Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmzstd/lib/compress/zstd_lazy.c
3158 views
1
/*
2
* Copyright (c) Meta Platforms, Inc. and affiliates.
3
* All rights reserved.
4
*
5
* This source code is licensed under both the BSD-style license (found in the
6
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
7
* in the COPYING file in the root directory of this source tree).
8
* You may select, at your option, one of the above-listed licenses.
9
*/
10
11
#include "zstd_compress_internal.h"
12
#include "zstd_lazy.h"
13
#include "../common/bits.h" /* ZSTD_countTrailingZeros64 */
14
15
#define kLazySkippingStep 8
16
17
18
/*-*************************************
19
* Binary Tree search
20
***************************************/
21
22
static void
23
ZSTD_updateDUBT(ZSTD_matchState_t* ms,
24
const BYTE* ip, const BYTE* iend,
25
U32 mls)
26
{
27
const ZSTD_compressionParameters* const cParams = &ms->cParams;
28
U32* const hashTable = ms->hashTable;
29
U32 const hashLog = cParams->hashLog;
30
31
U32* const bt = ms->chainTable;
32
U32 const btLog = cParams->chainLog - 1;
33
U32 const btMask = (1 << btLog) - 1;
34
35
const BYTE* const base = ms->window.base;
36
U32 const target = (U32)(ip - base);
37
U32 idx = ms->nextToUpdate;
38
39
if (idx != target)
40
DEBUGLOG(7, "ZSTD_updateDUBT, from %u to %u (dictLimit:%u)",
41
idx, target, ms->window.dictLimit);
42
assert(ip + 8 <= iend); /* condition for ZSTD_hashPtr */
43
(void)iend;
44
45
assert(idx >= ms->window.dictLimit); /* condition for valid base+idx */
46
for ( ; idx < target ; idx++) {
47
size_t const h = ZSTD_hashPtr(base + idx, hashLog, mls); /* assumption : ip + 8 <= iend */
48
U32 const matchIndex = hashTable[h];
49
50
U32* const nextCandidatePtr = bt + 2*(idx&btMask);
51
U32* const sortMarkPtr = nextCandidatePtr + 1;
52
53
DEBUGLOG(8, "ZSTD_updateDUBT: insert %u", idx);
54
hashTable[h] = idx; /* Update Hash Table */
55
*nextCandidatePtr = matchIndex; /* update BT like a chain */
56
*sortMarkPtr = ZSTD_DUBT_UNSORTED_MARK;
57
}
58
ms->nextToUpdate = target;
59
}
60
61
62
/** ZSTD_insertDUBT1() :
63
* sort one already inserted but unsorted position
64
* assumption : curr >= btlow == (curr - btmask)
65
* doesn't fail */
66
static void
67
ZSTD_insertDUBT1(const ZSTD_matchState_t* ms,
68
U32 curr, const BYTE* inputEnd,
69
U32 nbCompares, U32 btLow,
70
const ZSTD_dictMode_e dictMode)
71
{
72
const ZSTD_compressionParameters* const cParams = &ms->cParams;
73
U32* const bt = ms->chainTable;
74
U32 const btLog = cParams->chainLog - 1;
75
U32 const btMask = (1 << btLog) - 1;
76
size_t commonLengthSmaller=0, commonLengthLarger=0;
77
const BYTE* const base = ms->window.base;
78
const BYTE* const dictBase = ms->window.dictBase;
79
const U32 dictLimit = ms->window.dictLimit;
80
const BYTE* const ip = (curr>=dictLimit) ? base + curr : dictBase + curr;
81
const BYTE* const iend = (curr>=dictLimit) ? inputEnd : dictBase + dictLimit;
82
const BYTE* const dictEnd = dictBase + dictLimit;
83
const BYTE* const prefixStart = base + dictLimit;
84
const BYTE* match;
85
U32* smallerPtr = bt + 2*(curr&btMask);
86
U32* largerPtr = smallerPtr + 1;
87
U32 matchIndex = *smallerPtr; /* this candidate is unsorted : next sorted candidate is reached through *smallerPtr, while *largerPtr contains previous unsorted candidate (which is already saved and can be overwritten) */
88
U32 dummy32; /* to be nullified at the end */
89
U32 const windowValid = ms->window.lowLimit;
90
U32 const maxDistance = 1U << cParams->windowLog;
91
U32 const windowLow = (curr - windowValid > maxDistance) ? curr - maxDistance : windowValid;
92
93
94
DEBUGLOG(8, "ZSTD_insertDUBT1(%u) (dictLimit=%u, lowLimit=%u)",
95
curr, dictLimit, windowLow);
96
assert(curr >= btLow);
97
assert(ip < iend); /* condition for ZSTD_count */
98
99
for (; nbCompares && (matchIndex > windowLow); --nbCompares) {
100
U32* const nextPtr = bt + 2*(matchIndex & btMask);
101
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
102
assert(matchIndex < curr);
103
/* note : all candidates are now supposed sorted,
104
* but it's still possible to have nextPtr[1] == ZSTD_DUBT_UNSORTED_MARK
105
* when a real index has the same value as ZSTD_DUBT_UNSORTED_MARK */
106
107
if ( (dictMode != ZSTD_extDict)
108
|| (matchIndex+matchLength >= dictLimit) /* both in current segment*/
109
|| (curr < dictLimit) /* both in extDict */) {
110
const BYTE* const mBase = ( (dictMode != ZSTD_extDict)
111
|| (matchIndex+matchLength >= dictLimit)) ?
112
base : dictBase;
113
assert( (matchIndex+matchLength >= dictLimit) /* might be wrong if extDict is incorrectly set to 0 */
114
|| (curr < dictLimit) );
115
match = mBase + matchIndex;
116
matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
117
} else {
118
match = dictBase + matchIndex;
119
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
120
if (matchIndex+matchLength >= dictLimit)
121
match = base + matchIndex; /* preparation for next read of match[matchLength] */
122
}
123
124
DEBUGLOG(8, "ZSTD_insertDUBT1: comparing %u with %u : found %u common bytes ",
125
curr, matchIndex, (U32)matchLength);
126
127
if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
128
break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */
129
}
130
131
if (match[matchLength] < ip[matchLength]) { /* necessarily within buffer */
132
/* match is smaller than current */
133
*smallerPtr = matchIndex; /* update smaller idx */
134
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
135
if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop searching */
136
DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is smaller : next => %u",
137
matchIndex, btLow, nextPtr[1]);
138
smallerPtr = nextPtr+1; /* new "candidate" => larger than match, which was smaller than target */
139
matchIndex = nextPtr[1]; /* new matchIndex, larger than previous and closer to current */
140
} else {
141
/* match is larger than current */
142
*largerPtr = matchIndex;
143
commonLengthLarger = matchLength;
144
if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop searching */
145
DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is larger => %u",
146
matchIndex, btLow, nextPtr[0]);
147
largerPtr = nextPtr;
148
matchIndex = nextPtr[0];
149
} }
150
151
*smallerPtr = *largerPtr = 0;
152
}
153
154
155
static size_t
156
ZSTD_DUBT_findBetterDictMatch (
157
const ZSTD_matchState_t* ms,
158
const BYTE* const ip, const BYTE* const iend,
159
size_t* offsetPtr,
160
size_t bestLength,
161
U32 nbCompares,
162
U32 const mls,
163
const ZSTD_dictMode_e dictMode)
164
{
165
const ZSTD_matchState_t * const dms = ms->dictMatchState;
166
const ZSTD_compressionParameters* const dmsCParams = &dms->cParams;
167
const U32 * const dictHashTable = dms->hashTable;
168
U32 const hashLog = dmsCParams->hashLog;
169
size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
170
U32 dictMatchIndex = dictHashTable[h];
171
172
const BYTE* const base = ms->window.base;
173
const BYTE* const prefixStart = base + ms->window.dictLimit;
174
U32 const curr = (U32)(ip-base);
175
const BYTE* const dictBase = dms->window.base;
176
const BYTE* const dictEnd = dms->window.nextSrc;
177
U32 const dictHighLimit = (U32)(dms->window.nextSrc - dms->window.base);
178
U32 const dictLowLimit = dms->window.lowLimit;
179
U32 const dictIndexDelta = ms->window.lowLimit - dictHighLimit;
180
181
U32* const dictBt = dms->chainTable;
182
U32 const btLog = dmsCParams->chainLog - 1;
183
U32 const btMask = (1 << btLog) - 1;
184
U32 const btLow = (btMask >= dictHighLimit - dictLowLimit) ? dictLowLimit : dictHighLimit - btMask;
185
186
size_t commonLengthSmaller=0, commonLengthLarger=0;
187
188
(void)dictMode;
189
assert(dictMode == ZSTD_dictMatchState);
190
191
for (; nbCompares && (dictMatchIndex > dictLowLimit); --nbCompares) {
192
U32* const nextPtr = dictBt + 2*(dictMatchIndex & btMask);
193
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
194
const BYTE* match = dictBase + dictMatchIndex;
195
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
196
if (dictMatchIndex+matchLength >= dictHighLimit)
197
match = base + dictMatchIndex + dictIndexDelta; /* to prepare for next usage of match[matchLength] */
198
199
if (matchLength > bestLength) {
200
U32 matchIndex = dictMatchIndex + dictIndexDelta;
201
if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) ) {
202
DEBUGLOG(9, "ZSTD_DUBT_findBetterDictMatch(%u) : found better match length %u -> %u and offsetCode %u -> %u (dictMatchIndex %u, matchIndex %u)",
203
curr, (U32)bestLength, (U32)matchLength, (U32)*offsetPtr, OFFSET_TO_OFFBASE(curr - matchIndex), dictMatchIndex, matchIndex);
204
bestLength = matchLength, *offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex);
205
}
206
if (ip+matchLength == iend) { /* reached end of input : ip[matchLength] is not valid, no way to know if it's larger or smaller than match */
207
break; /* drop, to guarantee consistency (miss a little bit of compression) */
208
}
209
}
210
211
if (match[matchLength] < ip[matchLength]) {
212
if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */
213
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
214
dictMatchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
215
} else {
216
/* match is larger than current */
217
if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */
218
commonLengthLarger = matchLength;
219
dictMatchIndex = nextPtr[0];
220
}
221
}
222
223
if (bestLength >= MINMATCH) {
224
U32 const mIndex = curr - (U32)OFFBASE_TO_OFFSET(*offsetPtr); (void)mIndex;
225
DEBUGLOG(8, "ZSTD_DUBT_findBetterDictMatch(%u) : found match of length %u and offsetCode %u (pos %u)",
226
curr, (U32)bestLength, (U32)*offsetPtr, mIndex);
227
}
228
return bestLength;
229
230
}
231
232
233
static size_t
234
ZSTD_DUBT_findBestMatch(ZSTD_matchState_t* ms,
235
const BYTE* const ip, const BYTE* const iend,
236
size_t* offBasePtr,
237
U32 const mls,
238
const ZSTD_dictMode_e dictMode)
239
{
240
const ZSTD_compressionParameters* const cParams = &ms->cParams;
241
U32* const hashTable = ms->hashTable;
242
U32 const hashLog = cParams->hashLog;
243
size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
244
U32 matchIndex = hashTable[h];
245
246
const BYTE* const base = ms->window.base;
247
U32 const curr = (U32)(ip-base);
248
U32 const windowLow = ZSTD_getLowestMatchIndex(ms, curr, cParams->windowLog);
249
250
U32* const bt = ms->chainTable;
251
U32 const btLog = cParams->chainLog - 1;
252
U32 const btMask = (1 << btLog) - 1;
253
U32 const btLow = (btMask >= curr) ? 0 : curr - btMask;
254
U32 const unsortLimit = MAX(btLow, windowLow);
255
256
U32* nextCandidate = bt + 2*(matchIndex&btMask);
257
U32* unsortedMark = bt + 2*(matchIndex&btMask) + 1;
258
U32 nbCompares = 1U << cParams->searchLog;
259
U32 nbCandidates = nbCompares;
260
U32 previousCandidate = 0;
261
262
DEBUGLOG(7, "ZSTD_DUBT_findBestMatch (%u) ", curr);
263
assert(ip <= iend-8); /* required for h calculation */
264
assert(dictMode != ZSTD_dedicatedDictSearch);
265
266
/* reach end of unsorted candidates list */
267
while ( (matchIndex > unsortLimit)
268
&& (*unsortedMark == ZSTD_DUBT_UNSORTED_MARK)
269
&& (nbCandidates > 1) ) {
270
DEBUGLOG(8, "ZSTD_DUBT_findBestMatch: candidate %u is unsorted",
271
matchIndex);
272
*unsortedMark = previousCandidate; /* the unsortedMark becomes a reversed chain, to move up back to original position */
273
previousCandidate = matchIndex;
274
matchIndex = *nextCandidate;
275
nextCandidate = bt + 2*(matchIndex&btMask);
276
unsortedMark = bt + 2*(matchIndex&btMask) + 1;
277
nbCandidates --;
278
}
279
280
/* nullify last candidate if it's still unsorted
281
* simplification, detrimental to compression ratio, beneficial for speed */
282
if ( (matchIndex > unsortLimit)
283
&& (*unsortedMark==ZSTD_DUBT_UNSORTED_MARK) ) {
284
DEBUGLOG(7, "ZSTD_DUBT_findBestMatch: nullify last unsorted candidate %u",
285
matchIndex);
286
*nextCandidate = *unsortedMark = 0;
287
}
288
289
/* batch sort stacked candidates */
290
matchIndex = previousCandidate;
291
while (matchIndex) { /* will end on matchIndex == 0 */
292
U32* const nextCandidateIdxPtr = bt + 2*(matchIndex&btMask) + 1;
293
U32 const nextCandidateIdx = *nextCandidateIdxPtr;
294
ZSTD_insertDUBT1(ms, matchIndex, iend,
295
nbCandidates, unsortLimit, dictMode);
296
matchIndex = nextCandidateIdx;
297
nbCandidates++;
298
}
299
300
/* find longest match */
301
{ size_t commonLengthSmaller = 0, commonLengthLarger = 0;
302
const BYTE* const dictBase = ms->window.dictBase;
303
const U32 dictLimit = ms->window.dictLimit;
304
const BYTE* const dictEnd = dictBase + dictLimit;
305
const BYTE* const prefixStart = base + dictLimit;
306
U32* smallerPtr = bt + 2*(curr&btMask);
307
U32* largerPtr = bt + 2*(curr&btMask) + 1;
308
U32 matchEndIdx = curr + 8 + 1;
309
U32 dummy32; /* to be nullified at the end */
310
size_t bestLength = 0;
311
312
matchIndex = hashTable[h];
313
hashTable[h] = curr; /* Update Hash Table */
314
315
for (; nbCompares && (matchIndex > windowLow); --nbCompares) {
316
U32* const nextPtr = bt + 2*(matchIndex & btMask);
317
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
318
const BYTE* match;
319
320
if ((dictMode != ZSTD_extDict) || (matchIndex+matchLength >= dictLimit)) {
321
match = base + matchIndex;
322
matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
323
} else {
324
match = dictBase + matchIndex;
325
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
326
if (matchIndex+matchLength >= dictLimit)
327
match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
328
}
329
330
if (matchLength > bestLength) {
331
if (matchLength > matchEndIdx - matchIndex)
332
matchEndIdx = matchIndex + (U32)matchLength;
333
if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr - matchIndex + 1) - ZSTD_highbit32((U32)*offBasePtr)) )
334
bestLength = matchLength, *offBasePtr = OFFSET_TO_OFFBASE(curr - matchIndex);
335
if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
336
if (dictMode == ZSTD_dictMatchState) {
337
nbCompares = 0; /* in addition to avoiding checking any
338
* further in this loop, make sure we
339
* skip checking in the dictionary. */
340
}
341
break; /* drop, to guarantee consistency (miss a little bit of compression) */
342
}
343
}
344
345
if (match[matchLength] < ip[matchLength]) {
346
/* match is smaller than current */
347
*smallerPtr = matchIndex; /* update smaller idx */
348
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
349
if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
350
smallerPtr = nextPtr+1; /* new "smaller" => larger of match */
351
matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
352
} else {
353
/* match is larger than current */
354
*largerPtr = matchIndex;
355
commonLengthLarger = matchLength;
356
if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
357
largerPtr = nextPtr;
358
matchIndex = nextPtr[0];
359
} }
360
361
*smallerPtr = *largerPtr = 0;
362
363
assert(nbCompares <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
364
if (dictMode == ZSTD_dictMatchState && nbCompares) {
365
bestLength = ZSTD_DUBT_findBetterDictMatch(
366
ms, ip, iend,
367
offBasePtr, bestLength, nbCompares,
368
mls, dictMode);
369
}
370
371
assert(matchEndIdx > curr+8); /* ensure nextToUpdate is increased */
372
ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */
373
if (bestLength >= MINMATCH) {
374
U32 const mIndex = curr - (U32)OFFBASE_TO_OFFSET(*offBasePtr); (void)mIndex;
375
DEBUGLOG(8, "ZSTD_DUBT_findBestMatch(%u) : found match of length %u and offsetCode %u (pos %u)",
376
curr, (U32)bestLength, (U32)*offBasePtr, mIndex);
377
}
378
return bestLength;
379
}
380
}
381
382
383
/** ZSTD_BtFindBestMatch() : Tree updater, providing best match */
384
FORCE_INLINE_TEMPLATE size_t
385
ZSTD_BtFindBestMatch( ZSTD_matchState_t* ms,
386
const BYTE* const ip, const BYTE* const iLimit,
387
size_t* offBasePtr,
388
const U32 mls /* template */,
389
const ZSTD_dictMode_e dictMode)
390
{
391
DEBUGLOG(7, "ZSTD_BtFindBestMatch");
392
if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */
393
ZSTD_updateDUBT(ms, ip, iLimit, mls);
394
return ZSTD_DUBT_findBestMatch(ms, ip, iLimit, offBasePtr, mls, dictMode);
395
}
396
397
/***********************************
398
* Dedicated dict search
399
***********************************/
400
401
void ZSTD_dedicatedDictSearch_lazy_loadDictionary(ZSTD_matchState_t* ms, const BYTE* const ip)
402
{
403
const BYTE* const base = ms->window.base;
404
U32 const target = (U32)(ip - base);
405
U32* const hashTable = ms->hashTable;
406
U32* const chainTable = ms->chainTable;
407
U32 const chainSize = 1 << ms->cParams.chainLog;
408
U32 idx = ms->nextToUpdate;
409
U32 const minChain = chainSize < target - idx ? target - chainSize : idx;
410
U32 const bucketSize = 1 << ZSTD_LAZY_DDSS_BUCKET_LOG;
411
U32 const cacheSize = bucketSize - 1;
412
U32 const chainAttempts = (1 << ms->cParams.searchLog) - cacheSize;
413
U32 const chainLimit = chainAttempts > 255 ? 255 : chainAttempts;
414
415
/* We know the hashtable is oversized by a factor of `bucketSize`.
416
* We are going to temporarily pretend `bucketSize == 1`, keeping only a
417
* single entry. We will use the rest of the space to construct a temporary
418
* chaintable.
419
*/
420
U32 const hashLog = ms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG;
421
U32* const tmpHashTable = hashTable;
422
U32* const tmpChainTable = hashTable + ((size_t)1 << hashLog);
423
U32 const tmpChainSize = (U32)((1 << ZSTD_LAZY_DDSS_BUCKET_LOG) - 1) << hashLog;
424
U32 const tmpMinChain = tmpChainSize < target ? target - tmpChainSize : idx;
425
U32 hashIdx;
426
427
assert(ms->cParams.chainLog <= 24);
428
assert(ms->cParams.hashLog > ms->cParams.chainLog);
429
assert(idx != 0);
430
assert(tmpMinChain <= minChain);
431
432
/* fill conventional hash table and conventional chain table */
433
for ( ; idx < target; idx++) {
434
U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch);
435
if (idx >= tmpMinChain) {
436
tmpChainTable[idx - tmpMinChain] = hashTable[h];
437
}
438
tmpHashTable[h] = idx;
439
}
440
441
/* sort chains into ddss chain table */
442
{
443
U32 chainPos = 0;
444
for (hashIdx = 0; hashIdx < (1U << hashLog); hashIdx++) {
445
U32 count;
446
U32 countBeyondMinChain = 0;
447
U32 i = tmpHashTable[hashIdx];
448
for (count = 0; i >= tmpMinChain && count < cacheSize; count++) {
449
/* skip through the chain to the first position that won't be
450
* in the hash cache bucket */
451
if (i < minChain) {
452
countBeyondMinChain++;
453
}
454
i = tmpChainTable[i - tmpMinChain];
455
}
456
if (count == cacheSize) {
457
for (count = 0; count < chainLimit;) {
458
if (i < minChain) {
459
if (!i || ++countBeyondMinChain > cacheSize) {
460
/* only allow pulling `cacheSize` number of entries
461
* into the cache or chainTable beyond `minChain`,
462
* to replace the entries pulled out of the
463
* chainTable into the cache. This lets us reach
464
* back further without increasing the total number
465
* of entries in the chainTable, guaranteeing the
466
* DDSS chain table will fit into the space
467
* allocated for the regular one. */
468
break;
469
}
470
}
471
chainTable[chainPos++] = i;
472
count++;
473
if (i < tmpMinChain) {
474
break;
475
}
476
i = tmpChainTable[i - tmpMinChain];
477
}
478
} else {
479
count = 0;
480
}
481
if (count) {
482
tmpHashTable[hashIdx] = ((chainPos - count) << 8) + count;
483
} else {
484
tmpHashTable[hashIdx] = 0;
485
}
486
}
487
assert(chainPos <= chainSize); /* I believe this is guaranteed... */
488
}
489
490
/* move chain pointers into the last entry of each hash bucket */
491
for (hashIdx = (1 << hashLog); hashIdx; ) {
492
U32 const bucketIdx = --hashIdx << ZSTD_LAZY_DDSS_BUCKET_LOG;
493
U32 const chainPackedPointer = tmpHashTable[hashIdx];
494
U32 i;
495
for (i = 0; i < cacheSize; i++) {
496
hashTable[bucketIdx + i] = 0;
497
}
498
hashTable[bucketIdx + bucketSize - 1] = chainPackedPointer;
499
}
500
501
/* fill the buckets of the hash table */
502
for (idx = ms->nextToUpdate; idx < target; idx++) {
503
U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch)
504
<< ZSTD_LAZY_DDSS_BUCKET_LOG;
505
U32 i;
506
/* Shift hash cache down 1. */
507
for (i = cacheSize - 1; i; i--)
508
hashTable[h + i] = hashTable[h + i - 1];
509
hashTable[h] = idx;
510
}
511
512
ms->nextToUpdate = target;
513
}
514
515
/* Returns the longest match length found in the dedicated dict search structure.
516
* If none are longer than the argument ml, then ml will be returned.
517
*/
518
FORCE_INLINE_TEMPLATE
519
size_t ZSTD_dedicatedDictSearch_lazy_search(size_t* offsetPtr, size_t ml, U32 nbAttempts,
520
const ZSTD_matchState_t* const dms,
521
const BYTE* const ip, const BYTE* const iLimit,
522
const BYTE* const prefixStart, const U32 curr,
523
const U32 dictLimit, const size_t ddsIdx) {
524
const U32 ddsLowestIndex = dms->window.dictLimit;
525
const BYTE* const ddsBase = dms->window.base;
526
const BYTE* const ddsEnd = dms->window.nextSrc;
527
const U32 ddsSize = (U32)(ddsEnd - ddsBase);
528
const U32 ddsIndexDelta = dictLimit - ddsSize;
529
const U32 bucketSize = (1 << ZSTD_LAZY_DDSS_BUCKET_LOG);
530
const U32 bucketLimit = nbAttempts < bucketSize - 1 ? nbAttempts : bucketSize - 1;
531
U32 ddsAttempt;
532
U32 matchIndex;
533
534
for (ddsAttempt = 0; ddsAttempt < bucketSize - 1; ddsAttempt++) {
535
PREFETCH_L1(ddsBase + dms->hashTable[ddsIdx + ddsAttempt]);
536
}
537
538
{
539
U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1];
540
U32 const chainIndex = chainPackedPointer >> 8;
541
542
PREFETCH_L1(&dms->chainTable[chainIndex]);
543
}
544
545
for (ddsAttempt = 0; ddsAttempt < bucketLimit; ddsAttempt++) {
546
size_t currentMl=0;
547
const BYTE* match;
548
matchIndex = dms->hashTable[ddsIdx + ddsAttempt];
549
match = ddsBase + matchIndex;
550
551
if (!matchIndex) {
552
return ml;
553
}
554
555
/* guaranteed by table construction */
556
(void)ddsLowestIndex;
557
assert(matchIndex >= ddsLowestIndex);
558
assert(match+4 <= ddsEnd);
559
if (MEM_read32(match) == MEM_read32(ip)) {
560
/* assumption : matchIndex <= dictLimit-4 (by table construction) */
561
currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4;
562
}
563
564
/* save best solution */
565
if (currentMl > ml) {
566
ml = currentMl;
567
*offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + ddsIndexDelta));
568
if (ip+currentMl == iLimit) {
569
/* best possible, avoids read overflow on next attempt */
570
return ml;
571
}
572
}
573
}
574
575
{
576
U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1];
577
U32 chainIndex = chainPackedPointer >> 8;
578
U32 const chainLength = chainPackedPointer & 0xFF;
579
U32 const chainAttempts = nbAttempts - ddsAttempt;
580
U32 const chainLimit = chainAttempts > chainLength ? chainLength : chainAttempts;
581
U32 chainAttempt;
582
583
for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++) {
584
PREFETCH_L1(ddsBase + dms->chainTable[chainIndex + chainAttempt]);
585
}
586
587
for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++, chainIndex++) {
588
size_t currentMl=0;
589
const BYTE* match;
590
matchIndex = dms->chainTable[chainIndex];
591
match = ddsBase + matchIndex;
592
593
/* guaranteed by table construction */
594
assert(matchIndex >= ddsLowestIndex);
595
assert(match+4 <= ddsEnd);
596
if (MEM_read32(match) == MEM_read32(ip)) {
597
/* assumption : matchIndex <= dictLimit-4 (by table construction) */
598
currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4;
599
}
600
601
/* save best solution */
602
if (currentMl > ml) {
603
ml = currentMl;
604
*offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + ddsIndexDelta));
605
if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
606
}
607
}
608
}
609
return ml;
610
}
611
612
613
/* *********************************
614
* Hash Chain
615
***********************************/
616
#define NEXT_IN_CHAIN(d, mask) chainTable[(d) & (mask)]
617
618
/* Update chains up to ip (excluded)
619
Assumption : always within prefix (i.e. not within extDict) */
620
FORCE_INLINE_TEMPLATE U32 ZSTD_insertAndFindFirstIndex_internal(
621
ZSTD_matchState_t* ms,
622
const ZSTD_compressionParameters* const cParams,
623
const BYTE* ip, U32 const mls, U32 const lazySkipping)
624
{
625
U32* const hashTable = ms->hashTable;
626
const U32 hashLog = cParams->hashLog;
627
U32* const chainTable = ms->chainTable;
628
const U32 chainMask = (1 << cParams->chainLog) - 1;
629
const BYTE* const base = ms->window.base;
630
const U32 target = (U32)(ip - base);
631
U32 idx = ms->nextToUpdate;
632
633
while(idx < target) { /* catch up */
634
size_t const h = ZSTD_hashPtr(base+idx, hashLog, mls);
635
NEXT_IN_CHAIN(idx, chainMask) = hashTable[h];
636
hashTable[h] = idx;
637
idx++;
638
/* Stop inserting every position when in the lazy skipping mode. */
639
if (lazySkipping)
640
break;
641
}
642
643
ms->nextToUpdate = target;
644
return hashTable[ZSTD_hashPtr(ip, hashLog, mls)];
645
}
646
647
U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip) {
648
const ZSTD_compressionParameters* const cParams = &ms->cParams;
649
return ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, ms->cParams.minMatch, /* lazySkipping*/ 0);
650
}
651
652
/* inlining is important to hardwire a hot branch (template emulation) */
653
FORCE_INLINE_TEMPLATE
654
size_t ZSTD_HcFindBestMatch(
655
ZSTD_matchState_t* ms,
656
const BYTE* const ip, const BYTE* const iLimit,
657
size_t* offsetPtr,
658
const U32 mls, const ZSTD_dictMode_e dictMode)
659
{
660
const ZSTD_compressionParameters* const cParams = &ms->cParams;
661
U32* const chainTable = ms->chainTable;
662
const U32 chainSize = (1 << cParams->chainLog);
663
const U32 chainMask = chainSize-1;
664
const BYTE* const base = ms->window.base;
665
const BYTE* const dictBase = ms->window.dictBase;
666
const U32 dictLimit = ms->window.dictLimit;
667
const BYTE* const prefixStart = base + dictLimit;
668
const BYTE* const dictEnd = dictBase + dictLimit;
669
const U32 curr = (U32)(ip-base);
670
const U32 maxDistance = 1U << cParams->windowLog;
671
const U32 lowestValid = ms->window.lowLimit;
672
const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
673
const U32 isDictionary = (ms->loadedDictEnd != 0);
674
const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance;
675
const U32 minChain = curr > chainSize ? curr - chainSize : 0;
676
U32 nbAttempts = 1U << cParams->searchLog;
677
size_t ml=4-1;
678
679
const ZSTD_matchState_t* const dms = ms->dictMatchState;
680
const U32 ddsHashLog = dictMode == ZSTD_dedicatedDictSearch
681
? dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG : 0;
682
const size_t ddsIdx = dictMode == ZSTD_dedicatedDictSearch
683
? ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG : 0;
684
685
U32 matchIndex;
686
687
if (dictMode == ZSTD_dedicatedDictSearch) {
688
const U32* entry = &dms->hashTable[ddsIdx];
689
PREFETCH_L1(entry);
690
}
691
692
/* HC4 match finder */
693
matchIndex = ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, mls, ms->lazySkipping);
694
695
for ( ; (matchIndex>=lowLimit) & (nbAttempts>0) ; nbAttempts--) {
696
size_t currentMl=0;
697
if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
698
const BYTE* const match = base + matchIndex;
699
assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */
700
/* read 4B starting from (match + ml + 1 - sizeof(U32)) */
701
if (MEM_read32(match + ml - 3) == MEM_read32(ip + ml - 3)) /* potentially better */
702
currentMl = ZSTD_count(ip, match, iLimit);
703
} else {
704
const BYTE* const match = dictBase + matchIndex;
705
assert(match+4 <= dictEnd);
706
if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
707
currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4;
708
}
709
710
/* save best solution */
711
if (currentMl > ml) {
712
ml = currentMl;
713
*offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex);
714
if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
715
}
716
717
if (matchIndex <= minChain) break;
718
matchIndex = NEXT_IN_CHAIN(matchIndex, chainMask);
719
}
720
721
assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
722
if (dictMode == ZSTD_dedicatedDictSearch) {
723
ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts, dms,
724
ip, iLimit, prefixStart, curr, dictLimit, ddsIdx);
725
} else if (dictMode == ZSTD_dictMatchState) {
726
const U32* const dmsChainTable = dms->chainTable;
727
const U32 dmsChainSize = (1 << dms->cParams.chainLog);
728
const U32 dmsChainMask = dmsChainSize - 1;
729
const U32 dmsLowestIndex = dms->window.dictLimit;
730
const BYTE* const dmsBase = dms->window.base;
731
const BYTE* const dmsEnd = dms->window.nextSrc;
732
const U32 dmsSize = (U32)(dmsEnd - dmsBase);
733
const U32 dmsIndexDelta = dictLimit - dmsSize;
734
const U32 dmsMinChain = dmsSize > dmsChainSize ? dmsSize - dmsChainSize : 0;
735
736
matchIndex = dms->hashTable[ZSTD_hashPtr(ip, dms->cParams.hashLog, mls)];
737
738
for ( ; (matchIndex>=dmsLowestIndex) & (nbAttempts>0) ; nbAttempts--) {
739
size_t currentMl=0;
740
const BYTE* const match = dmsBase + matchIndex;
741
assert(match+4 <= dmsEnd);
742
if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
743
currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4;
744
745
/* save best solution */
746
if (currentMl > ml) {
747
ml = currentMl;
748
assert(curr > matchIndex + dmsIndexDelta);
749
*offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + dmsIndexDelta));
750
if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
751
}
752
753
if (matchIndex <= dmsMinChain) break;
754
755
matchIndex = dmsChainTable[matchIndex & dmsChainMask];
756
}
757
}
758
759
return ml;
760
}
761
762
/* *********************************
763
* (SIMD) Row-based matchfinder
764
***********************************/
765
/* Constants for row-based hash */
766
#define ZSTD_ROW_HASH_TAG_MASK ((1u << ZSTD_ROW_HASH_TAG_BITS) - 1)
767
#define ZSTD_ROW_HASH_MAX_ENTRIES 64 /* absolute maximum number of entries per row, for all configurations */
768
769
#define ZSTD_ROW_HASH_CACHE_MASK (ZSTD_ROW_HASH_CACHE_SIZE - 1)
770
771
typedef U64 ZSTD_VecMask; /* Clarifies when we are interacting with a U64 representing a mask of matches */
772
773
/* ZSTD_VecMask_next():
774
* Starting from the LSB, returns the idx of the next non-zero bit.
775
* Basically counting the nb of trailing zeroes.
776
*/
777
MEM_STATIC U32 ZSTD_VecMask_next(ZSTD_VecMask val) {
778
return ZSTD_countTrailingZeros64(val);
779
}
780
781
/* ZSTD_row_nextIndex():
782
* Returns the next index to insert at within a tagTable row, and updates the "head"
783
* value to reflect the update. Essentially cycles backwards from [1, {entries per row})
784
*/
785
FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextIndex(BYTE* const tagRow, U32 const rowMask) {
786
U32 next = (*tagRow-1) & rowMask;
787
next += (next == 0) ? rowMask : 0; /* skip first position */
788
*tagRow = (BYTE)next;
789
return next;
790
}
791
792
/* ZSTD_isAligned():
793
* Checks that a pointer is aligned to "align" bytes which must be a power of 2.
794
*/
795
MEM_STATIC int ZSTD_isAligned(void const* ptr, size_t align) {
796
assert((align & (align - 1)) == 0);
797
return (((size_t)ptr) & (align - 1)) == 0;
798
}
799
800
/* ZSTD_row_prefetch():
801
* Performs prefetching for the hashTable and tagTable at a given row.
802
*/
803
FORCE_INLINE_TEMPLATE void ZSTD_row_prefetch(U32 const* hashTable, BYTE const* tagTable, U32 const relRow, U32 const rowLog) {
804
PREFETCH_L1(hashTable + relRow);
805
if (rowLog >= 5) {
806
PREFETCH_L1(hashTable + relRow + 16);
807
/* Note: prefetching more of the hash table does not appear to be beneficial for 128-entry rows */
808
}
809
PREFETCH_L1(tagTable + relRow);
810
if (rowLog == 6) {
811
PREFETCH_L1(tagTable + relRow + 32);
812
}
813
assert(rowLog == 4 || rowLog == 5 || rowLog == 6);
814
assert(ZSTD_isAligned(hashTable + relRow, 64)); /* prefetched hash row always 64-byte aligned */
815
assert(ZSTD_isAligned(tagTable + relRow, (size_t)1 << rowLog)); /* prefetched tagRow sits on correct multiple of bytes (32,64,128) */
816
}
817
818
/* ZSTD_row_fillHashCache():
819
* Fill up the hash cache starting at idx, prefetching up to ZSTD_ROW_HASH_CACHE_SIZE entries,
820
* but not beyond iLimit.
821
*/
822
FORCE_INLINE_TEMPLATE void ZSTD_row_fillHashCache(ZSTD_matchState_t* ms, const BYTE* base,
823
U32 const rowLog, U32 const mls,
824
U32 idx, const BYTE* const iLimit)
825
{
826
U32 const* const hashTable = ms->hashTable;
827
BYTE const* const tagTable = ms->tagTable;
828
U32 const hashLog = ms->rowHashLog;
829
U32 const maxElemsToPrefetch = (base + idx) > iLimit ? 0 : (U32)(iLimit - (base + idx) + 1);
830
U32 const lim = idx + MIN(ZSTD_ROW_HASH_CACHE_SIZE, maxElemsToPrefetch);
831
832
for (; idx < lim; ++idx) {
833
U32 const hash = (U32)ZSTD_hashPtrSalted(base + idx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt);
834
U32 const row = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
835
ZSTD_row_prefetch(hashTable, tagTable, row, rowLog);
836
ms->hashCache[idx & ZSTD_ROW_HASH_CACHE_MASK] = hash;
837
}
838
839
DEBUGLOG(6, "ZSTD_row_fillHashCache(): [%u %u %u %u %u %u %u %u]", ms->hashCache[0], ms->hashCache[1],
840
ms->hashCache[2], ms->hashCache[3], ms->hashCache[4],
841
ms->hashCache[5], ms->hashCache[6], ms->hashCache[7]);
842
}
843
844
/* ZSTD_row_nextCachedHash():
845
* Returns the hash of base + idx, and replaces the hash in the hash cache with the byte at
846
* base + idx + ZSTD_ROW_HASH_CACHE_SIZE. Also prefetches the appropriate rows from hashTable and tagTable.
847
*/
848
FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextCachedHash(U32* cache, U32 const* hashTable,
849
BYTE const* tagTable, BYTE const* base,
850
U32 idx, U32 const hashLog,
851
U32 const rowLog, U32 const mls,
852
U64 const hashSalt)
853
{
854
U32 const newHash = (U32)ZSTD_hashPtrSalted(base+idx+ZSTD_ROW_HASH_CACHE_SIZE, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, hashSalt);
855
U32 const row = (newHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
856
ZSTD_row_prefetch(hashTable, tagTable, row, rowLog);
857
{ U32 const hash = cache[idx & ZSTD_ROW_HASH_CACHE_MASK];
858
cache[idx & ZSTD_ROW_HASH_CACHE_MASK] = newHash;
859
return hash;
860
}
861
}
862
863
/* ZSTD_row_update_internalImpl():
864
* Updates the hash table with positions starting from updateStartIdx until updateEndIdx.
865
*/
866
FORCE_INLINE_TEMPLATE void ZSTD_row_update_internalImpl(ZSTD_matchState_t* ms,
867
U32 updateStartIdx, U32 const updateEndIdx,
868
U32 const mls, U32 const rowLog,
869
U32 const rowMask, U32 const useCache)
870
{
871
U32* const hashTable = ms->hashTable;
872
BYTE* const tagTable = ms->tagTable;
873
U32 const hashLog = ms->rowHashLog;
874
const BYTE* const base = ms->window.base;
875
876
DEBUGLOG(6, "ZSTD_row_update_internalImpl(): updateStartIdx=%u, updateEndIdx=%u", updateStartIdx, updateEndIdx);
877
for (; updateStartIdx < updateEndIdx; ++updateStartIdx) {
878
U32 const hash = useCache ? ZSTD_row_nextCachedHash(ms->hashCache, hashTable, tagTable, base, updateStartIdx, hashLog, rowLog, mls, ms->hashSalt)
879
: (U32)ZSTD_hashPtrSalted(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt);
880
U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
881
U32* const row = hashTable + relRow;
882
BYTE* tagRow = tagTable + relRow;
883
U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask);
884
885
assert(hash == ZSTD_hashPtrSalted(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, ms->hashSalt));
886
tagRow[pos] = hash & ZSTD_ROW_HASH_TAG_MASK;
887
row[pos] = updateStartIdx;
888
}
889
}
890
891
/* ZSTD_row_update_internal():
892
* Inserts the byte at ip into the appropriate position in the hash table, and updates ms->nextToUpdate.
893
* Skips sections of long matches as is necessary.
894
*/
895
FORCE_INLINE_TEMPLATE void ZSTD_row_update_internal(ZSTD_matchState_t* ms, const BYTE* ip,
896
U32 const mls, U32 const rowLog,
897
U32 const rowMask, U32 const useCache)
898
{
899
U32 idx = ms->nextToUpdate;
900
const BYTE* const base = ms->window.base;
901
const U32 target = (U32)(ip - base);
902
const U32 kSkipThreshold = 384;
903
const U32 kMaxMatchStartPositionsToUpdate = 96;
904
const U32 kMaxMatchEndPositionsToUpdate = 32;
905
906
if (useCache) {
907
/* Only skip positions when using hash cache, i.e.
908
* if we are loading a dict, don't skip anything.
909
* If we decide to skip, then we only update a set number
910
* of positions at the beginning and end of the match.
911
*/
912
if (UNLIKELY(target - idx > kSkipThreshold)) {
913
U32 const bound = idx + kMaxMatchStartPositionsToUpdate;
914
ZSTD_row_update_internalImpl(ms, idx, bound, mls, rowLog, rowMask, useCache);
915
idx = target - kMaxMatchEndPositionsToUpdate;
916
ZSTD_row_fillHashCache(ms, base, rowLog, mls, idx, ip+1);
917
}
918
}
919
assert(target >= idx);
920
ZSTD_row_update_internalImpl(ms, idx, target, mls, rowLog, rowMask, useCache);
921
ms->nextToUpdate = target;
922
}
923
924
/* ZSTD_row_update():
925
* External wrapper for ZSTD_row_update_internal(). Used for filling the hashtable during dictionary
926
* processing.
927
*/
928
void ZSTD_row_update(ZSTD_matchState_t* const ms, const BYTE* ip) {
929
const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6);
930
const U32 rowMask = (1u << rowLog) - 1;
931
const U32 mls = MIN(ms->cParams.minMatch, 6 /* mls caps out at 6 */);
932
933
DEBUGLOG(5, "ZSTD_row_update(), rowLog=%u", rowLog);
934
ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 0 /* don't use cache */);
935
}
936
937
/* Returns the mask width of bits group of which will be set to 1. Given not all
938
* architectures have easy movemask instruction, this helps to iterate over
939
* groups of bits easier and faster.
940
*/
941
FORCE_INLINE_TEMPLATE U32
942
ZSTD_row_matchMaskGroupWidth(const U32 rowEntries)
943
{
944
assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64);
945
assert(rowEntries <= ZSTD_ROW_HASH_MAX_ENTRIES);
946
(void)rowEntries;
947
#if defined(ZSTD_ARCH_ARM_NEON)
948
/* NEON path only works for little endian */
949
if (!MEM_isLittleEndian()) {
950
return 1;
951
}
952
if (rowEntries == 16) {
953
return 4;
954
}
955
if (rowEntries == 32) {
956
return 2;
957
}
958
if (rowEntries == 64) {
959
return 1;
960
}
961
#endif
962
return 1;
963
}
964
965
#if defined(ZSTD_ARCH_X86_SSE2)
966
FORCE_INLINE_TEMPLATE ZSTD_VecMask
967
ZSTD_row_getSSEMask(int nbChunks, const BYTE* const src, const BYTE tag, const U32 head)
968
{
969
const __m128i comparisonMask = _mm_set1_epi8((char)tag);
970
int matches[4] = {0};
971
int i;
972
assert(nbChunks == 1 || nbChunks == 2 || nbChunks == 4);
973
for (i=0; i<nbChunks; i++) {
974
const __m128i chunk = _mm_loadu_si128((const __m128i*)(const void*)(src + 16*i));
975
const __m128i equalMask = _mm_cmpeq_epi8(chunk, comparisonMask);
976
matches[i] = _mm_movemask_epi8(equalMask);
977
}
978
if (nbChunks == 1) return ZSTD_rotateRight_U16((U16)matches[0], head);
979
if (nbChunks == 2) return ZSTD_rotateRight_U32((U32)matches[1] << 16 | (U32)matches[0], head);
980
assert(nbChunks == 4);
981
return ZSTD_rotateRight_U64((U64)matches[3] << 48 | (U64)matches[2] << 32 | (U64)matches[1] << 16 | (U64)matches[0], head);
982
}
983
#endif
984
985
#if defined(ZSTD_ARCH_ARM_NEON)
986
FORCE_INLINE_TEMPLATE ZSTD_VecMask
987
ZSTD_row_getNEONMask(const U32 rowEntries, const BYTE* const src, const BYTE tag, const U32 headGrouped)
988
{
989
assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64);
990
if (rowEntries == 16) {
991
/* vshrn_n_u16 shifts by 4 every u16 and narrows to 8 lower bits.
992
* After that groups of 4 bits represent the equalMask. We lower
993
* all bits except the highest in these groups by doing AND with
994
* 0x88 = 0b10001000.
995
*/
996
const uint8x16_t chunk = vld1q_u8(src);
997
const uint16x8_t equalMask = vreinterpretq_u16_u8(vceqq_u8(chunk, vdupq_n_u8(tag)));
998
const uint8x8_t res = vshrn_n_u16(equalMask, 4);
999
const U64 matches = vget_lane_u64(vreinterpret_u64_u8(res), 0);
1000
return ZSTD_rotateRight_U64(matches, headGrouped) & 0x8888888888888888ull;
1001
} else if (rowEntries == 32) {
1002
/* Same idea as with rowEntries == 16 but doing AND with
1003
* 0x55 = 0b01010101.
1004
*/
1005
const uint16x8x2_t chunk = vld2q_u16((const uint16_t*)(const void*)src);
1006
const uint8x16_t chunk0 = vreinterpretq_u8_u16(chunk.val[0]);
1007
const uint8x16_t chunk1 = vreinterpretq_u8_u16(chunk.val[1]);
1008
const uint8x16_t dup = vdupq_n_u8(tag);
1009
const uint8x8_t t0 = vshrn_n_u16(vreinterpretq_u16_u8(vceqq_u8(chunk0, dup)), 6);
1010
const uint8x8_t t1 = vshrn_n_u16(vreinterpretq_u16_u8(vceqq_u8(chunk1, dup)), 6);
1011
const uint8x8_t res = vsli_n_u8(t0, t1, 4);
1012
const U64 matches = vget_lane_u64(vreinterpret_u64_u8(res), 0) ;
1013
return ZSTD_rotateRight_U64(matches, headGrouped) & 0x5555555555555555ull;
1014
} else { /* rowEntries == 64 */
1015
const uint8x16x4_t chunk = vld4q_u8(src);
1016
const uint8x16_t dup = vdupq_n_u8(tag);
1017
const uint8x16_t cmp0 = vceqq_u8(chunk.val[0], dup);
1018
const uint8x16_t cmp1 = vceqq_u8(chunk.val[1], dup);
1019
const uint8x16_t cmp2 = vceqq_u8(chunk.val[2], dup);
1020
const uint8x16_t cmp3 = vceqq_u8(chunk.val[3], dup);
1021
1022
const uint8x16_t t0 = vsriq_n_u8(cmp1, cmp0, 1);
1023
const uint8x16_t t1 = vsriq_n_u8(cmp3, cmp2, 1);
1024
const uint8x16_t t2 = vsriq_n_u8(t1, t0, 2);
1025
const uint8x16_t t3 = vsriq_n_u8(t2, t2, 4);
1026
const uint8x8_t t4 = vshrn_n_u16(vreinterpretq_u16_u8(t3), 4);
1027
const U64 matches = vget_lane_u64(vreinterpret_u64_u8(t4), 0);
1028
return ZSTD_rotateRight_U64(matches, headGrouped);
1029
}
1030
}
1031
#endif
1032
1033
/* Returns a ZSTD_VecMask (U64) that has the nth group (determined by
1034
* ZSTD_row_matchMaskGroupWidth) of bits set to 1 if the newly-computed "tag"
1035
* matches the hash at the nth position in a row of the tagTable.
1036
* Each row is a circular buffer beginning at the value of "headGrouped". So we
1037
* must rotate the "matches" bitfield to match up with the actual layout of the
1038
* entries within the hashTable */
1039
FORCE_INLINE_TEMPLATE ZSTD_VecMask
1040
ZSTD_row_getMatchMask(const BYTE* const tagRow, const BYTE tag, const U32 headGrouped, const U32 rowEntries)
1041
{
1042
const BYTE* const src = tagRow;
1043
assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64);
1044
assert(rowEntries <= ZSTD_ROW_HASH_MAX_ENTRIES);
1045
assert(ZSTD_row_matchMaskGroupWidth(rowEntries) * rowEntries <= sizeof(ZSTD_VecMask) * 8);
1046
1047
#if defined(ZSTD_ARCH_X86_SSE2)
1048
1049
return ZSTD_row_getSSEMask(rowEntries / 16, src, tag, headGrouped);
1050
1051
#else /* SW or NEON-LE */
1052
1053
# if defined(ZSTD_ARCH_ARM_NEON)
1054
/* This NEON path only works for little endian - otherwise use SWAR below */
1055
if (MEM_isLittleEndian()) {
1056
return ZSTD_row_getNEONMask(rowEntries, src, tag, headGrouped);
1057
}
1058
# endif /* ZSTD_ARCH_ARM_NEON */
1059
/* SWAR */
1060
{ const int chunkSize = sizeof(size_t);
1061
const size_t shiftAmount = ((chunkSize * 8) - chunkSize);
1062
const size_t xFF = ~((size_t)0);
1063
const size_t x01 = xFF / 0xFF;
1064
const size_t x80 = x01 << 7;
1065
const size_t splatChar = tag * x01;
1066
ZSTD_VecMask matches = 0;
1067
int i = rowEntries - chunkSize;
1068
assert((sizeof(size_t) == 4) || (sizeof(size_t) == 8));
1069
if (MEM_isLittleEndian()) { /* runtime check so have two loops */
1070
const size_t extractMagic = (xFF / 0x7F) >> chunkSize;
1071
do {
1072
size_t chunk = MEM_readST(&src[i]);
1073
chunk ^= splatChar;
1074
chunk = (((chunk | x80) - x01) | chunk) & x80;
1075
matches <<= chunkSize;
1076
matches |= (chunk * extractMagic) >> shiftAmount;
1077
i -= chunkSize;
1078
} while (i >= 0);
1079
} else { /* big endian: reverse bits during extraction */
1080
const size_t msb = xFF ^ (xFF >> 1);
1081
const size_t extractMagic = (msb / 0x1FF) | msb;
1082
do {
1083
size_t chunk = MEM_readST(&src[i]);
1084
chunk ^= splatChar;
1085
chunk = (((chunk | x80) - x01) | chunk) & x80;
1086
matches <<= chunkSize;
1087
matches |= ((chunk >> 7) * extractMagic) >> shiftAmount;
1088
i -= chunkSize;
1089
} while (i >= 0);
1090
}
1091
matches = ~matches;
1092
if (rowEntries == 16) {
1093
return ZSTD_rotateRight_U16((U16)matches, headGrouped);
1094
} else if (rowEntries == 32) {
1095
return ZSTD_rotateRight_U32((U32)matches, headGrouped);
1096
} else {
1097
return ZSTD_rotateRight_U64((U64)matches, headGrouped);
1098
}
1099
}
1100
#endif
1101
}
1102
1103
/* The high-level approach of the SIMD row based match finder is as follows:
1104
* - Figure out where to insert the new entry:
1105
* - Generate a hash from a byte along with an additional 1-byte "short hash". The additional byte is our "tag"
1106
* - The hashTable is effectively split into groups or "rows" of 16 or 32 entries of U32, and the hash determines
1107
* which row to insert into.
1108
* - Determine the correct position within the row to insert the entry into. Each row of 16 or 32 can
1109
* be considered as a circular buffer with a "head" index that resides in the tagTable.
1110
* - Also insert the "tag" into the equivalent row and position in the tagTable.
1111
* - Note: The tagTable has 17 or 33 1-byte entries per row, due to 16 or 32 tags, and 1 "head" entry.
1112
* The 17 or 33 entry rows are spaced out to occur every 32 or 64 bytes, respectively,
1113
* for alignment/performance reasons, leaving some bytes unused.
1114
* - Use SIMD to efficiently compare the tags in the tagTable to the 1-byte "short hash" and
1115
* generate a bitfield that we can cycle through to check the collisions in the hash table.
1116
* - Pick the longest match.
1117
*/
1118
FORCE_INLINE_TEMPLATE
1119
size_t ZSTD_RowFindBestMatch(
1120
ZSTD_matchState_t* ms,
1121
const BYTE* const ip, const BYTE* const iLimit,
1122
size_t* offsetPtr,
1123
const U32 mls, const ZSTD_dictMode_e dictMode,
1124
const U32 rowLog)
1125
{
1126
U32* const hashTable = ms->hashTable;
1127
BYTE* const tagTable = ms->tagTable;
1128
U32* const hashCache = ms->hashCache;
1129
const U32 hashLog = ms->rowHashLog;
1130
const ZSTD_compressionParameters* const cParams = &ms->cParams;
1131
const BYTE* const base = ms->window.base;
1132
const BYTE* const dictBase = ms->window.dictBase;
1133
const U32 dictLimit = ms->window.dictLimit;
1134
const BYTE* const prefixStart = base + dictLimit;
1135
const BYTE* const dictEnd = dictBase + dictLimit;
1136
const U32 curr = (U32)(ip-base);
1137
const U32 maxDistance = 1U << cParams->windowLog;
1138
const U32 lowestValid = ms->window.lowLimit;
1139
const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
1140
const U32 isDictionary = (ms->loadedDictEnd != 0);
1141
const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance;
1142
const U32 rowEntries = (1U << rowLog);
1143
const U32 rowMask = rowEntries - 1;
1144
const U32 cappedSearchLog = MIN(cParams->searchLog, rowLog); /* nb of searches is capped at nb entries per row */
1145
const U32 groupWidth = ZSTD_row_matchMaskGroupWidth(rowEntries);
1146
const U64 hashSalt = ms->hashSalt;
1147
U32 nbAttempts = 1U << cappedSearchLog;
1148
size_t ml=4-1;
1149
U32 hash;
1150
1151
/* DMS/DDS variables that may be referenced laster */
1152
const ZSTD_matchState_t* const dms = ms->dictMatchState;
1153
1154
/* Initialize the following variables to satisfy static analyzer */
1155
size_t ddsIdx = 0;
1156
U32 ddsExtraAttempts = 0; /* cctx hash tables are limited in searches, but allow extra searches into DDS */
1157
U32 dmsTag = 0;
1158
U32* dmsRow = NULL;
1159
BYTE* dmsTagRow = NULL;
1160
1161
if (dictMode == ZSTD_dedicatedDictSearch) {
1162
const U32 ddsHashLog = dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG;
1163
{ /* Prefetch DDS hashtable entry */
1164
ddsIdx = ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG;
1165
PREFETCH_L1(&dms->hashTable[ddsIdx]);
1166
}
1167
ddsExtraAttempts = cParams->searchLog > rowLog ? 1U << (cParams->searchLog - rowLog) : 0;
1168
}
1169
1170
if (dictMode == ZSTD_dictMatchState) {
1171
/* Prefetch DMS rows */
1172
U32* const dmsHashTable = dms->hashTable;
1173
BYTE* const dmsTagTable = dms->tagTable;
1174
U32 const dmsHash = (U32)ZSTD_hashPtr(ip, dms->rowHashLog + ZSTD_ROW_HASH_TAG_BITS, mls);
1175
U32 const dmsRelRow = (dmsHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
1176
dmsTag = dmsHash & ZSTD_ROW_HASH_TAG_MASK;
1177
dmsTagRow = (BYTE*)(dmsTagTable + dmsRelRow);
1178
dmsRow = dmsHashTable + dmsRelRow;
1179
ZSTD_row_prefetch(dmsHashTable, dmsTagTable, dmsRelRow, rowLog);
1180
}
1181
1182
/* Update the hashTable and tagTable up to (but not including) ip */
1183
if (!ms->lazySkipping) {
1184
ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 1 /* useCache */);
1185
hash = ZSTD_row_nextCachedHash(hashCache, hashTable, tagTable, base, curr, hashLog, rowLog, mls, hashSalt);
1186
} else {
1187
/* Stop inserting every position when in the lazy skipping mode.
1188
* The hash cache is also not kept up to date in this mode.
1189
*/
1190
hash = (U32)ZSTD_hashPtrSalted(ip, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls, hashSalt);
1191
ms->nextToUpdate = curr;
1192
}
1193
ms->hashSaltEntropy += hash; /* collect salt entropy */
1194
1195
{ /* Get the hash for ip, compute the appropriate row */
1196
U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
1197
U32 const tag = hash & ZSTD_ROW_HASH_TAG_MASK;
1198
U32* const row = hashTable + relRow;
1199
BYTE* tagRow = (BYTE*)(tagTable + relRow);
1200
U32 const headGrouped = (*tagRow & rowMask) * groupWidth;
1201
U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES];
1202
size_t numMatches = 0;
1203
size_t currMatch = 0;
1204
ZSTD_VecMask matches = ZSTD_row_getMatchMask(tagRow, (BYTE)tag, headGrouped, rowEntries);
1205
1206
/* Cycle through the matches and prefetch */
1207
for (; (matches > 0) && (nbAttempts > 0); matches &= (matches - 1)) {
1208
U32 const matchPos = ((headGrouped + ZSTD_VecMask_next(matches)) / groupWidth) & rowMask;
1209
U32 const matchIndex = row[matchPos];
1210
if(matchPos == 0) continue;
1211
assert(numMatches < rowEntries);
1212
if (matchIndex < lowLimit)
1213
break;
1214
if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
1215
PREFETCH_L1(base + matchIndex);
1216
} else {
1217
PREFETCH_L1(dictBase + matchIndex);
1218
}
1219
matchBuffer[numMatches++] = matchIndex;
1220
--nbAttempts;
1221
}
1222
1223
/* Speed opt: insert current byte into hashtable too. This allows us to avoid one iteration of the loop
1224
in ZSTD_row_update_internal() at the next search. */
1225
{
1226
U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask);
1227
tagRow[pos] = (BYTE)tag;
1228
row[pos] = ms->nextToUpdate++;
1229
}
1230
1231
/* Return the longest match */
1232
for (; currMatch < numMatches; ++currMatch) {
1233
U32 const matchIndex = matchBuffer[currMatch];
1234
size_t currentMl=0;
1235
assert(matchIndex < curr);
1236
assert(matchIndex >= lowLimit);
1237
1238
if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
1239
const BYTE* const match = base + matchIndex;
1240
assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */
1241
/* read 4B starting from (match + ml + 1 - sizeof(U32)) */
1242
if (MEM_read32(match + ml - 3) == MEM_read32(ip + ml - 3)) /* potentially better */
1243
currentMl = ZSTD_count(ip, match, iLimit);
1244
} else {
1245
const BYTE* const match = dictBase + matchIndex;
1246
assert(match+4 <= dictEnd);
1247
if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
1248
currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4;
1249
}
1250
1251
/* Save best solution */
1252
if (currentMl > ml) {
1253
ml = currentMl;
1254
*offsetPtr = OFFSET_TO_OFFBASE(curr - matchIndex);
1255
if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
1256
}
1257
}
1258
}
1259
1260
assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
1261
if (dictMode == ZSTD_dedicatedDictSearch) {
1262
ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts + ddsExtraAttempts, dms,
1263
ip, iLimit, prefixStart, curr, dictLimit, ddsIdx);
1264
} else if (dictMode == ZSTD_dictMatchState) {
1265
/* TODO: Measure and potentially add prefetching to DMS */
1266
const U32 dmsLowestIndex = dms->window.dictLimit;
1267
const BYTE* const dmsBase = dms->window.base;
1268
const BYTE* const dmsEnd = dms->window.nextSrc;
1269
const U32 dmsSize = (U32)(dmsEnd - dmsBase);
1270
const U32 dmsIndexDelta = dictLimit - dmsSize;
1271
1272
{ U32 const headGrouped = (*dmsTagRow & rowMask) * groupWidth;
1273
U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES];
1274
size_t numMatches = 0;
1275
size_t currMatch = 0;
1276
ZSTD_VecMask matches = ZSTD_row_getMatchMask(dmsTagRow, (BYTE)dmsTag, headGrouped, rowEntries);
1277
1278
for (; (matches > 0) && (nbAttempts > 0); matches &= (matches - 1)) {
1279
U32 const matchPos = ((headGrouped + ZSTD_VecMask_next(matches)) / groupWidth) & rowMask;
1280
U32 const matchIndex = dmsRow[matchPos];
1281
if(matchPos == 0) continue;
1282
if (matchIndex < dmsLowestIndex)
1283
break;
1284
PREFETCH_L1(dmsBase + matchIndex);
1285
matchBuffer[numMatches++] = matchIndex;
1286
--nbAttempts;
1287
}
1288
1289
/* Return the longest match */
1290
for (; currMatch < numMatches; ++currMatch) {
1291
U32 const matchIndex = matchBuffer[currMatch];
1292
size_t currentMl=0;
1293
assert(matchIndex >= dmsLowestIndex);
1294
assert(matchIndex < curr);
1295
1296
{ const BYTE* const match = dmsBase + matchIndex;
1297
assert(match+4 <= dmsEnd);
1298
if (MEM_read32(match) == MEM_read32(ip))
1299
currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4;
1300
}
1301
1302
if (currentMl > ml) {
1303
ml = currentMl;
1304
assert(curr > matchIndex + dmsIndexDelta);
1305
*offsetPtr = OFFSET_TO_OFFBASE(curr - (matchIndex + dmsIndexDelta));
1306
if (ip+currentMl == iLimit) break;
1307
}
1308
}
1309
}
1310
}
1311
return ml;
1312
}
1313
1314
1315
/**
1316
* Generate search functions templated on (dictMode, mls, rowLog).
1317
* These functions are outlined for code size & compilation time.
1318
* ZSTD_searchMax() dispatches to the correct implementation function.
1319
*
1320
* TODO: The start of the search function involves loading and calculating a
1321
* bunch of constants from the ZSTD_matchState_t. These computations could be
1322
* done in an initialization function, and saved somewhere in the match state.
1323
* Then we could pass a pointer to the saved state instead of the match state,
1324
* and avoid duplicate computations.
1325
*
1326
* TODO: Move the match re-winding into searchMax. This improves compression
1327
* ratio, and unlocks further simplifications with the next TODO.
1328
*
1329
* TODO: Try moving the repcode search into searchMax. After the re-winding
1330
* and repcode search are in searchMax, there is no more logic in the match
1331
* finder loop that requires knowledge about the dictMode. So we should be
1332
* able to avoid force inlining it, and we can join the extDict loop with
1333
* the single segment loop. It should go in searchMax instead of its own
1334
* function to avoid having multiple virtual function calls per search.
1335
*/
1336
1337
#define ZSTD_BT_SEARCH_FN(dictMode, mls) ZSTD_BtFindBestMatch_##dictMode##_##mls
1338
#define ZSTD_HC_SEARCH_FN(dictMode, mls) ZSTD_HcFindBestMatch_##dictMode##_##mls
1339
#define ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog) ZSTD_RowFindBestMatch_##dictMode##_##mls##_##rowLog
1340
1341
#define ZSTD_SEARCH_FN_ATTRS FORCE_NOINLINE
1342
1343
#define GEN_ZSTD_BT_SEARCH_FN(dictMode, mls) \
1344
ZSTD_SEARCH_FN_ATTRS size_t ZSTD_BT_SEARCH_FN(dictMode, mls)( \
1345
ZSTD_matchState_t* ms, \
1346
const BYTE* ip, const BYTE* const iLimit, \
1347
size_t* offBasePtr) \
1348
{ \
1349
assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \
1350
return ZSTD_BtFindBestMatch(ms, ip, iLimit, offBasePtr, mls, ZSTD_##dictMode); \
1351
} \
1352
1353
#define GEN_ZSTD_HC_SEARCH_FN(dictMode, mls) \
1354
ZSTD_SEARCH_FN_ATTRS size_t ZSTD_HC_SEARCH_FN(dictMode, mls)( \
1355
ZSTD_matchState_t* ms, \
1356
const BYTE* ip, const BYTE* const iLimit, \
1357
size_t* offsetPtr) \
1358
{ \
1359
assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \
1360
return ZSTD_HcFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode); \
1361
} \
1362
1363
#define GEN_ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog) \
1364
ZSTD_SEARCH_FN_ATTRS size_t ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog)( \
1365
ZSTD_matchState_t* ms, \
1366
const BYTE* ip, const BYTE* const iLimit, \
1367
size_t* offsetPtr) \
1368
{ \
1369
assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \
1370
assert(MAX(4, MIN(6, ms->cParams.searchLog)) == rowLog); \
1371
return ZSTD_RowFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode, rowLog); \
1372
} \
1373
1374
#define ZSTD_FOR_EACH_ROWLOG(X, dictMode, mls) \
1375
X(dictMode, mls, 4) \
1376
X(dictMode, mls, 5) \
1377
X(dictMode, mls, 6)
1378
1379
#define ZSTD_FOR_EACH_MLS_ROWLOG(X, dictMode) \
1380
ZSTD_FOR_EACH_ROWLOG(X, dictMode, 4) \
1381
ZSTD_FOR_EACH_ROWLOG(X, dictMode, 5) \
1382
ZSTD_FOR_EACH_ROWLOG(X, dictMode, 6)
1383
1384
#define ZSTD_FOR_EACH_MLS(X, dictMode) \
1385
X(dictMode, 4) \
1386
X(dictMode, 5) \
1387
X(dictMode, 6)
1388
1389
#define ZSTD_FOR_EACH_DICT_MODE(X, ...) \
1390
X(__VA_ARGS__, noDict) \
1391
X(__VA_ARGS__, extDict) \
1392
X(__VA_ARGS__, dictMatchState) \
1393
X(__VA_ARGS__, dedicatedDictSearch)
1394
1395
/* Generate row search fns for each combination of (dictMode, mls, rowLog) */
1396
ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS_ROWLOG, GEN_ZSTD_ROW_SEARCH_FN)
1397
/* Generate binary Tree search fns for each combination of (dictMode, mls) */
1398
ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_BT_SEARCH_FN)
1399
/* Generate hash chain search fns for each combination of (dictMode, mls) */
1400
ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_HC_SEARCH_FN)
1401
1402
typedef enum { search_hashChain=0, search_binaryTree=1, search_rowHash=2 } searchMethod_e;
1403
1404
#define GEN_ZSTD_CALL_BT_SEARCH_FN(dictMode, mls) \
1405
case mls: \
1406
return ZSTD_BT_SEARCH_FN(dictMode, mls)(ms, ip, iend, offsetPtr);
1407
#define GEN_ZSTD_CALL_HC_SEARCH_FN(dictMode, mls) \
1408
case mls: \
1409
return ZSTD_HC_SEARCH_FN(dictMode, mls)(ms, ip, iend, offsetPtr);
1410
#define GEN_ZSTD_CALL_ROW_SEARCH_FN(dictMode, mls, rowLog) \
1411
case rowLog: \
1412
return ZSTD_ROW_SEARCH_FN(dictMode, mls, rowLog)(ms, ip, iend, offsetPtr);
1413
1414
#define ZSTD_SWITCH_MLS(X, dictMode) \
1415
switch (mls) { \
1416
ZSTD_FOR_EACH_MLS(X, dictMode) \
1417
}
1418
1419
#define ZSTD_SWITCH_ROWLOG(dictMode, mls) \
1420
case mls: \
1421
switch (rowLog) { \
1422
ZSTD_FOR_EACH_ROWLOG(GEN_ZSTD_CALL_ROW_SEARCH_FN, dictMode, mls) \
1423
} \
1424
ZSTD_UNREACHABLE; \
1425
break;
1426
1427
#define ZSTD_SWITCH_SEARCH_METHOD(dictMode) \
1428
switch (searchMethod) { \
1429
case search_hashChain: \
1430
ZSTD_SWITCH_MLS(GEN_ZSTD_CALL_HC_SEARCH_FN, dictMode) \
1431
break; \
1432
case search_binaryTree: \
1433
ZSTD_SWITCH_MLS(GEN_ZSTD_CALL_BT_SEARCH_FN, dictMode) \
1434
break; \
1435
case search_rowHash: \
1436
ZSTD_SWITCH_MLS(ZSTD_SWITCH_ROWLOG, dictMode) \
1437
break; \
1438
} \
1439
ZSTD_UNREACHABLE;
1440
1441
/**
1442
* Searches for the longest match at @p ip.
1443
* Dispatches to the correct implementation function based on the
1444
* (searchMethod, dictMode, mls, rowLog). We use switch statements
1445
* here instead of using an indirect function call through a function
1446
* pointer because after Spectre and Meltdown mitigations, indirect
1447
* function calls can be very costly, especially in the kernel.
1448
*
1449
* NOTE: dictMode and searchMethod should be templated, so those switch
1450
* statements should be optimized out. Only the mls & rowLog switches
1451
* should be left.
1452
*
1453
* @param ms The match state.
1454
* @param ip The position to search at.
1455
* @param iend The end of the input data.
1456
* @param[out] offsetPtr Stores the match offset into this pointer.
1457
* @param mls The minimum search length, in the range [4, 6].
1458
* @param rowLog The row log (if applicable), in the range [4, 6].
1459
* @param searchMethod The search method to use (templated).
1460
* @param dictMode The dictMode (templated).
1461
*
1462
* @returns The length of the longest match found, or < mls if no match is found.
1463
* If a match is found its offset is stored in @p offsetPtr.
1464
*/
1465
FORCE_INLINE_TEMPLATE size_t ZSTD_searchMax(
1466
ZSTD_matchState_t* ms,
1467
const BYTE* ip,
1468
const BYTE* iend,
1469
size_t* offsetPtr,
1470
U32 const mls,
1471
U32 const rowLog,
1472
searchMethod_e const searchMethod,
1473
ZSTD_dictMode_e const dictMode)
1474
{
1475
if (dictMode == ZSTD_noDict) {
1476
ZSTD_SWITCH_SEARCH_METHOD(noDict)
1477
} else if (dictMode == ZSTD_extDict) {
1478
ZSTD_SWITCH_SEARCH_METHOD(extDict)
1479
} else if (dictMode == ZSTD_dictMatchState) {
1480
ZSTD_SWITCH_SEARCH_METHOD(dictMatchState)
1481
} else if (dictMode == ZSTD_dedicatedDictSearch) {
1482
ZSTD_SWITCH_SEARCH_METHOD(dedicatedDictSearch)
1483
}
1484
ZSTD_UNREACHABLE;
1485
return 0;
1486
}
1487
1488
/* *******************************
1489
* Common parser - lazy strategy
1490
*********************************/
1491
1492
FORCE_INLINE_TEMPLATE size_t
1493
ZSTD_compressBlock_lazy_generic(
1494
ZSTD_matchState_t* ms, seqStore_t* seqStore,
1495
U32 rep[ZSTD_REP_NUM],
1496
const void* src, size_t srcSize,
1497
const searchMethod_e searchMethod, const U32 depth,
1498
ZSTD_dictMode_e const dictMode)
1499
{
1500
const BYTE* const istart = (const BYTE*)src;
1501
const BYTE* ip = istart;
1502
const BYTE* anchor = istart;
1503
const BYTE* const iend = istart + srcSize;
1504
const BYTE* const ilimit = (searchMethod == search_rowHash) ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8;
1505
const BYTE* const base = ms->window.base;
1506
const U32 prefixLowestIndex = ms->window.dictLimit;
1507
const BYTE* const prefixLowest = base + prefixLowestIndex;
1508
const U32 mls = BOUNDED(4, ms->cParams.minMatch, 6);
1509
const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6);
1510
1511
U32 offset_1 = rep[0], offset_2 = rep[1];
1512
U32 offsetSaved1 = 0, offsetSaved2 = 0;
1513
1514
const int isDMS = dictMode == ZSTD_dictMatchState;
1515
const int isDDS = dictMode == ZSTD_dedicatedDictSearch;
1516
const int isDxS = isDMS || isDDS;
1517
const ZSTD_matchState_t* const dms = ms->dictMatchState;
1518
const U32 dictLowestIndex = isDxS ? dms->window.dictLimit : 0;
1519
const BYTE* const dictBase = isDxS ? dms->window.base : NULL;
1520
const BYTE* const dictLowest = isDxS ? dictBase + dictLowestIndex : NULL;
1521
const BYTE* const dictEnd = isDxS ? dms->window.nextSrc : NULL;
1522
const U32 dictIndexDelta = isDxS ?
1523
prefixLowestIndex - (U32)(dictEnd - dictBase) :
1524
0;
1525
const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictLowest));
1526
1527
DEBUGLOG(5, "ZSTD_compressBlock_lazy_generic (dictMode=%u) (searchFunc=%u)", (U32)dictMode, (U32)searchMethod);
1528
ip += (dictAndPrefixLength == 0);
1529
if (dictMode == ZSTD_noDict) {
1530
U32 const curr = (U32)(ip - base);
1531
U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, ms->cParams.windowLog);
1532
U32 const maxRep = curr - windowLow;
1533
if (offset_2 > maxRep) offsetSaved2 = offset_2, offset_2 = 0;
1534
if (offset_1 > maxRep) offsetSaved1 = offset_1, offset_1 = 0;
1535
}
1536
if (isDxS) {
1537
/* dictMatchState repCode checks don't currently handle repCode == 0
1538
* disabling. */
1539
assert(offset_1 <= dictAndPrefixLength);
1540
assert(offset_2 <= dictAndPrefixLength);
1541
}
1542
1543
/* Reset the lazy skipping state */
1544
ms->lazySkipping = 0;
1545
1546
if (searchMethod == search_rowHash) {
1547
ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit);
1548
}
1549
1550
/* Match Loop */
1551
#if defined(__GNUC__) && defined(__x86_64__)
1552
/* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the
1553
* code alignment is perturbed. To fix the instability align the loop on 32-bytes.
1554
*/
1555
__asm__(".p2align 5");
1556
#endif
1557
while (ip < ilimit) {
1558
size_t matchLength=0;
1559
size_t offBase = REPCODE1_TO_OFFBASE;
1560
const BYTE* start=ip+1;
1561
DEBUGLOG(7, "search baseline (depth 0)");
1562
1563
/* check repCode */
1564
if (isDxS) {
1565
const U32 repIndex = (U32)(ip - base) + 1 - offset_1;
1566
const BYTE* repMatch = ((dictMode == ZSTD_dictMatchState || dictMode == ZSTD_dedicatedDictSearch)
1567
&& repIndex < prefixLowestIndex) ?
1568
dictBase + (repIndex - dictIndexDelta) :
1569
base + repIndex;
1570
if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
1571
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
1572
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
1573
matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
1574
if (depth==0) goto _storeSequence;
1575
}
1576
}
1577
if ( dictMode == ZSTD_noDict
1578
&& ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) {
1579
matchLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
1580
if (depth==0) goto _storeSequence;
1581
}
1582
1583
/* first search (depth 0) */
1584
{ size_t offbaseFound = 999999999;
1585
size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &offbaseFound, mls, rowLog, searchMethod, dictMode);
1586
if (ml2 > matchLength)
1587
matchLength = ml2, start = ip, offBase = offbaseFound;
1588
}
1589
1590
if (matchLength < 4) {
1591
size_t const step = ((size_t)(ip-anchor) >> kSearchStrength) + 1; /* jump faster over incompressible sections */;
1592
ip += step;
1593
/* Enter the lazy skipping mode once we are skipping more than 8 bytes at a time.
1594
* In this mode we stop inserting every position into our tables, and only insert
1595
* positions that we search, which is one in step positions.
1596
* The exact cutoff is flexible, I've just chosen a number that is reasonably high,
1597
* so we minimize the compression ratio loss in "normal" scenarios. This mode gets
1598
* triggered once we've gone 2KB without finding any matches.
1599
*/
1600
ms->lazySkipping = step > kLazySkippingStep;
1601
continue;
1602
}
1603
1604
/* let's try to find a better solution */
1605
if (depth>=1)
1606
while (ip<ilimit) {
1607
DEBUGLOG(7, "search depth 1");
1608
ip ++;
1609
if ( (dictMode == ZSTD_noDict)
1610
&& (offBase) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
1611
size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4;
1612
int const gain2 = (int)(mlRep * 3);
1613
int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1);
1614
if ((mlRep >= 4) && (gain2 > gain1))
1615
matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip;
1616
}
1617
if (isDxS) {
1618
const U32 repIndex = (U32)(ip - base) - offset_1;
1619
const BYTE* repMatch = repIndex < prefixLowestIndex ?
1620
dictBase + (repIndex - dictIndexDelta) :
1621
base + repIndex;
1622
if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
1623
&& (MEM_read32(repMatch) == MEM_read32(ip)) ) {
1624
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
1625
size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
1626
int const gain2 = (int)(mlRep * 3);
1627
int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1);
1628
if ((mlRep >= 4) && (gain2 > gain1))
1629
matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip;
1630
}
1631
}
1632
{ size_t ofbCandidate=999999999;
1633
size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, dictMode);
1634
int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */
1635
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 4);
1636
if ((ml2 >= 4) && (gain2 > gain1)) {
1637
matchLength = ml2, offBase = ofbCandidate, start = ip;
1638
continue; /* search a better one */
1639
} }
1640
1641
/* let's find an even better one */
1642
if ((depth==2) && (ip<ilimit)) {
1643
DEBUGLOG(7, "search depth 2");
1644
ip ++;
1645
if ( (dictMode == ZSTD_noDict)
1646
&& (offBase) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
1647
size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4;
1648
int const gain2 = (int)(mlRep * 4);
1649
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1);
1650
if ((mlRep >= 4) && (gain2 > gain1))
1651
matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip;
1652
}
1653
if (isDxS) {
1654
const U32 repIndex = (U32)(ip - base) - offset_1;
1655
const BYTE* repMatch = repIndex < prefixLowestIndex ?
1656
dictBase + (repIndex - dictIndexDelta) :
1657
base + repIndex;
1658
if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
1659
&& (MEM_read32(repMatch) == MEM_read32(ip)) ) {
1660
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
1661
size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
1662
int const gain2 = (int)(mlRep * 4);
1663
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1);
1664
if ((mlRep >= 4) && (gain2 > gain1))
1665
matchLength = mlRep, offBase = REPCODE1_TO_OFFBASE, start = ip;
1666
}
1667
}
1668
{ size_t ofbCandidate=999999999;
1669
size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, dictMode);
1670
int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */
1671
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 7);
1672
if ((ml2 >= 4) && (gain2 > gain1)) {
1673
matchLength = ml2, offBase = ofbCandidate, start = ip;
1674
continue;
1675
} } }
1676
break; /* nothing found : store previous solution */
1677
}
1678
1679
/* NOTE:
1680
* Pay attention that `start[-value]` can lead to strange undefined behavior
1681
* notably if `value` is unsigned, resulting in a large positive `-value`.
1682
*/
1683
/* catch up */
1684
if (OFFBASE_IS_OFFSET(offBase)) {
1685
if (dictMode == ZSTD_noDict) {
1686
while ( ((start > anchor) & (start - OFFBASE_TO_OFFSET(offBase) > prefixLowest))
1687
&& (start[-1] == (start-OFFBASE_TO_OFFSET(offBase))[-1]) ) /* only search for offset within prefix */
1688
{ start--; matchLength++; }
1689
}
1690
if (isDxS) {
1691
U32 const matchIndex = (U32)((size_t)(start-base) - OFFBASE_TO_OFFSET(offBase));
1692
const BYTE* match = (matchIndex < prefixLowestIndex) ? dictBase + matchIndex - dictIndexDelta : base + matchIndex;
1693
const BYTE* const mStart = (matchIndex < prefixLowestIndex) ? dictLowest : prefixLowest;
1694
while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */
1695
}
1696
offset_2 = offset_1; offset_1 = (U32)OFFBASE_TO_OFFSET(offBase);
1697
}
1698
/* store sequence */
1699
_storeSequence:
1700
{ size_t const litLength = (size_t)(start - anchor);
1701
ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offBase, matchLength);
1702
anchor = ip = start + matchLength;
1703
}
1704
if (ms->lazySkipping) {
1705
/* We've found a match, disable lazy skipping mode, and refill the hash cache. */
1706
if (searchMethod == search_rowHash) {
1707
ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit);
1708
}
1709
ms->lazySkipping = 0;
1710
}
1711
1712
/* check immediate repcode */
1713
if (isDxS) {
1714
while (ip <= ilimit) {
1715
U32 const current2 = (U32)(ip-base);
1716
U32 const repIndex = current2 - offset_2;
1717
const BYTE* repMatch = repIndex < prefixLowestIndex ?
1718
dictBase - dictIndexDelta + repIndex :
1719
base + repIndex;
1720
if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex) >= 3 /* intentional overflow */)
1721
&& (MEM_read32(repMatch) == MEM_read32(ip)) ) {
1722
const BYTE* const repEnd2 = repIndex < prefixLowestIndex ? dictEnd : iend;
1723
matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd2, prefixLowest) + 4;
1724
offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase; /* swap offset_2 <=> offset_1 */
1725
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength);
1726
ip += matchLength;
1727
anchor = ip;
1728
continue;
1729
}
1730
break;
1731
}
1732
}
1733
1734
if (dictMode == ZSTD_noDict) {
1735
while ( ((ip <= ilimit) & (offset_2>0))
1736
&& (MEM_read32(ip) == MEM_read32(ip - offset_2)) ) {
1737
/* store sequence */
1738
matchLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
1739
offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase; /* swap repcodes */
1740
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength);
1741
ip += matchLength;
1742
anchor = ip;
1743
continue; /* faster when present ... (?) */
1744
} } }
1745
1746
/* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0),
1747
* rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */
1748
offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2;
1749
1750
/* save reps for next block */
1751
rep[0] = offset_1 ? offset_1 : offsetSaved1;
1752
rep[1] = offset_2 ? offset_2 : offsetSaved2;
1753
1754
/* Return the last literals size */
1755
return (size_t)(iend - anchor);
1756
}
1757
1758
1759
size_t ZSTD_compressBlock_btlazy2(
1760
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1761
void const* src, size_t srcSize)
1762
{
1763
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_noDict);
1764
}
1765
1766
size_t ZSTD_compressBlock_lazy2(
1767
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1768
void const* src, size_t srcSize)
1769
{
1770
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_noDict);
1771
}
1772
1773
size_t ZSTD_compressBlock_lazy(
1774
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1775
void const* src, size_t srcSize)
1776
{
1777
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_noDict);
1778
}
1779
1780
size_t ZSTD_compressBlock_greedy(
1781
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1782
void const* src, size_t srcSize)
1783
{
1784
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_noDict);
1785
}
1786
1787
size_t ZSTD_compressBlock_btlazy2_dictMatchState(
1788
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1789
void const* src, size_t srcSize)
1790
{
1791
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_dictMatchState);
1792
}
1793
1794
size_t ZSTD_compressBlock_lazy2_dictMatchState(
1795
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1796
void const* src, size_t srcSize)
1797
{
1798
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dictMatchState);
1799
}
1800
1801
size_t ZSTD_compressBlock_lazy_dictMatchState(
1802
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1803
void const* src, size_t srcSize)
1804
{
1805
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dictMatchState);
1806
}
1807
1808
size_t ZSTD_compressBlock_greedy_dictMatchState(
1809
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1810
void const* src, size_t srcSize)
1811
{
1812
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dictMatchState);
1813
}
1814
1815
1816
size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch(
1817
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1818
void const* src, size_t srcSize)
1819
{
1820
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dedicatedDictSearch);
1821
}
1822
1823
size_t ZSTD_compressBlock_lazy_dedicatedDictSearch(
1824
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1825
void const* src, size_t srcSize)
1826
{
1827
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dedicatedDictSearch);
1828
}
1829
1830
size_t ZSTD_compressBlock_greedy_dedicatedDictSearch(
1831
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1832
void const* src, size_t srcSize)
1833
{
1834
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dedicatedDictSearch);
1835
}
1836
1837
/* Row-based matchfinder */
1838
size_t ZSTD_compressBlock_lazy2_row(
1839
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1840
void const* src, size_t srcSize)
1841
{
1842
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_noDict);
1843
}
1844
1845
size_t ZSTD_compressBlock_lazy_row(
1846
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1847
void const* src, size_t srcSize)
1848
{
1849
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_noDict);
1850
}
1851
1852
size_t ZSTD_compressBlock_greedy_row(
1853
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1854
void const* src, size_t srcSize)
1855
{
1856
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_noDict);
1857
}
1858
1859
size_t ZSTD_compressBlock_lazy2_dictMatchState_row(
1860
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1861
void const* src, size_t srcSize)
1862
{
1863
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dictMatchState);
1864
}
1865
1866
size_t ZSTD_compressBlock_lazy_dictMatchState_row(
1867
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1868
void const* src, size_t srcSize)
1869
{
1870
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dictMatchState);
1871
}
1872
1873
size_t ZSTD_compressBlock_greedy_dictMatchState_row(
1874
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1875
void const* src, size_t srcSize)
1876
{
1877
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dictMatchState);
1878
}
1879
1880
1881
size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch_row(
1882
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1883
void const* src, size_t srcSize)
1884
{
1885
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dedicatedDictSearch);
1886
}
1887
1888
size_t ZSTD_compressBlock_lazy_dedicatedDictSearch_row(
1889
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1890
void const* src, size_t srcSize)
1891
{
1892
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dedicatedDictSearch);
1893
}
1894
1895
size_t ZSTD_compressBlock_greedy_dedicatedDictSearch_row(
1896
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1897
void const* src, size_t srcSize)
1898
{
1899
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dedicatedDictSearch);
1900
}
1901
1902
FORCE_INLINE_TEMPLATE
1903
size_t ZSTD_compressBlock_lazy_extDict_generic(
1904
ZSTD_matchState_t* ms, seqStore_t* seqStore,
1905
U32 rep[ZSTD_REP_NUM],
1906
const void* src, size_t srcSize,
1907
const searchMethod_e searchMethod, const U32 depth)
1908
{
1909
const BYTE* const istart = (const BYTE*)src;
1910
const BYTE* ip = istart;
1911
const BYTE* anchor = istart;
1912
const BYTE* const iend = istart + srcSize;
1913
const BYTE* const ilimit = searchMethod == search_rowHash ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8;
1914
const BYTE* const base = ms->window.base;
1915
const U32 dictLimit = ms->window.dictLimit;
1916
const BYTE* const prefixStart = base + dictLimit;
1917
const BYTE* const dictBase = ms->window.dictBase;
1918
const BYTE* const dictEnd = dictBase + dictLimit;
1919
const BYTE* const dictStart = dictBase + ms->window.lowLimit;
1920
const U32 windowLog = ms->cParams.windowLog;
1921
const U32 mls = BOUNDED(4, ms->cParams.minMatch, 6);
1922
const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6);
1923
1924
U32 offset_1 = rep[0], offset_2 = rep[1];
1925
1926
DEBUGLOG(5, "ZSTD_compressBlock_lazy_extDict_generic (searchFunc=%u)", (U32)searchMethod);
1927
1928
/* Reset the lazy skipping state */
1929
ms->lazySkipping = 0;
1930
1931
/* init */
1932
ip += (ip == prefixStart);
1933
if (searchMethod == search_rowHash) {
1934
ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit);
1935
}
1936
1937
/* Match Loop */
1938
#if defined(__GNUC__) && defined(__x86_64__)
1939
/* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the
1940
* code alignment is perturbed. To fix the instability align the loop on 32-bytes.
1941
*/
1942
__asm__(".p2align 5");
1943
#endif
1944
while (ip < ilimit) {
1945
size_t matchLength=0;
1946
size_t offBase = REPCODE1_TO_OFFBASE;
1947
const BYTE* start=ip+1;
1948
U32 curr = (U32)(ip-base);
1949
1950
/* check repCode */
1951
{ const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr+1, windowLog);
1952
const U32 repIndex = (U32)(curr+1 - offset_1);
1953
const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
1954
const BYTE* const repMatch = repBase + repIndex;
1955
if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow */
1956
& (offset_1 <= curr+1 - windowLow) ) /* note: we are searching at curr+1 */
1957
if (MEM_read32(ip+1) == MEM_read32(repMatch)) {
1958
/* repcode detected we should take it */
1959
const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
1960
matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repEnd, prefixStart) + 4;
1961
if (depth==0) goto _storeSequence;
1962
} }
1963
1964
/* first search (depth 0) */
1965
{ size_t ofbCandidate = 999999999;
1966
size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict);
1967
if (ml2 > matchLength)
1968
matchLength = ml2, start = ip, offBase = ofbCandidate;
1969
}
1970
1971
if (matchLength < 4) {
1972
size_t const step = ((size_t)(ip-anchor) >> kSearchStrength);
1973
ip += step + 1; /* jump faster over incompressible sections */
1974
/* Enter the lazy skipping mode once we are skipping more than 8 bytes at a time.
1975
* In this mode we stop inserting every position into our tables, and only insert
1976
* positions that we search, which is one in step positions.
1977
* The exact cutoff is flexible, I've just chosen a number that is reasonably high,
1978
* so we minimize the compression ratio loss in "normal" scenarios. This mode gets
1979
* triggered once we've gone 2KB without finding any matches.
1980
*/
1981
ms->lazySkipping = step > kLazySkippingStep;
1982
continue;
1983
}
1984
1985
/* let's try to find a better solution */
1986
if (depth>=1)
1987
while (ip<ilimit) {
1988
ip ++;
1989
curr++;
1990
/* check repCode */
1991
if (offBase) {
1992
const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr, windowLog);
1993
const U32 repIndex = (U32)(curr - offset_1);
1994
const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
1995
const BYTE* const repMatch = repBase + repIndex;
1996
if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */
1997
& (offset_1 <= curr - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
1998
if (MEM_read32(ip) == MEM_read32(repMatch)) {
1999
/* repcode detected */
2000
const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
2001
size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
2002
int const gain2 = (int)(repLength * 3);
2003
int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)offBase) + 1);
2004
if ((repLength >= 4) && (gain2 > gain1))
2005
matchLength = repLength, offBase = REPCODE1_TO_OFFBASE, start = ip;
2006
} }
2007
2008
/* search match, depth 1 */
2009
{ size_t ofbCandidate = 999999999;
2010
size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict);
2011
int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */
2012
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 4);
2013
if ((ml2 >= 4) && (gain2 > gain1)) {
2014
matchLength = ml2, offBase = ofbCandidate, start = ip;
2015
continue; /* search a better one */
2016
} }
2017
2018
/* let's find an even better one */
2019
if ((depth==2) && (ip<ilimit)) {
2020
ip ++;
2021
curr++;
2022
/* check repCode */
2023
if (offBase) {
2024
const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr, windowLog);
2025
const U32 repIndex = (U32)(curr - offset_1);
2026
const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
2027
const BYTE* const repMatch = repBase + repIndex;
2028
if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */
2029
& (offset_1 <= curr - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
2030
if (MEM_read32(ip) == MEM_read32(repMatch)) {
2031
/* repcode detected */
2032
const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
2033
size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
2034
int const gain2 = (int)(repLength * 4);
2035
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 1);
2036
if ((repLength >= 4) && (gain2 > gain1))
2037
matchLength = repLength, offBase = REPCODE1_TO_OFFBASE, start = ip;
2038
} }
2039
2040
/* search match, depth 2 */
2041
{ size_t ofbCandidate = 999999999;
2042
size_t const ml2 = ZSTD_searchMax(ms, ip, iend, &ofbCandidate, mls, rowLog, searchMethod, ZSTD_extDict);
2043
int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)ofbCandidate)); /* raw approx */
2044
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)offBase) + 7);
2045
if ((ml2 >= 4) && (gain2 > gain1)) {
2046
matchLength = ml2, offBase = ofbCandidate, start = ip;
2047
continue;
2048
} } }
2049
break; /* nothing found : store previous solution */
2050
}
2051
2052
/* catch up */
2053
if (OFFBASE_IS_OFFSET(offBase)) {
2054
U32 const matchIndex = (U32)((size_t)(start-base) - OFFBASE_TO_OFFSET(offBase));
2055
const BYTE* match = (matchIndex < dictLimit) ? dictBase + matchIndex : base + matchIndex;
2056
const BYTE* const mStart = (matchIndex < dictLimit) ? dictStart : prefixStart;
2057
while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */
2058
offset_2 = offset_1; offset_1 = (U32)OFFBASE_TO_OFFSET(offBase);
2059
}
2060
2061
/* store sequence */
2062
_storeSequence:
2063
{ size_t const litLength = (size_t)(start - anchor);
2064
ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offBase, matchLength);
2065
anchor = ip = start + matchLength;
2066
}
2067
if (ms->lazySkipping) {
2068
/* We've found a match, disable lazy skipping mode, and refill the hash cache. */
2069
if (searchMethod == search_rowHash) {
2070
ZSTD_row_fillHashCache(ms, base, rowLog, mls, ms->nextToUpdate, ilimit);
2071
}
2072
ms->lazySkipping = 0;
2073
}
2074
2075
/* check immediate repcode */
2076
while (ip <= ilimit) {
2077
const U32 repCurrent = (U32)(ip-base);
2078
const U32 windowLow = ZSTD_getLowestMatchIndex(ms, repCurrent, windowLog);
2079
const U32 repIndex = repCurrent - offset_2;
2080
const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
2081
const BYTE* const repMatch = repBase + repIndex;
2082
if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */
2083
& (offset_2 <= repCurrent - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
2084
if (MEM_read32(ip) == MEM_read32(repMatch)) {
2085
/* repcode detected we should take it */
2086
const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
2087
matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
2088
offBase = offset_2; offset_2 = offset_1; offset_1 = (U32)offBase; /* swap offset history */
2089
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, matchLength);
2090
ip += matchLength;
2091
anchor = ip;
2092
continue; /* faster when present ... (?) */
2093
}
2094
break;
2095
} }
2096
2097
/* Save reps for next block */
2098
rep[0] = offset_1;
2099
rep[1] = offset_2;
2100
2101
/* Return the last literals size */
2102
return (size_t)(iend - anchor);
2103
}
2104
2105
2106
size_t ZSTD_compressBlock_greedy_extDict(
2107
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2108
void const* src, size_t srcSize)
2109
{
2110
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0);
2111
}
2112
2113
size_t ZSTD_compressBlock_lazy_extDict(
2114
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2115
void const* src, size_t srcSize)
2116
2117
{
2118
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1);
2119
}
2120
2121
size_t ZSTD_compressBlock_lazy2_extDict(
2122
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2123
void const* src, size_t srcSize)
2124
2125
{
2126
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2);
2127
}
2128
2129
size_t ZSTD_compressBlock_btlazy2_extDict(
2130
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2131
void const* src, size_t srcSize)
2132
2133
{
2134
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2);
2135
}
2136
2137
size_t ZSTD_compressBlock_greedy_extDict_row(
2138
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2139
void const* src, size_t srcSize)
2140
{
2141
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0);
2142
}
2143
2144
size_t ZSTD_compressBlock_lazy_extDict_row(
2145
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2146
void const* src, size_t srcSize)
2147
2148
{
2149
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1);
2150
}
2151
2152
size_t ZSTD_compressBlock_lazy2_extDict_row(
2153
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2154
void const* src, size_t srcSize)
2155
{
2156
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2);
2157
}
2158
2159