndPrefixLength);
515
516
/* Outer search loop */
517
assert(stepSize >= 1);
518
while (ip1 <= ilimit) { /* repcode check at (ip0 + 1) is safe because ip0 < ip1 */
519
size_t mLength;
520
size_t hash0 = ZSTD_hashPtr(ip0, hlog, mls);
521
522
size_t const dictHashAndTag0 = ZSTD_hashPtr(ip0, dictHBits, mls);
523
U32 dictMatchIndexAndTag = dictHashTable[dictHashAndTag0 >> ZSTD_SHORT_CACHE_TAG_BITS];
524
int dictTagsMatch = ZSTD_comparePackedTags(dictMatchIndexAndTag, dictHashAndTag0);
525
526
U32 matchIndex = hashTable[hash0];
527
U32 curr = (U32)(ip0 - base);
528
size_t step = stepSize;
529
const size_t kStepIncr = 1 << kSearchStrength;
530
const BYTE* nextStep = ip0 + kStepIncr;
531
532
/* Inner search loop */
533
while (1) {
534
const BYTE* match = base + matchIndex;
535
const U32 repIndex = curr + 1 - offset_1;
536
const BYTE* repMatch = (repIndex < prefixStartIndex) ?
537
dictBase + (repIndex - dictIndexDelta) :
538
base + repIndex;
539
const size_t hash1 = ZSTD_hashPtr(ip1, hlog, mls);
540
size_t const dictHashAndTag1 = ZSTD_hashPtr(ip1, dictHBits, mls);
541
hashTable[hash0] = curr; /* update hash table */
542
543
if (((U32) ((prefixStartIndex - 1) - repIndex) >=
544
3) /* intentional underflow : ensure repIndex isn't overlapping dict + prefix */
545
&& (MEM_read32(repMatch) == MEM_read32(ip0 + 1))) {
546
const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
547
mLength = ZSTD_count_2segments(ip0 + 1 + 4, repMatch + 4, iend, repMatchEnd, prefixStart) + 4;
548
ip0++;
549
ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength);
550
break;
551
}
552
553
if (dictTagsMatch) {
554
/* Found a possible dict match */
555
const U32 dictMatchIndex = dictMatchIndexAndTag >> ZSTD_SHORT_CACHE_TAG_BITS;
556
const BYTE* dictMatch = dictBase + dictMatchIndex;
557
if (dictMatchIndex > dictStartIndex &&
558
MEM_read32(dictMatch) == MEM_read32(ip0)) {
559
/* To replicate extDict parse behavior, we only use dict matches when the normal matchIndex is invalid */
560
if (matchIndex <= prefixStartIndex) {
561
U32 const offset = (U32) (curr - dictMatchIndex - dictIndexDelta);
562
mLength = ZSTD_count_2segments(ip0 + 4, dictMatch + 4, iend, dictEnd, prefixStart) + 4;
563
while (((ip0 > anchor) & (dictMatch > dictStart))
564
&& (ip0[-1] == dictMatch[-1])) {
565
ip0--;
566
dictMatch--;
567
mLength++;
568
} /* catch up */
569
offset_2 = offset_1;
570
offset_1 = offset;
571
ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
572
break;
573
}
574
}
575
}
576
577
if (matchIndex > prefixStartIndex && MEM_read32(match) == MEM_read32(ip0)) {
578
/* found a regular match */
579
U32 const offset = (U32) (ip0 - match);
580
mLength = ZSTD_count(ip0 + 4, match + 4, iend) + 4;
581
while (((ip0 > anchor) & (match > prefixStart))
582
&& (ip0[-1] == match[-1])) {
583
ip0--;
584
match--;
585
mLength++;
586
} /* catch up */
587
offset_2 = offset_1;
588
offset_1 = offset;
589
ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
590
break;
591
}
592
593
/* Prepare for next iteration */
594
dictMatchIndexAndTag = dictHashTable[dictHashAndTag1 >> ZSTD_SHORT_CACHE_TAG_BITS];
595
dictTagsMatch = ZSTD_comparePackedTags(dictMatchIndexAndTag, dictHashAndTag1);
596
matchIndex = hashTable[hash1];
597
598
if (ip1 >= nextStep) {
599
step++;
600
nextStep += kStepIncr;
601
}
602
ip0 = ip1;
603
ip1 = ip1 + step;
604
if (ip1 > ilimit) goto _cleanup;
605
606
curr = (U32)(ip0 - base);
607
hash0 = hash1;
608
} /* end inner search loop */
609
610
/* match found */
611
assert(mLength);
612
ip0 += mLength;
613
anchor = ip0;
614
615
if (ip0 <= ilimit) {
616
/* Fill Table */
617
assert(base+curr+2 > istart); /* check base overflow */
618
hashTable[ZSTD_hashPtr(base+curr+2, hlog, mls)] = curr+2; /* here because curr+2 could be > iend-8 */
619
hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base);
620
621
/* check immediate repcode */
622
while (ip0 <= ilimit) {
623
U32 const current2 = (U32)(ip0-base);
624
U32 const repIndex2 = current2 - offset_2;
625
const BYTE* repMatch2 = repIndex2 < prefixStartIndex ?
626
dictBase - dictIndexDelta + repIndex2 :
627
base + repIndex2;
628
if ( ((U32)((prefixStartIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
629
&& (MEM_read32(repMatch2) == MEM_read32(ip0))) {
630
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
631
size_t const repLength2 = ZSTD_count_2segments(ip0+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
632
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
633
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, repLength2);
634
hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = current2;
635
ip0 += repLength2;
636
anchor = ip0;
637
continue;
638
}
639
break;
640
}
641
}
642
643
/* Prepare for next iteration */
644
assert(ip0 == anchor);
645
ip1 = ip0 + stepSize;
646
}
647
648
_cleanup:
649
/* save reps for next block */
650
rep[0] = offset_1;
651
rep[1] = offset_2;
652
653
/* Return the last literals size */
654
return (size_t)(iend - anchor);
655
}
656
657
658
ZSTD_GEN_FAST_FN(dictMatchState, 4, 0)
659
ZSTD_GEN_FAST_FN(dictMatchState, 5, 0)
660
ZSTD_GEN_FAST_FN(dictMatchState, 6, 0)
661
ZSTD_GEN_FAST_FN(dictMatchState, 7, 0)
662
663
size_t ZSTD_compressBlock_fast_dictMatchState(
664
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
665
void const* src, size_t srcSize)
666
{
667
U32 const mls = ms->cParams.minMatch;
668
assert(ms->dictMatchState != NULL);
669
switch(mls)
670
{
671
default: /* includes case 3 */
672
case 4 :
673
return ZSTD_compressBlock_fast_dictMatchState_4_0(ms, seqStore, rep, src, srcSize);
674
case 5 :
675
return ZSTD_compressBlock_fast_dictMatchState_5_0(ms, seqStore, rep, src, srcSize);
676
case 6 :
677
return ZSTD_compressBlock_fast_dictMatchState_6_0(ms, seqStore, rep, src, srcSize);
678
case 7 :
679
return ZSTD_compressBlock_fast_dictMatchState_7_0(ms, seqStore, rep, src, srcSize);
680
}
681
}
682
683
684
static size_t ZSTD_compressBlock_fast_extDict_generic(
685
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
686
void const* src, size_t srcSize, U32 const mls, U32 const hasStep)
687
{
688
const ZSTD_compressionParameters* const cParams = &ms->cParams;
689
U32* const hashTable = ms->hashTable;
690
U32 const hlog = cParams->hashLog;
691
/* support stepSize of 0 */
692
size_t const stepSize = cParams->targetLength + !(cParams->targetLength) + 1;
693
const BYTE* const base = ms->window.base;
694
const BYTE* const dictBase = ms->window.dictBase;
695
const BYTE* const istart = (const BYTE*)src;
696
const BYTE* anchor = istart;
697
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
698
const U32 lowLimit = ZSTD_getLowestMatchIndex(ms, endIndex, cParams->windowLog);
699
const U32 dictStartIndex = lowLimit;
700
const BYTE* const dictStart = dictBase + dictStartIndex;
701
const U32 dictLimit = ms->window.dictLimit;
702
const U32 prefixStartIndex = dictLimit < lowLimit ? lowLimit : dictLimit;
703
const BYTE* const prefixStart = base + prefixStartIndex;
704
const BYTE* const dictEnd = dictBase + prefixStartIndex;
705
const BYTE* const iend = istart + srcSize;
706
const BYTE* const ilimit = iend - 8;
707
U32 offset_1=rep[0], offset_2=rep[1];
708
U32 offsetSaved1 = 0, offsetSaved2 = 0;
709
710
const BYTE* ip0 = istart;
711
const BYTE* ip1;
712
const BYTE* ip2;
713
const BYTE* ip3;
714
U32 current0;
715
716
717
size_t hash0; /* hash for ip0 */
718
size_t hash1; /* hash for ip1 */
719
U32 idx; /* match idx for ip0 */
720
const BYTE* idxBase; /* base pointer for idx */
721
722
U32 offcode;
723
const BYTE* match0;
724
size_t mLength;
725
const BYTE* matchEnd = 0; /* initialize to avoid warning, assert != 0 later */
726
727
size_t step;
728
const BYTE* nextStep;
729
const size_t kStepIncr = (1 << (kSearchStrength - 1));
730
731
(void)hasStep; /* not currently specialized on whether it's accelerated */
732
733
DEBUGLOG(5, "ZSTD_compressBlock_fast_extDict_generic (offset_1=%u)", offset_1);
734
735
/* switch to "regular" variant if extDict is invalidated due to maxDistance */
736
if (prefixStartIndex == dictStartIndex)
737
return ZSTD_compressBlock_fast(ms, seqStore, rep, src, srcSize);
738
739
{ U32 const curr = (U32)(ip0 - base);
740
U32 const maxRep = curr - dictStartIndex;
741
if (offset_2 >= maxRep) offsetSaved2 = offset_2, offset_2 = 0;
742
if (offset_1 >= maxRep) offsetSaved1 = offset_1, offset_1 = 0;
743
}
744
745
/* start each op */
746
_start: /* Requires: ip0 */
747
748
step = stepSize;
749
nextStep = ip0 + kStepIncr;
750
751
/* calculate positions, ip0 - anchor == 0, so we skip step calc */
752
ip1 = ip0 + 1;
753
ip2 = ip0 + step;
754
ip3 = ip2 + 1;
755
756
if (ip3 >= ilimit) {
757
goto _cleanup;
758
}
759
760
hash0 = ZSTD_hashPtr(ip0, hlog, mls);
761
hash1 = ZSTD_hashPtr(ip1, hlog, mls);
762
763
idx = hashTable[hash0];
764
idxBase = idx < prefixStartIndex ? dictBase : base;
765
766
do {
767
{ /* load repcode match for ip[2] */
768
U32 const current2 = (U32)(ip2 - base);
769
U32 const repIndex = current2 - offset_1;
770
const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base;
771
U32 rval;
772
if ( ((U32)(prefixStartIndex - repIndex) >= 4) /* intentional underflow */
773
& (offset_1 > 0) ) {
774
rval = MEM_read32(repBase + repIndex);
775
} else {
776
rval = MEM_read32(ip2) ^ 1; /* guaranteed to not match. */
777
}
778
779
/* write back hash table entry */
780
current0 = (U32)(ip0 - base);
781
hashTable[hash0] = current0;
782
783
/* check repcode at ip[2] */
784
if (MEM_read32(ip2) == rval) {
785
ip0 = ip2;
786
match0 = repBase + repIndex;
787
matchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
788
assert((match0 != prefixStart) & (match0 != dictStart));
789
mLength = ip0[-1] == match0[-1];
790
ip0 -= mLength;
791
match0 -= mLength;
792
offcode = REPCODE1_TO_OFFBASE;
793
mLength += 4;
794
goto _match;
795
} }
796
797
{ /* load match for ip[0] */
798
U32 const mval = idx >= dictStartIndex ?
799
MEM_read32(idxBase + idx) :
800
MEM_read32(ip0) ^ 1; /* guaranteed not to match */
801
802
/* check match at ip[0] */
803
if (MEM_read32(ip0) == mval) {
804
/* found a match! */
805
goto _offset;
806
} }
807
808
/* lookup ip[1] */
809
idx = hashTable[hash1];
810
idxBase = idx < prefixStartIndex ? dictBase : base;
811
812
/* hash ip[2] */
813
hash0 = hash1;
814
hash1 = ZSTD_hashPtr(ip2, hlog, mls);
815
816
/* advance to next positions */
817
ip0 = ip1;
818
ip1 = ip2;
819
ip2 = ip3;
820
821
/* write back hash table entry */
822
current0 = (U32)(ip0 - base);
823
hashTable[hash0] = current0;
824
825
{ /* load match for ip[0] */
826
U32 const mval = idx >= dictStartIndex ?
827
MEM_read32(idxBase + idx) :
828
MEM_read32(ip0) ^ 1; /* guaranteed not to match */
829
830
/* check match at ip[0] */
831
if (MEM_read32(ip0) == mval) {
832
/* found a match! */
833
goto _offset;
834
} }
835
836
/* lookup ip[1] */
837
idx = hashTable[hash1];
838
idxBase = idx < prefixStartIndex ? dictBase : base;
839
840
/* hash ip[2] */
841
hash0 = hash1;
842
hash1 = ZSTD_hashPtr(ip2, hlog, mls);
843
844
/* advance to next positions */
845
ip0 = ip1;
846
ip1 = ip2;
847
ip2 = ip0 + step;
848
ip3 = ip1 + step;
849
850
/* calculate step */
851
if (ip2 >= nextStep) {
852
step++;
853
PREFETCH_L1(ip1 + 64);
854
PREFETCH_L1(ip1 + 128);
855
nextStep += kStepIncr;
856
}
857
} while (ip3 < ilimit);
858
859
_cleanup:
860
/* Note that there are probably still a couple positions we could search.
861
* However, it seems to be a meaningful performance hit to try to search
862
* them. So let's not. */
863
864
/* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0),
865
* rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */
866
offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2;
867
868
/* save reps for next block */
869
rep[0] = offset_1 ? offset_1 : offsetSaved1;
870
rep[1] = offset_2 ? offset_2 : offsetSaved2;
871
872
/* Return the last literals size */
873
return (size_t)(iend - anchor);
874
875
_offset: /* Requires: ip0, idx, idxBase */
876
877
/* Compute the offset code. */
878
{ U32 const offset = current0 - idx;
879
const BYTE* const lowMatchPtr = idx < prefixStartIndex ? dictStart : prefixStart;
880
matchEnd = idx < prefixStartIndex ? dictEnd : iend;
881
match0 = idxBase + idx;
882
offset_2 = offset_1;
883
offset_1 = offset;
884
offcode = OFFSET_TO_OFFBASE(offset);
885
mLength = 4;
886
887
/* Count the backwards match length. */
888
while (((ip0>anchor) & (match0>lowMatchPtr)) && (ip0[-1] == match0[-1])) {
889
ip0--;
890
match0--;
891
mLength++;
892
} }
893
894
_match: /* Requires: ip0, match0, offcode, matchEnd */
895
896
/* Count the forward length. */
897
assert(matchEnd != 0);
898
mLength += ZSTD_count_2segments(ip0 + mLength, match0 + mLength, iend, matchEnd, prefixStart);
899
900
ZSTD_storeSeq(seqStore, (size_t)(ip0 - anchor), anchor, iend, offcode, mLength);
901
902
ip0 += mLength;
903
anchor = ip0;
904
905
/* write next hash table entry */
906
if (ip1 < ip0) {
907
hashTable[hash1] = (U32)(ip1 - base);
908
}
909
910
/* Fill table and check for immediate repcode. */
911
if (ip0 <= ilimit) {
912
/* Fill Table */
913
assert(base+current0+2 > istart); /* check base overflow */
914
hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */
915
hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base);
916
917
while (ip0 <= ilimit) {
918
U32 const repIndex2 = (U32)(ip0-base) - offset_2;
919
const BYTE* const repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
920
if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) & (offset_2 > 0)) /* intentional underflow */
921
&& (MEM_read32(repMatch2) == MEM_read32(ip0)) ) {
922
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
923
size_t const repLength2 = ZSTD_count_2segments(ip0+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
924
{ U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; } /* swap offset_2 <=> offset_1 */
925
ZSTD_storeSeq(seqStore, 0 /*litlen*/, anchor, iend, REPCODE1_TO_OFFBASE, repLength2);
926
hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base);
927
ip0 += repLength2;
928
anchor = ip0;
929
continue;
930
}
931
break;
932
} }
933
934
goto _start;
935
}
936
937
ZSTD_GEN_FAST_FN(extDict, 4, 0)
938
ZSTD_GEN_FAST_FN(extDict, 5, 0)
939
ZSTD_GEN_FAST_FN(extDict, 6, 0)
940
ZSTD_GEN_FAST_FN(extDict, 7, 0)
941
942
size_t ZSTD_compressBlock_fast_extDict(
943
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
944
void const* src, size_t srcSize)
945
{
946
U32 const mls = ms->cParams.minMatch;
947
assert(ms->dictMatchState == NULL);
948
switch(mls)
949
{
950
default: /* includes case 3 */
951
case 4 :
952
return ZSTD_compressBlock_fast_extDict_4_0(ms, seqStore, rep, src, srcSize);
953
case 5 :
954
return ZSTD_compressBlock_fast_extDict_5_0(ms, seqStore, rep, src, srcSize);
955
case 6 :
956
return ZSTD_compressBlock_fast_extDict_6_0(ms, seqStore, rep, src, srcSize);
957
case 7 :
958
return ZSTD_compressBlock_fast_extDict_7_0(ms, seqStore, rep, src, srcSize);
959
}
960
}
961
962