Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmzstd/lib/compress/zstd_lazy.c
4997 views
1
/*
2
* Copyright (c) Meta Platforms, Inc. and affiliates.
3
* All rights reserved.
4
*
5
* This source code is licensed under both the BSD-style license (found in the
6
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
7
* in the COPYING file in the root directory of this source tree).
8
* You may select, at your option, one of the above-listed licenses.
9
*/
10
11
#include "zstd_compress_internal.h"
12
#include "zstd_lazy.h"
13
#include "../common/bits.h" /* ZSTD_countTrailingZeros64 */
14
15
#if !defined(ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR) \
16
|| !defined(ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR) \
17
|| !defined(ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR) \
18
|| !defined(ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR)
19
20
#define kLazySkippingStep 8
21
22
23
/*-*************************************
24
* Binary Tree search
25
***************************************/
26
27
static
28
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
29
void ZSTD_updateDUBT(ZSTD_MatchState_t* ms,
30
const BYTE* ip, const BYTE* iend,
31
U32 mls)
32
{
33
const ZSTD_compressionParameters* const cParams = &ms->cParams;
34
U32* const hashTable = ms->hashTable;
35
U32 const hashLog = cParams->hashLog;
36
37
U32* const bt = ms->chainTable;
38
U32 const btLog = cParams->chainLog - 1;
39
U32 const btMask = (1 << btLog) - 1;
40
41
const BYTE* const base = ms->window.base;
42
U32 const target = (U32)(ip - base);
43
U32 idx = ms->nextToUpdate;
44
45
if (idx != target)
46
DEBUGLOG(7, "ZSTD_updateDUBT, from %u to %u (dictLimit:%u)",
47
idx, target, ms->window.dictLimit);
48
assert(ip + 8 <= iend); /* condition for ZSTD_hashPtr */
49
(void)iend;
50
51
assert(idx >= ms->window.dictLimit); /* condition for valid base+idx */
52
for ( ; idx < target ; idx++) {
53
size_t const h = ZSTD_hashPtr(base + idx, hashLog, mls); /* assumption : ip + 8 <= iend */
54
U32 const matchIndex = hashTable[h];
55
56
U32* const nextCandidatePtr = bt + 2*(idx&btMask);
57
U32* const sortMarkPtr = nextCandidatePtr + 1;
58
59
DEBUGLOG(8, "ZSTD_updateDUBT: insert %u", idx);
60
hashTable[h] = idx; /* Update Hash Table */
61
*nextCandidatePtr = matchIndex; /* update BT like a chain */
62
*sortMarkPtr = ZSTD_DUBT_UNSORTED_MARK;
63
}
64
ms->nextToUpdate = target;
65
}
66
67
68
/** ZSTD_insertDUBT1() :
69
* sort one already inserted but unsorted position
70
* assumption : curr >= btlow == (curr - btmask)
71
* doesn't fail */
72
static
73
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
74
void ZSTD_insertDUBT1(const ZSTD_MatchState_t* ms,
75
U32 curr, const BYTE* inputEnd,
76
U32 nbCompares, U32 btLow,
77
const ZSTD_dictMode_e dictMode)
78
{
79
const ZSTD_compressionParameters* const cParams = &ms->cParams;
80
U32* const bt = ms->chainTable;
81
U32 const btLog = cParams->chainLog - 1;
82
U32 const btMask = (1 << btLog) - 1;
83
size_t commonLengthSmaller=0, commonLengthLarger=0;
84
const BYTE* const base = ms->window.base;
85
const BYTE* const dictBase = ms->window.dictBase;
86
const U32 dictLimit = ms->window.dictLimit;
87
const BYTE* const ip = (curr>=dictLimit) ? base + curr : dictBase + curr;
88
const BYTE* const iend = (curr>=dictLimit) ? inputEnd : dictBase + dictLimit;
89
const BYTE* const dictEnd = dictBase + dictLimit;
90
const BYTE* const prefixStart = base + dictLimit;
91
const BYTE* match;
92
U32* smallerPtr = bt + 2*(curr&btMask);
93
U32* largerPtr = smallerPtr + 1;
94
U32 matchIndex = *smallerPtr; /* this candidate is unsorted : next sorted candidate is reached through *smallerPtr, while *largerPtr contains previous unsorted candidate (which is already saved and can be overwritten) */
95
U32 dummy32; /* to be nullified at the end */
96
U32 const windowValid = ms->window.lowLimit;
97
U32 const maxDistance = 1U << cParams->windowLog;
98
U32 const windowLow = (curr - windowValid > maxDistance) ? curr - maxDistance : windowValid;
99
100
101
DEBUGLOG(8, "ZSTD_insertDUBT1(%u) (dictLimit=%u, lowLimit=%u)",
102
curr, dictLimit, windowLow);
103
assert(curr >= btLow);
104
assert(ip < iend); /* condition for ZSTD_count */
105
106
for (; nbCompares && (matchIndex > windowLow); --nbCompares) {
107
U32* const nextPtr = bt + 2*(matchIndex & btMask);
108
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
109
assert(matchIndex < curr);
110
/* note : all candidates are now supposed sorted,
111
* but it's still possible to have nextPtr[1] == ZSTD_DUBT_UNSORTED_MARK
112
* when a real index has the same value as ZSTD_DUBT_UNSORTED_MARK */
113
114
if ( (dictMode != ZSTD_extDict)
115
|| (matchIndex+matchLength >= dictLimit) /* both in current segment*/
116
|| (curr < dictLimit) /* both in extDict */) {
117
const BYTE* const mBase = ( (dictMode != ZSTD_extDict)
118
|| (matchIndex+matchLength >= dictLimit)) ?
119
base : dictBase;
120
assert( (matchIndex+matchLength >= dictLimit) /* might be wrong if extDict is incorrectly set to 0 */
121
|| (curr < dictLimit) );
122
match = mBase + matchIndex;
123
matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
124
} else {
125
match = dictBase + matchIndex;
126
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
127
if (matchIndex+matchLength >= dictLimit)
128
match = base + matchIndex; /* preparation for next read of match[matchLength] */
129
}
130
131
DEBUGLOG(8, "ZSTD_insertDUBT1: comparing %u with %u : found %u common bytes ",
132
curr, matchIndex, (U32)matchLength);
133
134
if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
135
break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */
136
}
137
138
if (match[matchLength] < ip[matchLength]) { /* necessarily within buffer */
139
/* match is smaller than current */
140
*smallerPtr = matchIndex; /* update smaller idx */
141
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
142
if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop searching */
143
DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is smaller : next => %u",
144
matchIndex, btLow, nextPtr[1]);
145
smallerPtr = nextPtr+1; /* new "candidate" => larger than match, which was smaller than target */
146
matchIndex = nextPtr[1]; /* new matchIndex, larger than previous and closer to current */
147
} else {
148
/* match is larger than current */
149
*largerPtr = matchIndex;
150
commonLengthLarger = matchLength;
151
if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop searching */
152
DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is larger => %u",
153
matchIndex, btLow, nextPtr[0]);
154
largerPtr = nextPtr;
155
matchIndex = nextPtr[0];
156
} }
157
158
*smallerPtr = *largerPtr = 0;
159
}
160
161
162
static
163
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
164
size_t ZSTD_DUBT_findBetterDictMatch (
165
const ZSTD_MatchState_t* ms,
166
const BYTE* const ip, const BYTE* const iend,
167
size_t* offsetPtr,
168
size_t bestLength,
169
U32 nbCompares,
170
U32 const mls,
171
const ZSTD_dictMode_e dictMode)
172
{
173
const ZSTD_MatchState_t * const dms = ms->dictMatchState;
174
const ZSTD_compressionParameters* const dmsCParams = &dms->cParams;
175
const U32 * const dictHashTable = dms->hashTable;
176
U32 const hashLog = dmsCParams->hashLog;
177
size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
178
U32 dictMatchIndex = dictHashTable[h];
179
180
const BYTE* const base = ms->window.base;
181
const BYTE* const prefixStart = base + ms->window.dictLimit;
182
U32 const curr = (U32)(ip-base);
183
const BYTE* const dictBase = dms->window.base;
184
const BYTE* const dictEnd = dms->window.nextSrc;
185
U32 const dictHighLimit = (U32)(dms->window.nextSrc - dms->window.base);
186
U32 const dictLowLimit = dms->window.lowLimit;
187
U32 const dictIndexDelta = ms->window.lowLimit - dictHighLimit;
188
189
U32* const dictBt = dms->chainTable;
190
U32 const btLog = dmsCParams->chainLog - 1;
191
U32 const btMask = (1 << btLog) - 1;
192
U32 const btLow = (btMask >= dictHighLimit - dictLowLimit) ? dictLowLimit : dictHighLimit - btMask;
193
194
size_t commonLengthSmaller=0, commonLengthLarger=0;
195
196
(void)dictMode;
197
assert(dictMode == ZSTD_dictMatchState);
198
199
for (; nbCompares && (dictMatchIndex > dictLowLimit); --nbCompares) {
200
U32* const nextPtr = dictBt + 2*(dictMatchIndex & btMask);
201
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
202
const BYTE* match = dictBase + dictMatchIndex;
203
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
204
if (dictMatchIndex+matchLength >= dictHighLimit)
205
match = base + dictMatchIndex + dictIndexDelta; /* to prepare for next usage of match[matchLength] */
206
207
if (matchLength > bestLength) {
208
U32 matchIndex = dictMatchIndex + dictIndexDelta;
209
if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) ) {
210
DEBUGLOG(9, "ZSTD_DUBT_findBetterDictMatch(%u) : found better match length %u -> %u and offsetCode %u -> %u (dictMatchIndex %u, matchIndex %u)",
211
curr, (U32)bestLength, (U32)matchLength, (U32)*offsetPtr, OFFSET_TO_OFFBASE(curr - matchIndex), dictMatchIndex, matchIndex);
212
bestLength = matchLength, *offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex);
213
}
214
if (ip+matchLength == iend) { /* reached end of input : ip[matchLength] is not valid, no way to know if it's larger or smaller than match */
215
break; /* drop, to guarantee consistency (miss a little bit of compression) */
216
}
217
}
218
219
if (match[matchLength] < ip[matchLength]) {
220
if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */
221
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
222
dictMatchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
223
} else {
224
/* match is larger than current */
225
if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */
226
commonLengthLarger = matchLength;
227
dictMatchIndex = nextPtr[0];
228
}
229
}
230
231
if (bestLength >= MINMATCH) {
232
U32 const mIndex = curr - (U32)OFFBASE_TO_OFFSET(*offsetPtr); (void)mIndex;
233
DEBUGLOG(8, "ZSTD_DUBT_findBetterDictMatch(%u) : found match of length %u and offsetCode %u (pos %u)",
234
curr, (U32)bestLength, (U32)*offsetPtr, mIndex);
235
}
236
return bestLength;
237
238
}
239
240
241
static
242
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
243
size_t ZSTD_DUBT_findBestMatch(ZSTD_MatchState_t* ms,
244
const BYTE* const ip, const BYTE* const iend,
245
size_t* offBasePtr,
246
U32 const mls,
247
const ZSTD_dictMode_e dictMode)
248
{
249
const ZSTD_compressionParameters* const cParams = &ms->cParams;
250
U32* const hashTable = ms->hashTable;
251
U32 const hashLog = cParams->hashLog;
252
size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
253
U32 matchIndex = hashTable[h];
254
255
const BYTE* const base = ms->window.base;
256
U32 const curr = (U32)(ip-base);
257
U32 const windowLow = ZSTD_getLowestMatchIndex(ms, curr, cParams->windowLog);
258
259
U32* const bt = ms->chainTable;
260
U32 const btLog = cParams->chainLog - 1;
261
U32 const btMask = (1 << btLog) - 1;
262
U32 const btLow = (btMask >= curr) ? 0 : curr - btMask;
263
U32 const unsortLimit = MAX(btLow, windowLow);
264
265
U32* nextCandidate = bt + 2*(matchIndex&btMask);
266
U32* unsortedMark = bt + 2*(matchIndex&btMask) + 1;
267
U32 nbCompares = 1U << cParams->searchLog;
268
U32 nbCandidates = nbCompares;
269
U32 previousCandidate = 0;
270
271
DEBUGLOG(7, "ZSTD_DUBT_findBestMatch (%u) ", curr);
272
assert(ip <= iend-8); /* required for h calculation */
273
assert(dictMode != ZSTD_dedicatedDictSearch);
274
275
/* reach end of unsorted candidates list */
276
while ( (matchIndex > unsortLimit)
277
&& (*unsortedMark == ZSTD_DUBT_UNSORTED_MARK)
278
&& (nbCandidates > 1) ) {
279
DEBUGLOG(8, "ZSTD_DUBT_findBestMatch: candidate %u is unsorted",
280
matchIndex);
281
*unsortedMark = previousCandidate; /* the unsortedMark becomes a reversed chain, to move up back to original position */
282
previousCandidate = matchIndex;
283
matchIndex = *nextCandidate;
284
nextCandidate = bt + 2*(matchIndex&btMask);
285
unsortedMark = bt + 2*(matchIndex&btMask) + 1;
286
nbCandidates --;
287
}
288
289
/* nullify last candidate if it's still unsorted
290
* simplification, detrimental to compression ratio, beneficial for speed */
291
if ( (matchIndex > unsortLimit)
292
&& (*unsortedMark==ZSTD_DUBT_UNSORTED_MARK) ) {
293
DEBUGLOG(7, "ZSTD_DUBT_findBestMatch: nullify last unsorted candidate %u",
294
matchIndex);
295
*nextCandidate = *unsortedMark = 0;
296
}
297
298
/* batch sort stacked candidates */
299
matchIndex = previousCandidate;
300
while (matchIndex) { /* will end on matchIndex == 0 */
301
U32* const nextCandidateIdxPtr = bt + 2*(matchIndex&btMask) + 1;
302
U32 const nextCandidateIdx = *nextCandidateIdxPtr;
303
ZSTD_insertDUBT1(ms, matchIndex, iend,
304
nbCandidates, unsortLimit, dictMode);
305
matchIndex = nextCandidateIdx;
306
nbCandidates++;
307
}
308
309
/* find longest match */
310
{ size_t commonLengthSmaller = 0, commonLengthLarger = 0;
311
const BYTE* const dictBase = ms->window.dictBase;
312
const U32 dictLimit = ms->window.dictLimit;
313
const BYTE* const dictEnd = dictBase + dictLimit;
314
const BYTE* const prefixStart = base + dictLimit;
315
U32* smallerPtr = bt + 2*(curr&btMask);
316
U32* largerPtr = bt + 2*(curr&btMask) + 1;
317
U32 matchEndIdx = curr + 8 + 1;
318
U32 dummy32; /* to be nullified at the end */
319
size_t bestLength = 0;
320
321
matchIndex = hashTable[h];
322
hashTable[h] = curr; /* Update Hash Table */
323
324
for (; nbCompares && (matchIndex > windowLow); --nbCompares) {
325
U32* const nextPtr = bt + 2*(matchIndex & btMask);
326
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
327
const BYTE* match;
328
329
if ((dictMode != ZSTD_extDict) || (matchIndex+matchLength >= dictLimit)) {
330
match = base + matchIndex;
331
matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
332
} else {
333
match = dictBase + matchIndex;
334
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
335
if (matchIndex+matchLength >= dictLimit)
336
match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
337
}
338
339
if (matchLength > bestLength) {
340
if (matchLength > matchEndIdx - matchIndex)
341
matchEndIdx = matchIndex + (U32)matchLength;
342
if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr - matchIndex + 1) - ZSTD_highbit32((U32)*offBasePtr)) )
343
bestLength = matchLength, *offBasePtr = OFFSET_TO_OFFBASE(curr - matchIndex);
344
if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
345
if (dictMode == ZSTD_dictMatchState) {
346
nbCompares = 0; /* in addition to avoiding checking any
347
* further in this loop, make sure we
348
* skip checking in the dictionary. */
349
}
350
break; /* drop, to guarantee consistency (miss a little bit of compression) */
351
}
352
}
353
354
if (match[matchLength] < ip[matchLength]) {
355
/* match is smaller than current */
356
*smallerPtr = matchIndex; /* update smaller idx */
357
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
358
if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
359
smallerPtr = nextPtr+1; /* new "smaller" => larger of match */
360
matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
361
} else {
362
/* match is larger than current */
363
*largerPtr = matchIndex;
364
commonLengthLarger = matchLength;
365
if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
366
largerPtr = nextPtr;
367
matchIndex = nextPtr[0];
368
} }
369
370
*smallerPtr = *largerPtr = 0;
371
372
assert(nbCompares <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
373
if (dictMode == ZSTD_dictMatchState && nbCompares) {
374
bestLength = ZSTD_DUBT_findBetterDictMatch(
375
ms, ip, iend,
376
offBasePtr, bestLength, nbCompares,
377
mls, dictMode);
378
}
379
380
assert(matchEndIdx > curr+8); /* ensure nextToUpdate is increased */
381
ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */
382
if (bestLength >= MINMATCH) {
383
U32 const mIndex = curr - (U32)OFFBASE_TO_OFFSET(*offBasePtr); (void)mIndex;
384
DEBUGLOG(8, "ZSTD_DUBT_findBestMatch(%u) : found match of length %u and offsetCode %u (pos %u)",
385
curr, (U32)bestLength, (U32)*offBasePtr, mIndex);
386
}
387
return bestLength;
388
}
389
}
390
391
392
/** ZSTD_BtFindBestMatch() : Tree updater, providing best match */
393
FORCE_INLINE_TEMPLATE
394
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
395
size_t ZSTD_BtFindBestMatch( ZSTD_MatchState_t* ms,
396
const BYTE* const ip, const BYTE* const iLimit,
397
size_t* offBasePtr,
398
const U32 mls /* template */,
399
const ZSTD_dictMode_e dictMode)
400
{
401
DEBUGLOG(7, "ZSTD_BtFindBestMatch");
402
if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */
403
ZSTD_updateDUBT(ms, ip, iLimit, mls);
404
return ZSTD_DUBT_findBestMatch(ms, ip, iLimit, offBasePtr, mls, dictMode);
405
}
406
407
/***********************************
408
* Dedicated dict search
409
***********************************/
410
411
void ZSTD_dedicatedDictSearch_lazy_loadDictionary(ZSTD_MatchState_t* ms, const BYTE* const ip)
412
{
413
const BYTE* const base = ms->window.base;
414
U32 const target = (U32)(ip - base);
415
U32* const hashTable = ms->hashTable;
416
U32* const chainTable = ms->chainTable;
417
U32 const chainSize = 1 << ms->cParams.chainLog;
418
U32 idx = ms->nextToUpdate;
419
U32 const minChain = chainSize < target - idx ? target - chainSize : idx;
420
U32 const bucketSize = 1 << ZSTD_LAZY_DDSS_BUCKET_LOG;
421
U32 const cacheSize = bucketSize - 1;
422
U32 const chainAttempts = (1 << ms->cParams.searchLog) - cacheSize;
423
U32 const chainLimit = chainAttempts > 255 ? 255 : chainAttempts;
424
425
/* We know the hashtable is oversized by a factor of `bucketSize`.
426
* We are going to temporarily pretend `bucketSize == 1`, keeping only a
427
* single entry. We will use the rest of the space to construct a temporary
428
* chaintable.
429
*/
430
U32 const hashLog = ms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG;
431
U32* const tmpHashTable = hashTable;
432
U32* const tmpChainTable = hashTable + ((size_t)1 << hashLog);
433
U32 const tmpChainSize = (U32)((1 << ZSTD_LAZY_DDSS_BUCKET_LOG) - 1) << hashLog;
434
U32 const tmpMinChain = tmpChainSize < target ? target - tmpChainSize : idx;
435
U32 hashIdx;
436
437
assert(ms->cParams.chainLog <= 24);
438
assert(ms->cParams.hashLog > ms->cParams.chainLog);
439
assert(idx != 0);
440
assert(tmpMinChain <= minChain);
441
442
/* fill conventional hash table and conventional chain table */
443
for ( ; idx < target; idx++) {
444
U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch);
445
if (idx >= tmpMinChain) {
446
tmpChainTable[idx - tmpMinChain] = hashTable[h];
447
}
448
tmpHashTable[h] = idx;
449
}
450
451
/* sort chains into ddss chain table */
452
{
453
U32 chainPos = 0;
454
for (hashIdx = 0; hashIdx < (1U << hashLog); hashIdx++) {
455
U32 count;
456
U32 countBeyondMinChain = 0;
457
U32 i = tmpHashTable[hashIdx];
458
for (count = 0; i >= tmpMinChain && count < cacheSize; count++) {
459
/* skip through the chain to the first position that won't be
460
* in the hash cache bucket */
461
if (i < minChain) {
462
countBeyondMinChain++;
463
}
464
i = tmpChainTable[i - tmpMinChain];
465
}
466
if (count == cacheSize) {
467
for (count = 0; count < chainLimit;) {
468
if (i < minChain) {
469
if (!i || ++countBeyondMinChain > cacheSize) {
470
/* only allow pulling `cacheSize` number of entries
471
* into the cache or chainTable beyond `minChain`,
472
* to replace the entries pulled out of the
473
* chainTable into the cache. This lets us reach
474
* back further without increasing the total number
475
* of entries in the chainTable, guaranteeing the
476
* DDSS chain table will fit into the space
477
* allocated for the regular one. */
478
break;
479
}
480
}
481
chainTable[chainPos++] = i;
482
count++;
483
if (i < tmpMinChain) {
484
break;
485
}
486
i = tmpChainTable[i - tmpMinChain];
487
}
488
} else {
489
count = 0;
490
}
491
if (count) {
492
tmpHashTable[hashIdx] = ((chainPos - count) << 8) + count;
493
} else {
494
tmpHashTable[hashIdx] = 0;
495
}
496
}
497
assert(chainPos <= chainSize); /* I believe this is guaranteed... */
498
}
499
500
/* move chain pointers into the last entry of each hash bucket */
501
for (hashIdx = (1 << hashLog); hashIdx; ) {
502
U32 const bucketIdx = --hashIdx << ZSTD_LAZY_DDSS_BUCKET_LOG;
503
U32 const chainPackedPointer = tmpHashTable[hashIdx];
504
U32 i;
505
for (i = 0; i < cacheSize; i++) {
506
hashTable[bucketIdx + i] = 0;
507
}
508
hashTable[bucketIdx + bucketSize - 1] = chainPackedPointer;
509
}
510
511
/* fill the buckets of the hash table */
512
for (idx = ms->nextToUpdate; idx < target; idx++) {
513
U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch)
514
<< ZSTD_LAZY_DDSS_BUCKET_LOG;
515
U32 i;
516
/* Shift hash cache down 1. */
517
for (i = cacheSize - 1; i; i--)
518
hashTable[h + i] = hashTable[h + i - 1];
519
hashTable[h] = idx;
520
}
521
522
ms->nextToUpdate = target;
523
}
524
525
/* Returns the longest match length found in the dedicated dict search structure.
526
* If none are longer than the argument ml, then ml will be returned.
527
*/
528
FORCE_INLINE_TEMPLATE
529
size_t ZSTD_dedicatedDictSearch_lazy_search(size_t* offsetPtr, size_t ml, U32 nbAttempts,
530
const ZSTD_MatchState_t* const dms,
531
const BYTE* const ip, const BYTE* const iLimit,
532
const BYTE* const prefixStart, const U32 curr,
533
const U32 dictLimit, const size_t ddsIdx) {
534
const U32 ddsLowestIndex = dms->window.dictLimit;
535
const BYTE* const ddsBase = dms->window.base;
536
const BYTE* const ddsEnd = dms->window.nextSrc;
537
const U32 ddsSize = (U32)(ddsEnd - ddsBase);
538
const U32 ddsIndexDelta = dictLimit - ddsSize;
539
const U32 bucketSize = (1 << ZSTD_LAZY_DDSS_BUCKET_LOG);
540
const U32 bucketLimit = nbAttempts < bucketSize - 1 ? nbAttempts : bucketSize - 1;
541
U32 ddsAttempt;
542
U32 matchIndex;
543
544
for (ddsAttempt = 0; ddsAttempt < bucketSize - 1; ddsAttempt++) {
545
PREFETCH_L1(ddsBase + dms->hashTable[ddsIdx + ddsAttempt]);
546
}
547
548
{
549
U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1];
550
U32 const chainIndex = chainPackedPointer >> 8;
551
552
PREFETCH_L1(&dms->chainTable[chainIndex]);
553
}
554
555
for (ddsAttempt = 0; ddsAttempt < bucketLimit; ddsAttempt++) {
556
size_t currentMl=0;
557
const BYTE* match;
558
matchIndex = dms->hashTable[ddsIdx + ddsAttempt];
559
match = ddsBase + matchIndex;
560
561
if (!matchIndex) {
562
return ml;
563
}
564
565
/* guaranteed by table construction */
566
(void)ddsLowestIndex;
567
assert(matchIndex >= ddsLowestIndex);
568
assert(match+4 <= ddsEnd);
569
if (MEM_read32(match) == MEM_read32(ip)) {
570
/* assumption : matchIndex <= dictLimit-4 (by table construction) */
571
currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4;
572
}
573
574
/* save best solution */
575
if (currentMl > ml) {
576
ml = currentMl;
577
*offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + ddsIndexDelta));
578
if (ip+currentMl == iLimit) {
579
/* best possible, avoids read overflow on next attempt */
580
return ml;
581
}
582
}
583
}
584
585
{
586
U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1];
587
U32 chainIndex = chainPackedPointer >> 8;
588
U32 const chainLength = chainPackedPointer & 0xFF;
589
U32 const chainAttempts = nbAttempts - ddsAttempt;
590
U32 const chainLimit = chainAttempts > chainLength ? chainLength : chainAttempts;
591
U32 chainAttempt;
592
593
for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++) {
594
PREFETCH_L1(ddsBase + dms->chainTable[chainIndex + chainAttempt]);
595
}
596
597
for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++, chainIndex++) {
598
size_t currentMl=0;
599
const BYTE* match;
600
matchIndex = dms->chainTable[chainIndex];
601
match = ddsBase + matchIndex;
602
603
/* guaranteed by table construction */
604
assert(matchIndex >= ddsLowestIndex);
605
assert(match+4 <= ddsEnd);
606
if (MEM_read32(match) == MEM_read32(ip)) {
607
/* assumption : matchIndex <= dictLimit-4 (by table construction) */
608
currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4;
609
}
610
611
/* save best solution */
612
if (currentMl > ml) {
613
ml = currentMl;
614
*offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + ddsIndexDelta));
615
if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
616
}
617
}
618
}
619
return ml;
620
}
621
622
623
/* *********************************
624
* Hash Chain
625
***********************************/
626
#define NEXT_IN_CHAIN(d, mask) chainTable[(d) & (mask)]
627
628
/* Update chains up to ip (excluded)
629
Assumption : always within prefix (i.e. not within extDict) */
630
FORCE_INLINE_TEMPLATE
631
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
632
U32 ZSTD_insertAndFindFirstIndex_internal(
633
ZSTD_MatchState_t* ms,
634
const ZSTD_compressionParameters* const cParams,
635
const BYTE* ip, U32 const mls, U32 const lazySkipping)
636
{
637
U32* const hashTable = ms->hashTable;
638
const U32 hashLog = cParams->hashLog;
639
U32* const chainTable = ms->chainTable;
640
const U32 chainMask = (1 << cParams->chainLog) - 1;
641
const BYTE* const base = ms->window.base;
642
const U32 target = (U32)(ip - base);
643
U32 idx = ms->nextToUpdate;
644
645
while(idx < target) { /* catch up */
646
size_t const h = ZSTD_hashPtr(base+idx, hashLog, mls);
647
NEXT_IN_CHAIN(idx, chainMask) = hashTable[h];
648
hashTable[h] = idx;
649
idx++;
650
/* Stop inserting every position when in the lazy skipping mode. */
651
if (lazySkipping)
652
break;
653
}
654
655
ms->nextToUpdate = target;
656
return hashTable[ZSTD_hashPtr(ip, hashLog, mls)];
657
}
658
659
U32 ZSTD_insertAndFindFirstIndex(ZSTD_MatchState_t* ms, const BYTE* ip) {
660
const ZSTD_compressionParameters* const cParams = &ms->cParams;
661
return ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, ms->cParams.minMatch, /* lazySkipping*/ 0);
662
}
663
664
/* inlining is important to hardwire a hot branch (template emulation) */
665
FORCE_INLINE_TEMPLATE
666
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
667
size_t ZSTD_HcFindBestMatch(
668
ZSTD_MatchState_t* ms,
669
const BYTE* const ip, const BYTE* const iLimit,
670
size_t* offsetPtr,
671
const U32 mls, const ZSTD_dictMode_e dictMode)
672
{
673
const ZSTD_compressionParameters* const cParams = &ms->cParams;
674
U32* const chainTable = ms->chainTable;
675
const U32 chainSize = (1 << cParams->chainLog);
676
const U32 chainMask = chainSize-1;
677
const BYTE* const base = ms->window.base;
678
const BYTE* const dictBase = ms->window.dictBase;
679
const U32 dictLimit = ms->window.dictLimit;
680
const BYTE* const prefixStart = base + dictLimit;
681
const BYTE* const dictEnd = dictBase + dictLimit;
682
const U32 curr = (U32)(ip-base);
683
const U32 maxDistance = 1U << cParams->windowLog;
684
const U32 lowestValid = ms->window.lowLimit;
685
const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
686
const U32 isDictionary = (ms->loadedDictEnd != 0);
687
const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance;
688
const U32 minChain = curr > chainSize ? curr - chainSize : 0;
689
U32 nbAttempts = 1U << cParams->searchLog;
690
size_t ml=4-1;
691
692
const ZSTD_MatchState_t* const dms = ms->dictMatchState;
693
const U32 ddsHashLog = dictMode == ZSTD_dedicatedDictSearch
694
? dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG : 0;
695
const size_t ddsIdx = dictMode == ZSTD_dedicatedDictSearch
696
? ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG : 0;
697
698
U32 matchIndex;
699
700
if (dictMode == ZSTD_dedicatedDictSearch) {
701
const U32* entry = &dms->hashTable[ddsIdx];
702
PREFETCH_L1(entry);
703
}
704
705
/* HC4 match finder */
706
matchIndex = ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, mls, ms->lazySkipping);
707
708
for ( ; (matchIndex>=lowLimit) & (nbAttempts>0) ; nbAttempts--) {
709
size_t currentMl=0;
710
if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
711
const BYTE* const match = base + matchIndex;
712
assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */
713
/* read 4B starting from (match + ml + 1 - sizeof(U32)) */
714
if (MEM_read32(match + ml - 3) == MEM_read32(ip + ml - 3)) /* potentially better */
715
currentMl = ZSTD_count(ip, match, iLimit);
716
} else {
717
const BYTE* const match = dictBase + matchIndex;
718
assert(match+4 <= dictEnd);
719
if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
720
currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4;
721
}
722
723
/* save best solution */
724
if (currentMl > ml) {
725
ml = currentMl;
726
*offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex);
727
if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
728
}
729
730
if (matchIndex <= minChain) break;
731
matchIndex = NEXT_IN_CHAIN(matchIndex, chainMask);
732
}
733
734
assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
735
if (dictMode == ZSTD_dedicatedDictSearch) {
736
ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts, dms,
737
ip, iLimit, prefixStart, curr, dictLimit, ddsIdx);
738
} else if (dictMode == ZSTD_dictMatchState) {
739
const U32* const dmsChainTable = dms->chainTable;
740
const U32 dmsChainSize = (1 << dms->cParams.chainLog);
741
const U32 dmsChainMask = dmsChainSize - 1;
742
const U32 dmsLowestIndex = dms->window.dictLimit;
743
const BYTE* const dmsBase = dms->window.base;
744
const BYTE* const dmsEnd = dms->window.nextSrc;
745
const U32 dmsSize = (U32)(dmsEnd - dmsBase);
746
const U32 dmsIndexDelta = dictLimit - dmsSize;
747
const U32 dmsMinChain = dmsSize > dmsChainSize ? dmsSize - dmsChainSize : 0;
748
749
matchIndex = dms->hashTable[ZSTD_hashPtr(ip, dms->cParams.hashLog, mls)];
750
751
for ( ; (matchIndex>=dmsLowestIndex) & (nbAttempts>0) ; nbAttempts--) {
752
size_t currentMl=0;
753
const BYTE* const match = dmsBase + matchIndex;
754
assert(match+4 <= dmsEnd);
755
if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
756
currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4;
757
758
/* save best solution */
759
if (currentMl > ml) {
760
ml = currentMl;
761
assert(curr > matchIndex + dmsIndexDelta);
762
*offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + dmsIndexDelta));
763
if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
764
}
765
766
if (matchIndex <= dmsMinChain) break;
767
768
matchIndex = dmsChainTable[matchIndex & dmsChainMask];
769
}
770
}
771
772
return ml;
773
}
774
775
/* *********************************
776
* (SIMD) Row-based matchfinder
777
***********************************/
778
/* Constants for row-based hash */
779
#define ZSTD_ROW_HASH_TAG_MASK ((1u << ZSTD_ROW_HASH_TAG_BITS) - 1)
780
#define ZSTD_ROW_HASH_MAX_ENTRIES 64 /* absolute maximum number of entries per row, for all configurations */
781
782
#define ZSTD_ROW_HASH_CACHE_MASK (ZSTD_ROW_HASH_CACHE_SIZE - 1)
783
784
typedef U64 ZSTD_VecMask; /* Clarifies when we are interacting with a U64 representing a mask of matches */
785
786
/* ZSTD_VecMask_next():
787
* Starting from the LSB, returns the idx of the next non-zero bit.
788
* Basically counting the nb of trailing zeroes.
789
*/
790
MEM_STATIC U32 ZSTD_VecMask_next(ZSTD_VecMask val) {
791
return ZSTD_countTrailingZeros64(val);
792
}
793
794
/* ZSTD_row_nextIndex():
795
* Returns the next index to insert at within a tagTable row, and updates the "head"
796
* value to reflect the update. Essentially cycles backwards from [1, {entries per row})
797
*/
798
FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextIndex(BYTE* const tagRow, U32 const rowMask) {
799
U32 next = (*tagRow-1) & rowMask;
800
next += (next == 0) ? rowMask : 0; /* skip first position */
801
*tagRow = (BYTE)next;
802
return next;
803
}
804
805
/* ZSTD_isAligned():
806
* Checks that a pointer is aligned to "align" bytes which must be a power of 2.
807
*/
808
MEM_STATIC int ZSTD_isAligned(void const* ptr, size_t align) {
809
assert((align & (align - 1)) == 0);
810
return (((size_t)ptr) & (align - 1)) == 0;
811
}
812
813
/* ZSTD_row_prefetch():
814
* Performs prefetching for the hashTable and tagTable at a given row.
815
*/
816
FORCE_INLINE_TEMPLATE void ZSTD_row_prefetch(U32 const* hashTable, BYTE const* tagTable, U32 const relRow, U32 const rowLog) {
817
PREFETCH_L1(hashTable + relRow);
818
if (rowLog >= 5) {
819
PREFETCH_L1(hashTable + relRow + 16);
820
/* Note: prefetching more of the hash table does not appear to be beneficial for 128-entry rows */
821
}
822
PREFETCH_L1(tagTable + relRow);
823
if (rowLog == 6) {
824
PREFETCH_L1(tagTable + relRow + 32);
825
}
826
assert(rowLog == 4 || rowLog == 5 || rowLog == 6);
827
assert(ZSTD_isAligned(hashTable + relRow, 64)); /* prefetched hash row always 64-byte aligned */
828
assert(ZSTD_isAligned(tagTable + relRow, (size_t)1 << rowLog)); /* prefetched tagRow sits on correct multiple of bytes (32,64,128) */
829
}
830
831
/* ZSTD_row_fillHashCache():
832
* Fill up the hash cache starting at idx, prefetching up to ZSTD_ROW_HASH_CACHE_SIZE entries,
833
* but not beyond iLimit.
834
*/
835
FORCE_INLINE_TEMPLATE
836
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
837
void ZSTD_row_fillHashCache(ZSTD_MatchState_t* ms, const BYTE* base,
838
U32 const rowLog, U32 const mls,
839
U32 idx, const BYTE* const iLimit)
840
{
841
U32 const* const hashTable = ms->hashTable;
842
BYTE const* const tagTable = ms->tagTable;
843
U32 const hashLog = ms->rowHashLog;
844
U32 const maxElemsToPrefetch = (base + idx) > iLimit ? 0 : (U32)(iLimit - (base + idx) + 1);
845
U32 const lim = idx + MIN(ZSTD_ROW_HASH_CACHE_SIZE, maxElemsToPrefetch);
846
847
for (; idx < lim; ++idx) {
848
U32 const hash = (U32)ZSTD_hashPtrSalted(base + idx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt);
849
U32 const row = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
850
ZSTD_row_prefetch(hashTable, tagTable, row, rowLog);
851
ms->hashCache[idx & ZSTD_ROW_HASH_CACHE_MASK] = hash;
852
}
853
854
DEBUGLOG(6, "ZSTD_row_fillHashCache(): [%u %u %u %u %u %u %u %u]", ms->hashCache[0], ms->hashCache[1],
855
ms->hashCache[2], ms->hashCache[3], ms->hashCache[4],
856
ms->hashCache[5], ms->hashCache[6], ms->hashCache[7]);
857
}
858
859
/* ZSTD_row_nextCachedHash():
860
* Returns the hash of base + idx, and replaces the hash in the hash cache with the byte at
861
* base + idx + ZSTD_ROW_HASH_CACHE_SIZE. Also prefetches the appropriate rows from hashTable and tagTable.
862
*/
863
FORCE_INLINE_TEMPLATE
864
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
865
U32 ZSTD_row_nextCachedHash(U32* cache, U32 const* hashTable,
866
BYTE const* tagTable, BYTE const* base,
867
U32 idx, U32 const hashLog,
868
U32 const rowLog, U32 const mls,
869
U64 const hashSalt)
870
{
871
U32 const newHash = (U32)ZSTD_hashPtrSalted(base+idx+ZSTD_ROW_HASH_CACHE_SIZE, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, hashSalt);
872
U32 const row = (newHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
873
ZSTD_row_prefetch(hashTable, tagTable, row, rowLog);
874
{ U32 const hash = cache[idx & ZSTD_ROW_HASH_CACHE_MASK];
875
cache[idx & ZSTD_ROW_HASH_CACHE_MASK] = newHash;
876
return hash;
877
}
878
}
879
880
/* ZSTD_row_update_internalImpl():
881
* Updates the hash table with positions starting from updateStartIdx until updateEndIdx.
882
*/
883
FORCE_INLINE_TEMPLATE
884
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
885
void ZSTD_row_update_internalImpl(ZSTD_MatchState_t* ms,
886
U32 updateStartIdx, U32 const updateEndIdx,
887
U32 const mls, U32 const rowLog,
888
U32 const rowMask, U32 const useCache)
889
{
890
U32* const hashTable = ms->hashTable;
891
BYTE* const tagTable = ms->tagTable;
892
U32 const hashLog = ms->rowHashLog;
893
const BYTE* const base = ms->window.base;
894
895
DEBUGLOG(6, "ZSTD_row_update_internalImpl(): updateStartIdx=%u, updateEndIdx=%u", updateStartIdx, updateEndIdx);
896
for (; updateStartIdx < updateEndIdx; ++updateStartIdx) {
897
U32 const hash = useCache ? ZSTD_row_nextCachedHash(ms->hashCache, hashTable, tagTable, base, updateStartIdx, hashLog, rowLog, mls, ms->hashSalt)
898
: (U32)ZSTD_hashPtrSalted(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt);
899
U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
900
U32* const row = hashTable + relRow;
901
BYTE* tagRow = tagTable + relRow;
902
U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask);
903
904
assert(hash == ZSTD_hashPtrSalted(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt));
905
tagRow[pos] = hash & ZSTD_ROW_HASH_TAG_MASK;
906
row[pos] = updateStartIdx;
907
}
908
}
909
910
/* ZSTD_row_update_internal():
911
* Inserts the byte at ip into the appropriate position in the hash table, and updates ms->nextToUpdate.
912
* Skips sections of long matches as is necessary.
913
*/
914
FORCE_INLINE_TEMPLATE
915
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
916
void ZSTD_row_update_internal(ZSTD_MatchState_t* ms, const BYTE* ip,
917
U32 const mls, U32 const rowLog,
918
U32 const rowMask, U32 const useCache)
919
{
920
U32 idx = ms->nextToUpdate;
921
const BYTE* const base = ms->window.base;
922
const U32 target = (U32)(ip - base);
923
const U32 kSkipThreshold = 384;
924
const U32 kMaxMatchStartPositionsToUpdate = 96;
925
const U32 kMaxMatchEndPositionsToUpdate = 32;
926
927
if (useCache) {
928
/* Only skip positions when using hash cache, i.e.
929
* if we are loading a dict, don't skip anything.
930
* If we decide to skip, then we only update a set number
931
* of positions at the beginning and end of the match.
932
*/
933
if (UNLIKELY(target - idx > kSkipThreshold)) {
934
U32 const bound = idx + kMaxMatchStartPositionsToUpdate;
935
ZSTD_row_update_internalImpl(ms, idx, bound, mls, rowLog, rowMask, useCache);
936
idx = target - kMaxMatchEndPositionsToUpdate;
937
ZSTD_row_fillHashCache(ms, base, rowLog, mls, idx, ip+1);
938
}
939
}
940
assert(target >= idx);
941
ZSTD_row_update_internalImpl(ms, idx, target, mls, rowLog, rowMask, useCache);
942
ms->nextToUpdate = target;
943
}
944
945
/* ZSTD_row_update():
946
* External wrapper for ZSTD_row_update_internal(). Used for filling the hashtable during dictionary
947
* processing.
948
*/
949
void ZSTD_row_update(ZSTD_MatchState_t* const ms, const BYTE* ip) {
950
const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6);
951
const U32 rowMask = (1u << rowLog) - 1;
952
const U32 mls = MIN(ms->cParams.minMatch, 6 /* mls caps out at 6 */);
953
954
DEBUGLOG(5, "ZSTD_row_update(), rowLog=%u", rowLog);
955
ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 0 /* don't use cache */);
956
}
957
958
/* Returns the mask width of bits group of which will be set to 1. Given not all
959
* architectures have easy movemask instruction, this helps to iterate over
960
* groups of bits easier and faster.
961
*/
962
FORCE_INLINE_TEMPLATE U32
963
ZSTD_row_matchMaskGroupWidth(const U32 rowEntries)
964
{
965
assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64);
966
assert(rowEntries <= ZSTD_ROW_HASH_MAX_ENTRIES);
967
(void)rowEntries;
968
#if defined(ZSTD_ARCH_ARM_NEON)
969
/* NEON path only works for little endian */
970
if (!MEM_isLittleEndian()) {
971
return 1;
972
}
973
if (rowEntries == 16) {
974
return 4;
975
}
976
if (rowEntries == 32) {
977
return 2;
978
}
979
if (rowEntries == 64) {
980
return 1;
981
}
982
#endif
983
return 1;
984
}
985
986
#if defined(ZSTD_ARCH_X86_SSE2)
987
FORCE_INLINE_TEMPLATE ZSTD_VecMask
988
ZSTD_row_getSSEMask(int nbChunks, const BYTE* const src, const BYTE tag, const U32 head)
989
{
990
const __m128i comparisonMask = _mm_set1_epi8((char)tag);
991
int matches[4] = {0};
992
int i;
993
assert(nbChunks == 1 || nbChunks == 2 || nbChunks == 4);
994
for (i=0; i<nbChunks; i++) {
995
const __m128i chunk = _mm_loadu_si128((const __m128i*)(const void*)(src + 16*i));
996
const __m128i equalMask = _mm_cmpeq_epi8(chunk, comparisonMask);
997
matches[i] = _mm_movemask_epi8(equalMask);
998
}
999
if (nbChunks == 1) return ZSTD_rotateRight_U16((U16)matches[0], head);
1000
if (nbChunks == 2) return ZSTD_rotateRight_U32((U32)matches[1] << 16 | (U32)matches[0], head);
1001
assert(nbChunks == 4);
1002
return ZSTD_rotateRight_U64((U64)matches[3] << 48 | (U64)matches[2] << 32 | (U64)matches[1] << 16 | (U64)matches[0], head);
1003
}
1004
#endif
1005
1006
#if defined(ZSTD_ARCH_ARM_NEON)
1007
FORCE_INLINE_TEMPLATE ZSTD_VecMask
1008
ZSTD_row_getNEONMask(const U32 rowEntries, const BYTE* const src, const BYTE tag, const U32 headGrouped)
1009
{
1010
assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64);
1011
if (rowEntries == 16) {
1012
/* vshrn_n_u16 shifts by 4 every u16 and narrows to 8 lower bits.
1013
* After that groups of 4 bits represent the equalMask. We lower
1014
* all bits except the highest in these groups by doing AND with
1015
* 0x88 = 0b10001000.
1016
*/
1017
const uint8x16_t chunk = vld1q_u8(src);
1018
const uint16x8_t equalMask = vreinterpretq_u16_u8(vceqq_u8(chunk, vdupq_n_u8(tag)));
1019
const uint8x8_t res = vshrn_n_u16(equalMask, 4);
1020
const U64 matches = vget_lane_u64(vreinterpret_u64_u8(res), 0);
1021
return ZSTD_rotateRight_U64(matches, headGrouped) & 0x8888888888888888ull;
1022
} else if (rowEntries == 32) {
1023
/* Same idea as with rowEntries == 16 but doing AND with
1024
* 0x55 = 0b01010101.
1025
*/
1026
const uint16x8x2_t chunk = vld2q_u16((const uint16_t*)(const void*)src);
1027
const uint8x16_t chunk0 = vreinterpretq_u8_u16(chunk.val[0]);
1028
const uint8x16_t chunk1 = vreinterpretq_u8_u16(chunk.val[1]);
1029
const uint8x16_t dup = vdupq_n_u8(tag);
1030
const uint8x8_t t0 = vshrn_n_u16(vreinterpretq_u16_u8(vceqq_u8(chunk0, dup)), 6);
1031
const uint8x8_t t1 = vshrn_n_u16(vreinterpretq_u16_u8(vceqq_u8(chunk1, dup)), 6);
1032
const uint8x8_t res = vsli_n_u8(t0, t1, 4);
1033
const U64 matches = vget_lane_u64(vreinterpret_u64_u8(res), 0) ;
1034
return ZSTD_rotateRight_U64(matches, headGrouped) & 0x5555555555555555ull;
1035
} else { /* rowEntries == 64 */
1036
const uint8x16x4_t chunk = vld4q_u8(src);
1037
const uint8x16_t dup = vdupq_n_u8(tag);
1038
const uint8x16_t cmp0 = vceqq_u8(chunk.val[0], dup);
1039
const uint8x16_t cmp1 = vceqq_u8(chunk.val[1], dup);
1040
const uint8x16_t cmp2 = vceqq_u8(chunk.val[2], dup);
1041
const uint8x16_t cmp3 = vceqq_u8(chunk.val[3], dup);
1042
1043
const uint8x16_t t0 = vsriq_n_u8(cmp1, cmp0, 1);
1044
const uint8x16_t t1 = vsriq_n_u8(cmp3, cmp2, 1);
1045
const uint8x16_t t2 = vsriq_n_u8(t1, t0, 2);
1046
const uint8x16_t t3 = vsriq_n_u8(t2, t2, 4);
1047
const uint8x8_t t4 = vshrn_n_u16(vreinterpretq_u16_u8(t3), 4);
1048
const U64 matches = vget_lane_u64(vreinterpret_u64_u8(t4), 0);
1049
return ZSTD_rotateRight_U64(matches, headGrouped);
1050
}
1051
}
1052
#endif
1053
1054
/* Returns a ZSTD_VecMask (U64) that has the nth group (determined by
1055
* ZSTD_row_matchMaskGroupWidth) of bits set to 1 if the newly-computed "tag"
1056
* matches the hash at the nth position in a row of the tagTable.
1057
* Each row is a circular buffer beginning at the value of "headGrouped". So we
1058
* must rotate the "matches" bitfield to match up with the actual layout of the
1059
* entries within the hashTable */
1060
FORCE_INLINE_TEMPLATE ZSTD_VecMask
1061
ZSTD_row_getMatchMask(const BYTE* const tagRow, const BYTE tag, const U32 headGrouped, const U32 rowEntries)
1062
{
1063
const BYTE* const src = tagRow;
1064
assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64);
1065
assert(rowEntries <= ZSTD_ROW_HASH_MAX_ENTRIES);
1066
assert(ZSTD_row_matchMaskGroupWidth(rowEntries) * rowEntries <= sizeof(ZSTD_VecMask) * 8);
1067
1068
#if defined(ZSTD_ARCH_X86_SSE2)
1069
1070
return ZSTD_row_getSSEMask(rowEntries / 16, src, tag, headGrouped);
1071
1072
#else /* SW or NEON-LE */
1073
1074
# if defined(ZSTD_ARCH_ARM_NEON)
1075
/* This NEON path only works for little endian - otherwise use SWAR below */
1076
if (MEM_isLittleEndian()) {
1077
return ZSTD_row_getNEONMask(rowEntries, src, tag, headGrouped);
1078
}
1079
# endif /* ZSTD_ARCH_ARM_NEON */
1080
/* SWAR */
1081
{ const int chunkSize = sizeof(size_t);
1082
const size_t shiftAmount = ((chunkSize * 8) - chunkSize);
1083
const size_t xFF = ~((size_t)0);
1084
const size_t x01 = xFF / 0xFF;
1085
const size_t x80 = x01 << 7;
1086
const size_t splatChar = tag * x01;
1087
ZSTD_VecMask matches = 0;
1088
int i = rowEntries - chunkSize;
1089
assert((sizeof(size_t) == 4) || (sizeof(size_t) == 8));
1090
if (MEM_isLittleEndian()) { /* runtime check so have two loops */
1091
const size_t extractMagic = (xFF / 0x7F) >> chunkSize;
1092
do {
1093
size_t chunk = MEM_readST(&src[i]);
1094
chunk ^= splatChar;
1095
chunk = (((chunk | x80) - x01) | chunk) & x80;
1096
matches <<= chunkSize;
1097
matches |= (chunk * extractMagic) >> shiftAmount;
1098
i -= chunkSize;
1099
} while (i >= 0);
1100
} else { /* big endian: reverse bits during extraction */
1101
const size_t msb = xFF ^ (xFF >> 1);
1102
const size_t extractMagic = (msb / 0x1FF) | msb;
1103
do {
1104
size_t chunk = MEM_readST(&src[i]);
1105
chunk ^= splatChar;
1106
chunk = (((chunk | x80) - x01) | chunk) & x80;
1107
matches <<= chunkSize;
1108
matches |= ((chunk >> 7) * extractMagic) >> shiftAmount;
1109
i -= chunkSize;
1110
} while (i >= 0);
1111
}
1112
matches = ~matches;
1113
if (rowEntries == 16) {
1114
return ZSTD_rotateRight_U16((U16)matches, headGrouped);
1115
} else if (rowEntries == 32) {
1116
return ZSTD_rotateRight_U32((U32)matches, headGrouped);
1117
} else {
1118
return ZSTD_rotateRight_U64((U64)matches, headGrouped);
1119
}
1120
}
1121
#endif
1122
}
1123
1124
/* The high-level approach of the SIMD row based match finder is as follows:
1125
* - Figure out where to insert the new entry:
1126
* - Generate a hash for current input position and split it into a one byte of tag and `rowHashLog` bits of index.
1127
* - The hash is salted by a value that changes on every context reset, so when the same table is used
1128
* we will avoid collisions that would otherwise slow us down by introducing phantom matches.
1129
* - The hashTable is effectively split into groups or "rows" of 15 or 31 entries of U32, and the index determines
1130
* which row to insert into.
1131
* - Determine the correct position within the row to insert the entry into. Each row of 15 or 31 can
1132
* be considered as a circular buffer with a "head" index that resides in the tagTable (overall 16 or 32 bytes
1133
* per row).
1134
* - Use SIMD to efficiently compare the tags in the tagTable to the 1-byte tag calculated for the position and
1135
* generate a bitfield that we can cycle through to check the collisions in the hash table.
1136
* - Pick the longest match.
1137
* - Insert the tag into the equivalent row and position in the tagTable.
1138
*/
1139
FORCE_INLINE_TEMPLATE
1140
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
1141
size_t ZSTD_RowFindBestMatch(
1142
ZSTD_MatchState_t* ms,
1143
const BYTE* const ip, const BYTE* const iLimit,
1144
size_t* offsetPtr,
1145
const U32 mls, const ZSTD_dictMode_e dictMode,
1146
const U32 rowLog)
1147
{
1148
U32* const hashTable = ms->hashTable;
1149
BYTE* const tagTable = ms->tagTable;
1150
U32* const hashCache = ms->hashCache;
1151
const U32 hashLog = ms->rowHashLog;
1152
const ZSTD_compressionParameters* const cParams = &ms->cParams;
1153
const BYTE* const base = ms->window.base;
1154
const BYTE* const dictBase = ms->window.dictBase;
1155
const U32 dictLimit = ms->window.dictLimit;
1156
const BYTE* const prefixStart = base + dictLimit;
1157
const BYTE* const dictEnd = dictBase + dictLimit;
1158
const U32 curr = (U32)(ip-base);
1159
const U32 maxDistance = 1U << cParams->windowLog;
1160
const U32 lowestValid = ms->window.lowLimit;
1161
const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
1162
const U32 isDictionary = (ms->loadedDictEnd != 0);
1163
const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance;
1164
const U32 rowEntries = (1U << rowLog);
1165
const U32 rowMask = rowEntries - 1;
1166
const U32 cappedSearchLog = MIN(cParams->searchLog, rowLog); /* nb of searches is capped at nb entries per row */
1167
const U32 groupWidth = ZSTD_row_matchMaskGroupWidth(rowEntries);
1168
const U64 hashSalt = ms->hashSalt;
1169
U32 nbAttempts = 1U << cappedSearchLog;
1170
size_t ml=4-1;
1171
U32 hash;
1172
1173
/* DMS/DDS variables that may be referenced laster */
1174
const ZSTD_MatchState_t* const dms = ms->dictMatchState;
1175
1176
/* Initialize the following variables to satisfy static analyzer */
1177
size_t ddsIdx = 0;
1178
U32 ddsExtraAttempts = 0; /* cctx hash tables are limited in searches, but allow extra searches into DDS */
1179
U32 dmsTag = 0;
1180
U32* dmsRow = NULL;
1181
BYTE* dmsTagRow = NULL;
1182
1183
if (dictMode == ZSTD_dedicatedDictSearch) {
1184
const U32 ddsHashLog = dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG;
1185
{ /* Prefetch DDS hashtable entry */
1186
ddsIdx = ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG;
1187
PREFETCH_L1(&dms->hashTable[ddsIdx]);
1188
}
1189
ddsExtraAttempts = cParams->searchLog > rowLog ? 1U << (cParams->searchLog - rowLog) : 0;
1190
}
1191
1192
if (dictMode == ZSTD_dictMatchState) {
1193
/* Prefetch DMS rows */
1194
U32* const dmsHashTable = dms->hashTable;
1195
BYTE* const dmsTagTable = dms->tagTable;
1196
U32 const dmsHash = (U32)ZSTD_hashPtr(ip, dms->rowHashLog + ZSTD_ROW_HASH_TAG_BITS, mls);
1197
U32 const dmsRelRow = (dmsHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
1198
dmsTag = dmsHash & ZSTD_ROW_HASH_TAG_MASK;
1199
dmsTagRow = (BYTE*)(dmsTagTable + dmsRelRow);
1200
dmsRow = dmsHashTable + dmsRelRow;
1201
ZSTD_row_prefetch(dmsHashTable, dmsTagTable, dmsRelRow, rowLog);
1202
}
1203
1204
/* Update the hashTable and tagTable up to (but not including) ip */
1205
if (!ms->lazySkipping) {
1206
ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 1 /* useCache */);
1207
hash = ZSTD_row_nextCachedHash(hashCache, hashTable, tagTable, base, curr, hashLog, rowLog, mls, hashSalt);
1208
} else {
1209
/* Stop inserting every position when in the lazy skipping mode.
1210
* The hash cache is also not kept up to date in this mode.
1211
*/
1212
hash = (U32)ZSTD_hashPtrSalted(ip, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, hashSalt);
1213
ms->nextToUpdate = curr;
1214
}
1215
ms->hashSaltEntropy += hash; /* collect salt entropy */
1216
1217
{ /* Get the hash for ip, compute the appropriate row */
1218
U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
1219
U32 const tag = hash & ZSTD_ROW_HASH_TAG_MASK;
1220
U32* const row = hashTable + relRow;
1221
BYTE* tagRow = (BYTE*)(tagTable + relRow);
1222
U32 const headGrouped = (*tagRow & rowMask) * groupWidth;
1223
U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES];
1224
size_t numMatches = 0;
1225
size_t currMatch = 0;
1226
ZSTD_VecMask matches = ZSTD_row_getMatchMask(tagRow, (BYTE)tag, headGrouped, rowEntries);
1227
1228
/* Cycle through the matches and prefetch */
1229
for (; (matches > 0) && (nbAttempts > 0); matches &= (matches - 1)) {
1230
U32 const matchPos = ((headGrouped + ZSTD_VecMask_next(matches)) / groupWidth) & rowMask;
1231
U32 const matchIndex = row[matchPos];
1232
if(matchPos == 0) continue;
1233
assert(numMatches < rowEntries);
1234
if (matchIndex < lowLimit)
1235
break;
1236
if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
1237
PREFETCH_L1(base + matchIndex);
1238
} else {
1239
PREFETCH_L1(dictBase + matchIndex);
1240
}
1241
matchBuffer[numMatches++] = matchIndex;
1242
--nbAttempts;
1243
}
1244
1245
/* Speed opt: insert current byte into hashtable too. This allows us to avoid one iteration of the loop
1246
in ZSTD_row_update_internal() at the next search. */
1247
{
1248
U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask);
1249
tagRow[pos] = (BYTE)tag;
1250
row[pos] = ms->nextToUpdate++;
1251
}
1252
1253
/* Return the longest match */
1254
for (; currMatch < numMatches; ++currMatch) {
1255
U32 const matchIndex = matchBuffer[currMatch];
1256
size_t currentMl=0;
1257
assert(matchIndex < curr);
1258
assert(matchIndex >= lowLimit);
1259
1260
if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
1261
const BYTE* const match = base + matchIndex;
1262
assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */
1263
/* read 4B starting from (match + ml + 1 - sizeof(U32)) */
1264
if (MEM_read32(match + ml - 3) == MEM_read32(ip + ml - 3)) /* potentially better */
1265
currentMl = ZSTD_count(ip, match, iLimit);
1266
} else {
1267
const BYTE* const match = dictBase + matchIndex;
1268
assert(match+4 <= dictEnd);
1269
if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
1270
currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4;
1271
}
1272
1273
/* Save best solution */
1274
if (currentMl > ml) {
1275
ml = currentMl;
1276
*offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex);
1277
if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
1278
}
1279
}
1280
}
1281
1282
assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
1283
if (dictMode == ZSTD_dedicatedDictSearch) {
1284
ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts + ddsExtraAttempts, dms,
1285
ip, iLimit, prefixStart, curr, dictLimit, ddsIdx);
1286
} else if (dictMode == ZSTD_dictMatchState) {
1287
/* TODO: Measure and potentially add prefetching to DMS */
1288
const U32 dmsLowestIndex = dms->window.dictLimit;
1289
const BYTE* const dmsBase = dms->window.base;
1290
const BYTE* const dmsEnd = dms->window.nextSrc;
1291
const U32 dmsSize = (U32)(dmsEnd - dmsBase);
1292
const U32 dmsIndexDelta = dictLimit - dmsSize;
1293
1294
{ U32 const headGrouped = (*dmsTagRow & rowMask) * groupWidth;
1295
U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES];
1296
size_t numMatches = 0;
1297
size_t currMatch = 0;
1298
ZSTD_VecMask matches = ZSTD_row_getMatchMask(dmsTagRow, (BYTE)dmsTag, headGrouped, rowEntries);
1299
1300
for (; (matches > 0) && (nbAttempts > 0); matches &= (matches - 1)) {
1301
U32 const matchPos = ((headGrouped + ZSTD_VecMask_next(matches)) / groupWidth) & rowMask;
1302
U32 const matchIndex = dmsRow[matchPos];
1303
if(matchPos == 0) continue;
1304
if (matchIndex < dmsLowestIndex)
1305
break;
1306
PREFETCH_L1(dmsBase + matchIndex);
1307
matchBuffer[numMatches++] = matchIndex;
1308
--nbAttempts;
1309
}
1310
1311
/* Return the longest match */
1312
for (; currMatch < numMatches; ++currMatch) {
1313
U32 const matchIndex = matchBuffer[currMatch];
1314
size_t currentMl=0;
1315
assert(matchIndex >= dmsLowestIndex);
1316
assert(matchIndex < curr);
1317
1318
{ const BYTE* const match = dmsBase + matchIndex;
1319
assert(match+4 <= dmsEnd);
1320
if (MEM_read32(match) == MEM_read32(ip))
1321
currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4;
1322
}
1323
1324
if (currentMl > ml) {
1325
ml = currentMl;
1326
assert(curr > matchIndex + dmsIndexDelta);
1327
*offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + dmsIndexDelta));
1328
if (ip+currentMl == iLimit) break;
1329
}
1330
}
1331
}
1332
}
1333
return ml;
1334
}
1335
1336
1337
/**
1338
* Generate search functions templated on (dictMode, mls, rowLog).
1339
* These functions are outlined for code size & compilation time.
1340
* ZSTD_searchMax() dispatches to the correct implementation function.
1341
*
1342
* TODO: The start of the search function involves loading and calculating a
1343
* bunch of constants from the ZSTD_MatchState_t. These computations could be
1344
* done in an initialization function, and saved somewhere in the match state.
1345
* Then we could pass a pointer to the saved state instead of the match state,
1346
* and avoid duplicate computations.
1347
*
1348
* TODO: Move the match re-winding into searchMax. This improves compression
1349
* ratio, and unlocks further simplifications with the next TODO.
1350
*
1351
* TODO: Try moving the repcode search into searchMax. After the re-winding
1352
* and repcode search are in searchMax, there is no more logic in the match
1353
* finder loop that requires knowledge about the dictMode. So we should be
1354
* able to avoid force inlining it, and we can join the extDict loop with
1355
* the single segment loop. It should go in searchMax instead of its own
1356
* function to avoid having multiple virtual function calls per search.
1357
*/
1358
1359
#define ZSTD_BT_SEARCH_FN(dictMode, mls) ZSTD_BtFindBestMatch_##dictMode##_##mls
1360
#define ZSTD_HC_SEARCH_FN(dictMode, mls) ZSTD_HcFindBestMatch_##dictMode##_##mls
1361
#define ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog) ZSTD_RowFindBestMatch_##dictMode##_##mls##_##rowLog
1362
1363
#define ZSTD_SEARCH_FN_ATTRS FORCE_NOINLINE
1364
1365
#define GEN_ZSTD_BT_SEARCH_FN(dictMode, mls) \
1366
ZSTD_SEARCH_FN_ATTRS size_t ZSTD_BT_SEARCH_FN(dictMode, mls)( \
1367
ZSTD_MatchState_t* ms, \
1368
const BYTE* ip, const BYTE* const iLimit, \
1369
size_t* offBasePtr) \
1370
{ \
1371
assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \
1372
return ZSTD_BtFindBestMatch(ms, ip, iLimit, offBasePtr, mls, ZSTD_##dictMode); \
1373
} \
1374
1375
#define GEN_ZSTD_HC_SEARCH_FN(dictMode, mls) \
1376
ZSTD_SEARCH_FN_ATTRS size_t ZSTD_HC_SEARCH_FN(dictMode, mls)( \
1377
ZSTD_MatchState_t* ms, \
1378
const BYTE* ip, const BYTE* const iLimit, \
1379
size_t* offsetPtr) \
1380
{ \
1381
assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \
1382
return ZSTD_HcFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode); \
1383
} \
1384
1385
#define GEN_ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog) \
1386
ZSTD_SEARCH_FN_ATTRS size_t ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog)( \
1387
ZSTD_MatchState_t* ms, \
1388
const BYTE* ip, const BYTE* const iLimit, \
1389
size_t* offsetPtr) \
1390
{ \
1391
assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \
1392
assert(MAX(4, MIN(6, ms->cParams.searchLog)) == rowLog); \
1393
return ZSTD_RowFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode, rowLog); \
1394
} \
1395
1396
#define ZSTD_FOR_EACH_ROWLOG(X, dictMode, mls) \
1397
X(dictMode, mls, 4) \
1398
X(dictMode, mls, 5) \
1399
X(dictMode, mls, 6)
1400
1401
#define ZSTD_FOR_EACH_MLS_ROWLOG(X, dictMode) \
1402
ZSTD_FOR_EACH_ROWLOG(X, dictMode, 4) \
1403
ZSTD_FOR_EACH_ROWLOG(X, dictMode, 5) \
1404
ZSTD_FOR_EACH_ROWLOG(X, dictMode, 6)
1405
1406
#define ZSTD_FOR_EACH_MLS(X, dictMode) \
1407
X(dictMode, 4) \
1408
X(dictMode, 5) \
1409
X(dictMode, 6)
1410
1411
#define ZSTD_FOR_EACH_DICT_MODE(X, ...) \
1412
X(__VA_ARGS__, noDict) \
1413
X(__VA_ARGS__, extDict) \
1414
X(__VA_ARGS__, dictMatchState) \
1415
X(__VA_ARGS__, dedicatedDictSearch)
1416
1417
/* Generate row search fns for each combination of (dictMode, mls, rowLog) */
1418
ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS_ROWLOG, GEN_ZSTD_ROW_SEARCH_FN)
1419
/* Generate binary Tree search fns for each combination of (dictMode, mls) */
1420
ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_BT_SEARCH_FN)
1421
/* Generate hash chain search fns for each combination of (dictMode, mls) */
1422
ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_HC_SEARCH_FN)
1423
1424
typedef enum { search_hashChain=0, search_binaryTree=1, search_rowHash=2 } searchMethod_e;
1425
1426
#define GEN_ZSTD_CALL_BT_SEARCH_FN(dictMode, mls) \
1427
case mls: \
1428
return ZSTD_BT_SEARCH_FN(dictMode, mls)(ms, ip, iend, offsetPtr);
1429
#define GEN_ZSTD_CALL_HC_SEARCH_FN(dictMode, mls) \
1430
case mls: \
1431
return ZSTD_HC_SEARCH_FN(dictMode, mls)(ms, ip, iend, offsetPtr);
1432
#define GEN_ZSTD_CALL_ROW_SEARCH_FN(dictMode, mls, rowLog) \
1433
case rowLog: \
1434
return ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog)(ms, ip, iend, offsetPtr);
1435
1436
#define ZSTD_SWITCH_MLS(X, dictMode) \
1437
switch (mls) { \
1438
ZSTD_FOR_EACH_MLS(X, dictMode) \
1439
}
1440
1441
#define ZSTD_SWITCH_ROWLOG(dictMode, mls) \
1442
case mls: \
1443
switch (rowLog) { \
1444
ZSTD_FOR_EACH_ROWLOG(GEN_ZSTD_CALL_ROW_SEARCH_FN, dictMode, mls) \
1445
} \
1446
ZSTD_UNREACHABLE; \
1447
break;
1448
1449
#define ZSTD_SWITCH_SEARCH_METHOD(dictMode) \
1450
switch (searchMethod) { \
1451
case search_hashChain: \
1452
ZSTD_SWITCH_MLS(GEN_ZSTD_CALL_HC_SEARCH_FN, dictMode) \
1453
break; \
1454
case search_binaryTree: \
1455
ZSTD_SWITCH_MLS(GEN_ZSTD_CALL_BT_SEARCH_FN, dictMode) \
1456
break; \
1457
case search_rowHash: \
1458
ZSTD_SWITCH_MLS(ZSTD_SWITCH_ROWLOG, dictMode) \
1459
break; \
1460
} \
1461
ZSTD_UNREACHABLE;
1462
1463
/**
1464
* Searches for the longest match at @p ip.
1465
* Dispatches to the correct implementation function based on the
1466
* (searchMethod, dictMode, mls, rowLog). We use switch statements
1467
* here instead of using an indirect function call through a function
1468
* pointer because after Spectre and Meltdown mitigations, indirect
1469
* function calls can be very costly, especially in the kernel.
1470
*
1471
* NOTE: dictMode and searchMethod should be templated, so those switch
1472
* statements should be optimized out. Only the mls & rowLog switches
1473
* should be left.
1474
*
1475
* @param ms The match state.
1476
* @param ip The position to search at.
1477
* @param iend The end of the input data.
1478
* @param[out] offsetPtr Stores the match offset into this pointer.
1479
* @param mls The minimum search length, in the range [4, 6].
1480
* @param rowLog The row log (if applicable), in the range [4, 6].
1481
* @param searchMethod The search method to use (templated).
1482
* @param dictMode The dictMode (templated).
1483
*
1484
* @returns The length of the longest match found, or < mls if no match is found.
1485
* If a match is found its offset is stored in @p offsetPtr.
1486
*/
1487
FORCE_INLINE_TEMPLATE size_t ZSTD_searchMax(
1488
ZSTD_MatchState_t* ms,
1489
const BYTE* ip,
1490
const BYTE* iend,
1491
size_t* offsetPtr,
1492
U32 const mls,
1493
U32 const rowLog,
1494
searchMethod_e const searchMethod,
1495
ZSTD_dictMode_e const dictMode)
1496
{
1497
if (dictMode == ZSTD_noDict) {
1498
ZSTD_SWITCH_SEARCH_METHOD(noDict)
1499
} else if (dictMode == ZSTD_extDict) {
1500
ZSTD_SWITCH_SEARCH_METHOD(extDict)
1501
} else if (dictMode == ZSTD_dictMatchState) {
1502
ZSTD_SWITCH_SEARCH_METHOD(dictMatchState)
1503
} else if (dictMode == ZSTD_dedicatedDictSearch) {
1504
ZSTD_SWITCH_SEARCH_METHOD(dedicatedDictSearch)
1505
}
1506
ZSTD_UNREACHABLE;
1507
return 0;
1508
}
1509
1510
/* *******************************
1511
* Common parser - lazy strategy
1512
*********************************/
1513
1514
FORCE_INLINE_TEMPLATE
1515
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
1516
size_t ZSTD_compressBlock_lazy_generic(
1517
ZSTD_MatchState_t* ms, SeqStore_t* seqStore,
1518
U32 rep[ZSTD_REP_NUM],
1519
const void* src, size_t srcSize,
1520
const searchMethod_e searchMethod, const U32 depth,
1521
ZSTD_dictMode_e const dictMode)
1522
{
1523
const BYTE* const istart = (const BYTE*)src;
1524
const BYTE* ip = istart;
1525
const BYTE* anchor = istart;
1526
const BYTE* const iend = istart + srcSize;
1527
const BYTE* const ilimit = (searchMethod == search_rowHash) ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8;
1528
const BYTE* const base = ms->window.base;
1529
const U32 prefixLowestIndex = ms->window.dictLimit;
1530
const BYTE* const prefixLowest = base + prefixLowestIndex;
1531
const U32 mls = BOUNDED(4, ms->cParams.minMatch, 6);
1532
const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6);
1533
1534
U32 offset_1 = rep[0], offset_2 = rep[1];
1535
U32 offsetSaved1 = 0, offsetSaved2 = 0;
1536
1537
const int isDMS = dictMode == ZSTD_dictMatchState;
1538
const int isDDS = dictMode == ZSTD_dedicatedDictSearch;
1539
const int isDxS = isDMS || isDDS;
1540
const ZSTD_MatchState_t* const dms = ms->dictMatchState;
1541
const U32 dictLowestIndex = isDxS ? dms->window.dictLimit : 0;
1542
const BYTE* const dictBase = isDxS ? dms->window.base : NULL;
1543
const BYTE* const dictLowest = isDxS ? dictBase + dictLowestIndex : NULL;
1544
const BYTE* const dictEnd = isDxS ? dms->window.nextSrc : NULL;
1545
const U32 dictIndexDelta = isDxS ?
1546
prefixLowestIndex - (U32)(dictEnd - dictBase) :
1547
0;
1548
const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictLowest));
1549
1550
DEBUGLOG(5, "ZSTD_compressBlock_lazy_generic (dictMode=%u) (searchFunc=%u)", (U32)dictMode, (U32)searchMethod);
1551
ip += (dictAndPrefixLength == 0);
1552
if (dictMode == ZSTD_noDict) {
1553
U32 const curr = (U32)(ip - base);
1554
U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, ms->cParams.windowLog);
1555
U32 const maxRep = curr - windowLow;
1556
if (offset_2 > maxRep) offsetSaved2 = offset_2, offset_2 = 0;
1557
if (offset_1 > maxRep) offsetSaved1 = offset_1, offset_1 = 0;
1558
}
1559
if (isDxS) {
1560
/* dictMatchState repCode checks don't currently handle repCode == 0
1561
* disabling. */
1562
assert(offset_1 <= dictAndPrefixLength);
1563
assert(offset_2 <= dictAndPrefixLength);
1564
}
1565
1566
/* Reset the lazy skipping state */
1567
ms->lazySkipping = 0;
1568
1569
if (searchMethod == search_rowHash) {
1570
ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit);
1571
}
1572
1573
/* Match Loop */
1574
#if defined(__GNUC__) && defined(__x86_64__)
1575
/* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the
1576
* code alignment is perturbed. To fix the instability align the loop on 32-bytes.
1577
*/
1578
__asm__(".p2align 5");
1579
#endif
1580
while (ip < ilimit) {
1581
size_t matchLength=0;
1582
size_t offBase = REPCODE1_TO_OFFBASE;
1583
const BYTE* start=ip+1;
1584
DEBUGLOG(7, "search baseline (depth 0)");
1585
1586
/* check repCode */
1587
if (isDxS) {
1588
const U32 repIndex = (U32)(ip - base) + 1 - offset_1;
1589
const BYTE* repMatch = ((dictMode == ZSTD_dictMatchState || dictMode == ZSTD_dedicatedDictSearch)
1590
&& repIndex < prefixLowestIndex) ?
1591
dictBase + (repIndex - dictIndexDelta) :
1592
base + repIndex;
1593
if ((ZSTD_index_overlap_check(prefixLowestIndex, repIndex))
1594
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
1595
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
1596
matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
1597
if (depth==0) goto _storeSequence;
1598
}
1599
}
1600
if ( dictMode == ZSTD_noDict
1601
&& ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) {
1602
matchLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
1603
if (depth==0) goto _storeSequence;
1604
}
1605
1606
/* first search (depth 0) */
1607
{ size_t offbaseFound = 999999999;
1608
size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &offbaseFound, mls, rowLog, searchMethod, dictMode);
1609
if (ml2 > matchLength)
1610
matchLength = ml2, start = ip, offBase = offbaseFound;
1611
}
1612
1613
if (matchLength < 4) {
1614
size_t const step = ((size_t)(ip-anchor) >> kSearchStrength) + 1; /* jump faster over incompressible sections */;
1615
ip += step;
1616
/* Enter the lazy skipping mode once we are skipping more than 8 bytes at a time.
1617
* In this mode we stop inserting every position into our tables, and only insert
1618
* positions that we search, which is one in step positions.
1619
* The exact cutoff is flexible, I've just chosen a number that is reasonably high,
1620
* so we minimize the compression ratio loss in "normal" scenarios. This mode gets
1621
* triggered once we've gone 2KB without finding any matches.
1622
*/
1623
ms->lazySkipping = step > kLazySkippingStep;
1624
continue;
1625
}
1626
1627
/* let's try to find a better solution */
1628
if (depth>=1)
1629
while (ip<ilimit) {
1630
DEBUGLOG(7, "search depth 1");
1631
ip ++;
1632
if ( (dictMode == ZSTD_noDict)
1633
&& (offBase) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
1634
size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4;
1635
int const gain2 = (int)(mlRep * 3);
1636
int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1);
1637
if ((mlRep >= 4) && (gain2 > gain1))
1638
matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip;
1639
}
1640
if (isDxS) {
1641
const U32 repIndex = (U32)(ip - base) - offset_1;
1642
const BYTE* repMatch = repIndex < prefixLowestIndex ?
1643
dictBase + (repIndex - dictIndexDelta) :
1644
base + repIndex;
1645
if ((ZSTD_index_overlap_check(prefixLowestIndex, repIndex))
1646
&& (MEM_read32(repMatch) == MEM_read32(ip)) ) {
1647
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
1648
size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
1649
int const gain2 = (int)(mlRep * 3);
1650
int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1);
1651
if ((mlRep >= 4) && (gain2 > gain1))
1652
matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip;
1653
}
1654
}
1655
{ size_t ofbCandidate=999999999;
1656
size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, dictMode);
1657
int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */
1658
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 4);
1659
if ((ml2 >= 4) && (gain2 > gain1)) {
1660
matchLength = ml2, offBase = ofbCandidate, start = ip;
1661
continue; /* search a better one */
1662
} }
1663
1664
/* let's find an even better one */
1665
if ((depth==2) && (ip<ilimit)) {
1666
DEBUGLOG(7, "search depth 2");
1667
ip ++;
1668
if ( (dictMode == ZSTD_noDict)
1669
&& (offBase) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
1670
size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4;
1671
int const gain2 = (int)(mlRep * 4);
1672
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1);
1673
if ((mlRep >= 4) && (gain2 > gain1))
1674
matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip;
1675
}
1676
if (isDxS) {
1677
const U32 repIndex = (U32)(ip - base) - offset_1;
1678
const BYTE* repMatch = repIndex < prefixLowestIndex ?
1679
dictBase + (repIndex - dictIndexDelta) :
1680
base + repIndex;
1681
if ((ZSTD_index_overlap_check(prefixLowestIndex, repIndex))
1682
&& (MEM_read32(repMatch) == MEM_read32(ip)) ) {
1683
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
1684
size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
1685
int const gain2 = (int)(mlRep * 4);
1686
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1);
1687
if ((mlRep >= 4) && (gain2 > gain1))
1688
matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip;
1689
}
1690
}
1691
{ size_t ofbCandidate=999999999;
1692
size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, dictMode);
1693
int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */
1694
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 7);
1695
if ((ml2 >= 4) && (gain2 > gain1)) {
1696
matchLength = ml2, offBase = ofbCandidate, start = ip;
1697
continue;
1698
} } }
1699
break; /* nothing found : store previous solution */
1700
}
1701
1702
/* NOTE:
1703
* Pay attention that `start[-value]` can lead to strange undefined behavior
1704
* notably if `value` is unsigned, resulting in a large positive `-value`.
1705
*/
1706
/* catch up */
1707
if (OFFBASE_IS_OFFSET(offBase)) {
1708
if (dictMode == ZSTD_noDict) {
1709
while ( ((start > anchor) & (start - OFFBASE_TO_OFFSET(offBase) > prefixLowest))
1710
&& (start[-1] == (start-OFFBASE_TO_OFFSET(offBase))[-1]) ) /* only search for offset within prefix */
1711
{ start--; matchLength++; }
1712
}
1713
if (isDxS) {
1714
U32 const matchIndex = (U32)((size_t)(start-base) - OFFBASE_TO_OFFSET(offBase));
1715
const BYTE* match = (matchIndex < prefixLowestIndex) ? dictBase + matchIndex - dictIndexDelta : base + matchIndex;
1716
const BYTE* const mStart = (matchIndex < prefixLowestIndex) ? dictLowest : prefixLowest;
1717
while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */
1718
}
1719
offset_2 = offset_1; offset_1 = (U32)OFFBASE_TO_OFFSET(offBase);
1720
}
1721
/* store sequence */
1722
_storeSequence:
1723
{ size_t const litLength = (size_t)(start - anchor);
1724
ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offBase, matchLength);
1725
anchor = ip = start + matchLength;
1726
}
1727
if (ms->lazySkipping) {
1728
/* We've found a match, disable lazy skipping mode, and refill the hash cache. */
1729
if (searchMethod == search_rowHash) {
1730
ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit);
1731
}
1732
ms->lazySkipping = 0;
1733
}
1734
1735
/* check immediate repcode */
1736
if (isDxS) {
1737
while (ip <= ilimit) {
1738
U32 const current2 = (U32)(ip-base);
1739
U32 const repIndex = current2 - offset_2;
1740
const BYTE* repMatch = repIndex < prefixLowestIndex ?
1741
dictBase - dictIndexDelta + repIndex :
1742
base + repIndex;
1743
if ( (ZSTD_index_overlap_check(prefixLowestIndex, repIndex))
1744
&& (MEM_read32(repMatch) == MEM_read32(ip)) ) {
1745
const BYTE* const repEnd2 = repIndex < prefixLowestIndex ? dictEnd : iend;
1746
matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd2, prefixLowest) + 4;
1747
offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase; /* swap offset_2 <=> offset_1 */
1748
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength);
1749
ip += matchLength;
1750
anchor = ip;
1751
continue;
1752
}
1753
break;
1754
}
1755
}
1756
1757
if (dictMode == ZSTD_noDict) {
1758
while ( ((ip <= ilimit) & (offset_2>0))
1759
&& (MEM_read32(ip) == MEM_read32(ip - offset_2)) ) {
1760
/* store sequence */
1761
matchLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
1762
offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase; /* swap repcodes */
1763
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength);
1764
ip += matchLength;
1765
anchor = ip;
1766
continue; /* faster when present ... (?) */
1767
} } }
1768
1769
/* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0),
1770
* rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */
1771
offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2;
1772
1773
/* save reps for next block */
1774
rep[0] = offset_1 ? offset_1 : offsetSaved1;
1775
rep[1] = offset_2 ? offset_2 : offsetSaved2;
1776
1777
/* Return the last literals size */
1778
return (size_t)(iend - anchor);
1779
}
1780
#endif /* build exclusions */
1781
1782
1783
#ifndef ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR
1784
size_t ZSTD_compressBlock_greedy(
1785
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1786
void const* src, size_t srcSize)
1787
{
1788
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_noDict);
1789
}
1790
1791
size_t ZSTD_compressBlock_greedy_dictMatchState(
1792
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1793
void const* src, size_t srcSize)
1794
{
1795
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dictMatchState);
1796
}
1797
1798
size_t ZSTD_compressBlock_greedy_dedicatedDictSearch(
1799
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1800
void const* src, size_t srcSize)
1801
{
1802
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dedicatedDictSearch);
1803
}
1804
1805
size_t ZSTD_compressBlock_greedy_row(
1806
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1807
void const* src, size_t srcSize)
1808
{
1809
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_noDict);
1810
}
1811
1812
size_t ZSTD_compressBlock_greedy_dictMatchState_row(
1813
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1814
void const* src, size_t srcSize)
1815
{
1816
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dictMatchState);
1817
}
1818
1819
size_t ZSTD_compressBlock_greedy_dedicatedDictSearch_row(
1820
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1821
void const* src, size_t srcSize)
1822
{
1823
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dedicatedDictSearch);
1824
}
1825
#endif
1826
1827
#ifndef ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR
1828
size_t ZSTD_compressBlock_lazy(
1829
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1830
void const* src, size_t srcSize)
1831
{
1832
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_noDict);
1833
}
1834
1835
size_t ZSTD_compressBlock_lazy_dictMatchState(
1836
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1837
void const* src, size_t srcSize)
1838
{
1839
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dictMatchState);
1840
}
1841
1842
size_t ZSTD_compressBlock_lazy_dedicatedDictSearch(
1843
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1844
void const* src, size_t srcSize)
1845
{
1846
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dedicatedDictSearch);
1847
}
1848
1849
size_t ZSTD_compressBlock_lazy_row(
1850
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1851
void const* src, size_t srcSize)
1852
{
1853
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_noDict);
1854
}
1855
1856
size_t ZSTD_compressBlock_lazy_dictMatchState_row(
1857
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1858
void const* src, size_t srcSize)
1859
{
1860
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dictMatchState);
1861
}
1862
1863
size_t ZSTD_compressBlock_lazy_dedicatedDictSearch_row(
1864
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1865
void const* src, size_t srcSize)
1866
{
1867
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dedicatedDictSearch);
1868
}
1869
#endif
1870
1871
#ifndef ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR
1872
size_t ZSTD_compressBlock_lazy2(
1873
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1874
void const* src, size_t srcSize)
1875
{
1876
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_noDict);
1877
}
1878
1879
size_t ZSTD_compressBlock_lazy2_dictMatchState(
1880
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1881
void const* src, size_t srcSize)
1882
{
1883
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dictMatchState);
1884
}
1885
1886
size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch(
1887
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1888
void const* src, size_t srcSize)
1889
{
1890
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dedicatedDictSearch);
1891
}
1892
1893
size_t ZSTD_compressBlock_lazy2_row(
1894
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1895
void const* src, size_t srcSize)
1896
{
1897
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_noDict);
1898
}
1899
1900
size_t ZSTD_compressBlock_lazy2_dictMatchState_row(
1901
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1902
void const* src, size_t srcSize)
1903
{
1904
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dictMatchState);
1905
}
1906
1907
size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch_row(
1908
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1909
void const* src, size_t srcSize)
1910
{
1911
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dedicatedDictSearch);
1912
}
1913
#endif
1914
1915
#ifndef ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR
1916
size_t ZSTD_compressBlock_btlazy2(
1917
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1918
void const* src, size_t srcSize)
1919
{
1920
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_noDict);
1921
}
1922
1923
size_t ZSTD_compressBlock_btlazy2_dictMatchState(
1924
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1925
void const* src, size_t srcSize)
1926
{
1927
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_dictMatchState);
1928
}
1929
#endif
1930
1931
#if !defined(ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR) \
1932
|| !defined(ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR) \
1933
|| !defined(ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR) \
1934
|| !defined(ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR)
1935
FORCE_INLINE_TEMPLATE
1936
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
1937
size_t ZSTD_compressBlock_lazy_extDict_generic(
1938
ZSTD_MatchState_t* ms, SeqStore_t* seqStore,
1939
U32 rep[ZSTD_REP_NUM],
1940
const void* src, size_t srcSize,
1941
const searchMethod_e searchMethod, const U32 depth)
1942
{
1943
const BYTE* const istart = (const BYTE*)src;
1944
const BYTE* ip = istart;
1945
const BYTE* anchor = istart;
1946
const BYTE* const iend = istart + srcSize;
1947
const BYTE* const ilimit = searchMethod == search_rowHash ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8;
1948
const BYTE* const base = ms->window.base;
1949
const U32 dictLimit = ms->window.dictLimit;
1950
const BYTE* const prefixStart = base + dictLimit;
1951
const BYTE* const dictBase = ms->window.dictBase;
1952
const BYTE* const dictEnd = dictBase + dictLimit;
1953
const BYTE* const dictStart = dictBase + ms->window.lowLimit;
1954
const U32 windowLog = ms->cParams.windowLog;
1955
const U32 mls = BOUNDED(4, ms->cParams.minMatch, 6);
1956
const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6);
1957
1958
U32 offset_1 = rep[0], offset_2 = rep[1];
1959
1960
DEBUGLOG(5, "ZSTD_compressBlock_lazy_extDict_generic (searchFunc=%u)", (U32)searchMethod);
1961
1962
/* Reset the lazy skipping state */
1963
ms->lazySkipping = 0;
1964
1965
/* init */
1966
ip += (ip == prefixStart);
1967
if (searchMethod == search_rowHash) {
1968
ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit);
1969
}
1970
1971
/* Match Loop */
1972
#if defined(__GNUC__) && defined(__x86_64__)
1973
/* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the
1974
* code alignment is perturbed. To fix the instability align the loop on 32-bytes.
1975
*/
1976
__asm__(".p2align 5");
1977
#endif
1978
while (ip < ilimit) {
1979
size_t matchLength=0;
1980
size_t offBase = REPCODE1_TO_OFFBASE;
1981
const BYTE* start=ip+1;
1982
U32 curr = (U32)(ip-base);
1983
1984
/* check repCode */
1985
{ const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr+1, windowLog);
1986
const U32 repIndex = (U32)(curr+1 - offset_1);
1987
const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
1988
const BYTE* const repMatch = repBase + repIndex;
1989
if ( (ZSTD_index_overlap_check(dictLimit, repIndex))
1990
& (offset_1 <= curr+1 - windowLow) ) /* note: we are searching at curr+1 */
1991
if (MEM_read32(ip+1) == MEM_read32(repMatch)) {
1992
/* repcode detected we should take it */
1993
const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
1994
matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repEnd, prefixStart) + 4;
1995
if (depth==0) goto _storeSequence;
1996
} }
1997
1998
/* first search (depth 0) */
1999
{ size_t ofbCandidate = 999999999;
2000
size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict);
2001
if (ml2 > matchLength)
2002
matchLength = ml2, start = ip, offBase = ofbCandidate;
2003
}
2004
2005
if (matchLength < 4) {
2006
size_t const step = ((size_t)(ip-anchor) >> kSearchStrength);
2007
ip += step + 1; /* jump faster over incompressible sections */
2008
/* Enter the lazy skipping mode once we are skipping more than 8 bytes at a time.
2009
* In this mode we stop inserting every position into our tables, and only insert
2010
* positions that we search, which is one in step positions.
2011
* The exact cutoff is flexible, I've just chosen a number that is reasonably high,
2012
* so we minimize the compression ratio loss in "normal" scenarios. This mode gets
2013
* triggered once we've gone 2KB without finding any matches.
2014
*/
2015
ms->lazySkipping = step > kLazySkippingStep;
2016
continue;
2017
}
2018
2019
/* let's try to find a better solution */
2020
if (depth>=1)
2021
while (ip<ilimit) {
2022
ip ++;
2023
curr++;
2024
/* check repCode */
2025
if (offBase) {
2026
const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr, windowLog);
2027
const U32 repIndex = (U32)(curr - offset_1);
2028
const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
2029
const BYTE* const repMatch = repBase + repIndex;
2030
if ( (ZSTD_index_overlap_check(dictLimit, repIndex))
2031
& (offset_1 <= curr - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
2032
if (MEM_read32(ip) == MEM_read32(repMatch)) {
2033
/* repcode detected */
2034
const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
2035
size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
2036
int const gain2 = (int)(repLength * 3);
2037
int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1);
2038
if ((repLength >= 4) && (gain2 > gain1))
2039
matchLength = repLength, offBase = REPCODE1_TO_OFFBASE, start = ip;
2040
} }
2041
2042
/* search match, depth 1 */
2043
{ size_t ofbCandidate = 999999999;
2044
size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict);
2045
int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */
2046
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 4);
2047
if ((ml2 >= 4) && (gain2 > gain1)) {
2048
matchLength = ml2, offBase = ofbCandidate, start = ip;
2049
continue; /* search a better one */
2050
} }
2051
2052
/* let's find an even better one */
2053
if ((depth==2) && (ip<ilimit)) {
2054
ip ++;
2055
curr++;
2056
/* check repCode */
2057
if (offBase) {
2058
const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr, windowLog);
2059
const U32 repIndex = (U32)(curr - offset_1);
2060
const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
2061
const BYTE* const repMatch = repBase + repIndex;
2062
if ( (ZSTD_index_overlap_check(dictLimit, repIndex))
2063
& (offset_1 <= curr - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
2064
if (MEM_read32(ip) == MEM_read32(repMatch)) {
2065
/* repcode detected */
2066
const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
2067
size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
2068
int const gain2 = (int)(repLength * 4);
2069
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1);
2070
if ((repLength >= 4) && (gain2 > gain1))
2071
matchLength = repLength, offBase = REPCODE1_TO_OFFBASE, start = ip;
2072
} }
2073
2074
/* search match, depth 2 */
2075
{ size_t ofbCandidate = 999999999;
2076
size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict);
2077
int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */
2078
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 7);
2079
if ((ml2 >= 4) && (gain2 > gain1)) {
2080
matchLength = ml2, offBase = ofbCandidate, start = ip;
2081
continue;
2082
} } }
2083
break; /* nothing found : store previous solution */
2084
}
2085
2086
/* catch up */
2087
if (OFFBASE_IS_OFFSET(offBase)) {
2088
U32 const matchIndex = (U32)((size_t)(start-base) - OFFBASE_TO_OFFSET(offBase));
2089
const BYTE* match = (matchIndex < dictLimit) ? dictBase + matchIndex : base + matchIndex;
2090
const BYTE* const mStart = (matchIndex < dictLimit) ? dictStart : prefixStart;
2091
while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */
2092
offset_2 = offset_1; offset_1 = (U32)OFFBASE_TO_OFFSET(offBase);
2093
}
2094
2095
/* store sequence */
2096
_storeSequence:
2097
{ size_t const litLength = (size_t)(start - anchor);
2098
ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offBase, matchLength);
2099
anchor = ip = start + matchLength;
2100
}
2101
if (ms->lazySkipping) {
2102
/* We've found a match, disable lazy skipping mode, and refill the hash cache. */
2103
if (searchMethod == search_rowHash) {
2104
ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit);
2105
}
2106
ms->lazySkipping = 0;
2107
}
2108
2109
/* check immediate repcode */
2110
while (ip <= ilimit) {
2111
const U32 repCurrent = (U32)(ip-base);
2112
const U32 windowLow = ZSTD_getLowestMatchIndex(ms, repCurrent, windowLog);
2113
const U32 repIndex = repCurrent - offset_2;
2114
const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
2115
const BYTE* const repMatch = repBase + repIndex;
2116
if ( (ZSTD_index_overlap_check(dictLimit, repIndex))
2117
& (offset_2 <= repCurrent - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
2118
if (MEM_read32(ip) == MEM_read32(repMatch)) {
2119
/* repcode detected we should take it */
2120
const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
2121
matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
2122
offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase; /* swap offset history */
2123
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength);
2124
ip += matchLength;
2125
anchor = ip;
2126
continue; /* faster when present ... (?) */
2127
}
2128
break;
2129
} }
2130
2131
/* Save reps for next block */
2132
rep[0] = offset_1;
2133
rep[1] = offset_2;
2134
2135
/* Return the last literals size */
2136
return (size_t)(iend - anchor);
2137
}
2138
#endif /* build exclusions */
2139
2140
#ifndef ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR
2141
size_t ZSTD_compressBlock_greedy_extDict(
2142
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2143
void const* src, size_t srcSize)
2144
{
2145
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0);
2146
}
2147
2148
size_t ZSTD_compressBlock_greedy_extDict_row(
2149
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2150
void const* src, size_t srcSize)
2151
{
2152
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0);
2153
}
2154
#endif
2155
2156
#ifndef ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR
2157
size_t ZSTD_compressBlock_lazy_extDict(
2158
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2159
void const* src, size_t srcSize)
2160
2161
{
2162
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1);
2163
}
2164
2165
size_t ZSTD_compressBlock_lazy_extDict_row(
2166
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2167
void const* src, size_t srcSize)
2168
2169
{
2170
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1);
2171
}
2172
#endif
2173
2174
#ifndef ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR
2175
size_t ZSTD_compressBlock_lazy2_extDict(
2176
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2177
void const* src, size_t srcSize)
2178
2179
{
2180
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2);
2181
}
2182
2183
size_t ZSTD_compressBlock_lazy2_extDict_row(
2184
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2185
void const* src, size_t srcSize)
2186
{
2187
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2);
2188
}
2189
#endif
2190
2191
#ifndef ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR
2192
size_t ZSTD_compressBlock_btlazy2_extDict(
2193
ZSTD_MatchState_t* ms, SeqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2194
void const* src, size_t srcSize)
2195
2196
{
2197
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2);
2198
}
2199
#endif
2200
2201