Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmzstd/lib/compress/zstd_ldm.c
3158 views
1
/*
2
* Copyright (c) Meta Platforms, Inc. and affiliates.
3
* All rights reserved.
4
*
5
* This source code is licensed under both the BSD-style license (found in the
6
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
7
* in the COPYING file in the root directory of this source tree).
8
* You may select, at your option, one of the above-listed licenses.
9
*/
10
11
#include "zstd_ldm.h"
12
13
#include "../common/debug.h"
14
#include "../common/xxhash.h"
15
#include "zstd_fast.h" /* ZSTD_fillHashTable() */
16
#include "zstd_double_fast.h" /* ZSTD_fillDoubleHashTable() */
17
#include "zstd_ldm_geartab.h"
18
19
#define LDM_BUCKET_SIZE_LOG 3
20
#define LDM_MIN_MATCH_LENGTH 64
21
#define LDM_HASH_RLOG 7
22
23
typedef struct {
24
U64 rolling;
25
U64 stopMask;
26
} ldmRollingHashState_t;
27
28
/** ZSTD_ldm_gear_init():
29
*
30
* Initializes the rolling hash state such that it will honor the
31
* settings in params. */
32
static void ZSTD_ldm_gear_init(ldmRollingHashState_t* state, ldmParams_t const* params)
33
{
34
unsigned maxBitsInMask = MIN(params->minMatchLength, 64);
35
unsigned hashRateLog = params->hashRateLog;
36
37
state->rolling = ~(U32)0;
38
39
/* The choice of the splitting criterion is subject to two conditions:
40
* 1. it has to trigger on average every 2^(hashRateLog) bytes;
41
* 2. ideally, it has to depend on a window of minMatchLength bytes.
42
*
43
* In the gear hash algorithm, bit n depends on the last n bytes;
44
* so in order to obtain a good quality splitting criterion it is
45
* preferable to use bits with high weight.
46
*
47
* To match condition 1 we use a mask with hashRateLog bits set
48
* and, because of the previous remark, we make sure these bits
49
* have the highest possible weight while still respecting
50
* condition 2.
51
*/
52
if (hashRateLog > 0 && hashRateLog <= maxBitsInMask) {
53
state->stopMask = (((U64)1 << hashRateLog) - 1) << (maxBitsInMask - hashRateLog);
54
} else {
55
/* In this degenerate case we simply honor the hash rate. */
56
state->stopMask = ((U64)1 << hashRateLog) - 1;
57
}
58
}
59
60
/** ZSTD_ldm_gear_reset()
61
* Feeds [data, data + minMatchLength) into the hash without registering any
62
* splits. This effectively resets the hash state. This is used when skipping
63
* over data, either at the beginning of a block, or skipping sections.
64
*/
65
static void ZSTD_ldm_gear_reset(ldmRollingHashState_t* state,
66
BYTE const* data, size_t minMatchLength)
67
{
68
U64 hash = state->rolling;
69
size_t n = 0;
70
71
#define GEAR_ITER_ONCE() do { \
72
hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \
73
n += 1; \
74
} while (0)
75
while (n + 3 < minMatchLength) {
76
GEAR_ITER_ONCE();
77
GEAR_ITER_ONCE();
78
GEAR_ITER_ONCE();
79
GEAR_ITER_ONCE();
80
}
81
while (n < minMatchLength) {
82
GEAR_ITER_ONCE();
83
}
84
#undef GEAR_ITER_ONCE
85
}
86
87
/** ZSTD_ldm_gear_feed():
88
*
89
* Registers in the splits array all the split points found in the first
90
* size bytes following the data pointer. This function terminates when
91
* either all the data has been processed or LDM_BATCH_SIZE splits are
92
* present in the splits array.
93
*
94
* Precondition: The splits array must not be full.
95
* Returns: The number of bytes processed. */
96
static size_t ZSTD_ldm_gear_feed(ldmRollingHashState_t* state,
97
BYTE const* data, size_t size,
98
size_t* splits, unsigned* numSplits)
99
{
100
size_t n;
101
U64 hash, mask;
102
103
hash = state->rolling;
104
mask = state->stopMask;
105
n = 0;
106
107
#define GEAR_ITER_ONCE() do { \
108
hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \
109
n += 1; \
110
if (UNLIKELY((hash & mask) == 0)) { \
111
splits[*numSplits] = n; \
112
*numSplits += 1; \
113
if (*numSplits == LDM_BATCH_SIZE) \
114
goto done; \
115
} \
116
} while (0)
117
118
while (n + 3 < size) {
119
GEAR_ITER_ONCE();
120
GEAR_ITER_ONCE();
121
GEAR_ITER_ONCE();
122
GEAR_ITER_ONCE();
123
}
124
while (n < size) {
125
GEAR_ITER_ONCE();
126
}
127
128
#undef GEAR_ITER_ONCE
129
130
done:
131
state->rolling = hash;
132
return n;
133
}
134
135
void ZSTD_ldm_adjustParameters(ldmParams_t* params,
136
ZSTD_compressionParameters const* cParams)
137
{
138
params->windowLog = cParams->windowLog;
139
ZSTD_STATIC_ASSERT(LDM_BUCKET_SIZE_LOG <= ZSTD_LDM_BUCKETSIZELOG_MAX);
140
DEBUGLOG(4, "ZSTD_ldm_adjustParameters");
141
if (!params->bucketSizeLog) params->bucketSizeLog = LDM_BUCKET_SIZE_LOG;
142
if (!params->minMatchLength) params->minMatchLength = LDM_MIN_MATCH_LENGTH;
143
if (params->hashLog == 0) {
144
params->hashLog = MAX(ZSTD_HASHLOG_MIN, params->windowLog - LDM_HASH_RLOG);
145
assert(params->hashLog <= ZSTD_HASHLOG_MAX);
146
}
147
if (params->hashRateLog == 0) {
148
params->hashRateLog = params->windowLog < params->hashLog
149
? 0
150
: params->windowLog - params->hashLog;
151
}
152
params->bucketSizeLog = MIN(params->bucketSizeLog, params->hashLog);
153
}
154
155
size_t ZSTD_ldm_getTableSize(ldmParams_t params)
156
{
157
size_t const ldmHSize = ((size_t)1) << params.hashLog;
158
size_t const ldmBucketSizeLog = MIN(params.bucketSizeLog, params.hashLog);
159
size_t const ldmBucketSize = ((size_t)1) << (params.hashLog - ldmBucketSizeLog);
160
size_t const totalSize = ZSTD_cwksp_alloc_size(ldmBucketSize)
161
+ ZSTD_cwksp_alloc_size(ldmHSize * sizeof(ldmEntry_t));
162
return params.enableLdm == ZSTD_ps_enable ? totalSize : 0;
163
}
164
165
size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize)
166
{
167
return params.enableLdm == ZSTD_ps_enable ? (maxChunkSize / params.minMatchLength) : 0;
168
}
169
170
/** ZSTD_ldm_getBucket() :
171
* Returns a pointer to the start of the bucket associated with hash. */
172
static ldmEntry_t* ZSTD_ldm_getBucket(
173
ldmState_t* ldmState, size_t hash, ldmParams_t const ldmParams)
174
{
175
return ldmState->hashTable + (hash << ldmParams.bucketSizeLog);
176
}
177
178
/** ZSTD_ldm_insertEntry() :
179
* Insert the entry with corresponding hash into the hash table */
180
static void ZSTD_ldm_insertEntry(ldmState_t* ldmState,
181
size_t const hash, const ldmEntry_t entry,
182
ldmParams_t const ldmParams)
183
{
184
BYTE* const pOffset = ldmState->bucketOffsets + hash;
185
unsigned const offset = *pOffset;
186
187
*(ZSTD_ldm_getBucket(ldmState, hash, ldmParams) + offset) = entry;
188
*pOffset = (BYTE)((offset + 1) & ((1u << ldmParams.bucketSizeLog) - 1));
189
190
}
191
192
/** ZSTD_ldm_countBackwardsMatch() :
193
* Returns the number of bytes that match backwards before pIn and pMatch.
194
*
195
* We count only bytes where pMatch >= pBase and pIn >= pAnchor. */
196
static size_t ZSTD_ldm_countBackwardsMatch(
197
const BYTE* pIn, const BYTE* pAnchor,
198
const BYTE* pMatch, const BYTE* pMatchBase)
199
{
200
size_t matchLength = 0;
201
while (pIn > pAnchor && pMatch > pMatchBase && pIn[-1] == pMatch[-1]) {
202
pIn--;
203
pMatch--;
204
matchLength++;
205
}
206
return matchLength;
207
}
208
209
/** ZSTD_ldm_countBackwardsMatch_2segments() :
210
* Returns the number of bytes that match backwards from pMatch,
211
* even with the backwards match spanning 2 different segments.
212
*
213
* On reaching `pMatchBase`, start counting from mEnd */
214
static size_t ZSTD_ldm_countBackwardsMatch_2segments(
215
const BYTE* pIn, const BYTE* pAnchor,
216
const BYTE* pMatch, const BYTE* pMatchBase,
217
const BYTE* pExtDictStart, const BYTE* pExtDictEnd)
218
{
219
size_t matchLength = ZSTD_ldm_countBackwardsMatch(pIn, pAnchor, pMatch, pMatchBase);
220
if (pMatch - matchLength != pMatchBase || pMatchBase == pExtDictStart) {
221
/* If backwards match is entirely in the extDict or prefix, immediately return */
222
return matchLength;
223
}
224
DEBUGLOG(7, "ZSTD_ldm_countBackwardsMatch_2segments: found 2-parts backwards match (length in prefix==%zu)", matchLength);
225
matchLength += ZSTD_ldm_countBackwardsMatch(pIn - matchLength, pAnchor, pExtDictEnd, pExtDictStart);
226
DEBUGLOG(7, "final backwards match length = %zu", matchLength);
227
return matchLength;
228
}
229
230
/** ZSTD_ldm_fillFastTables() :
231
*
232
* Fills the relevant tables for the ZSTD_fast and ZSTD_dfast strategies.
233
* This is similar to ZSTD_loadDictionaryContent.
234
*
235
* The tables for the other strategies are filled within their
236
* block compressors. */
237
static size_t ZSTD_ldm_fillFastTables(ZSTD_matchState_t* ms,
238
void const* end)
239
{
240
const BYTE* const iend = (const BYTE*)end;
241
242
switch(ms->cParams.strategy)
243
{
244
case ZSTD_fast:
245
ZSTD_fillHashTable(ms, iend, ZSTD_dtlm_fast, ZSTD_tfp_forCCtx);
246
break;
247
248
case ZSTD_dfast:
249
ZSTD_fillDoubleHashTable(ms, iend, ZSTD_dtlm_fast, ZSTD_tfp_forCCtx);
250
break;
251
252
case ZSTD_greedy:
253
case ZSTD_lazy:
254
case ZSTD_lazy2:
255
case ZSTD_btlazy2:
256
case ZSTD_btopt:
257
case ZSTD_btultra:
258
case ZSTD_btultra2:
259
break;
260
default:
261
assert(0); /* not possible : not a valid strategy id */
262
}
263
264
return 0;
265
}
266
267
void ZSTD_ldm_fillHashTable(
268
ldmState_t* ldmState, const BYTE* ip,
269
const BYTE* iend, ldmParams_t const* params)
270
{
271
U32 const minMatchLength = params->minMatchLength;
272
U32 const hBits = params->hashLog - params->bucketSizeLog;
273
BYTE const* const base = ldmState->window.base;
274
BYTE const* const istart = ip;
275
ldmRollingHashState_t hashState;
276
size_t* const splits = ldmState->splitIndices;
277
unsigned numSplits;
278
279
DEBUGLOG(5, "ZSTD_ldm_fillHashTable");
280
281
ZSTD_ldm_gear_init(&hashState, params);
282
while (ip < iend) {
283
size_t hashed;
284
unsigned n;
285
286
numSplits = 0;
287
hashed = ZSTD_ldm_gear_feed(&hashState, ip, iend - ip, splits, &numSplits);
288
289
for (n = 0; n < numSplits; n++) {
290
if (ip + splits[n] >= istart + minMatchLength) {
291
BYTE const* const split = ip + splits[n] - minMatchLength;
292
U64 const xxhash = XXH64(split, minMatchLength, 0);
293
U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1));
294
ldmEntry_t entry;
295
296
entry.offset = (U32)(split - base);
297
entry.checksum = (U32)(xxhash >> 32);
298
ZSTD_ldm_insertEntry(ldmState, hash, entry, *params);
299
}
300
}
301
302
ip += hashed;
303
}
304
}
305
306
307
/** ZSTD_ldm_limitTableUpdate() :
308
*
309
* Sets cctx->nextToUpdate to a position corresponding closer to anchor
310
* if it is far way
311
* (after a long match, only update tables a limited amount). */
312
static void ZSTD_ldm_limitTableUpdate(ZSTD_matchState_t* ms, const BYTE* anchor)
313
{
314
U32 const curr = (U32)(anchor - ms->window.base);
315
if (curr > ms->nextToUpdate + 1024) {
316
ms->nextToUpdate =
317
curr - MIN(512, curr - ms->nextToUpdate - 1024);
318
}
319
}
320
321
static size_t ZSTD_ldm_generateSequences_internal(
322
ldmState_t* ldmState, rawSeqStore_t* rawSeqStore,
323
ldmParams_t const* params, void const* src, size_t srcSize)
324
{
325
/* LDM parameters */
326
int const extDict = ZSTD_window_hasExtDict(ldmState->window);
327
U32 const minMatchLength = params->minMatchLength;
328
U32 const entsPerBucket = 1U << params->bucketSizeLog;
329
U32 const hBits = params->hashLog - params->bucketSizeLog;
330
/* Prefix and extDict parameters */
331
U32 const dictLimit = ldmState->window.dictLimit;
332
U32 const lowestIndex = extDict ? ldmState->window.lowLimit : dictLimit;
333
BYTE const* const base = ldmState->window.base;
334
BYTE const* const dictBase = extDict ? ldmState->window.dictBase : NULL;
335
BYTE const* const dictStart = extDict ? dictBase + lowestIndex : NULL;
336
BYTE const* const dictEnd = extDict ? dictBase + dictLimit : NULL;
337
BYTE const* const lowPrefixPtr = base + dictLimit;
338
/* Input bounds */
339
BYTE const* const istart = (BYTE const*)src;
340
BYTE const* const iend = istart + srcSize;
341
BYTE const* const ilimit = iend - HASH_READ_SIZE;
342
/* Input positions */
343
BYTE const* anchor = istart;
344
BYTE const* ip = istart;
345
/* Rolling hash state */
346
ldmRollingHashState_t hashState;
347
/* Arrays for staged-processing */
348
size_t* const splits = ldmState->splitIndices;
349
ldmMatchCandidate_t* const candidates = ldmState->matchCandidates;
350
unsigned numSplits;
351
352
if (srcSize < minMatchLength)
353
return iend - anchor;
354
355
/* Initialize the rolling hash state with the first minMatchLength bytes */
356
ZSTD_ldm_gear_init(&hashState, params);
357
ZSTD_ldm_gear_reset(&hashState, ip, minMatchLength);
358
ip += minMatchLength;
359
360
while (ip < ilimit) {
361
size_t hashed;
362
unsigned n;
363
364
numSplits = 0;
365
hashed = ZSTD_ldm_gear_feed(&hashState, ip, ilimit - ip,
366
splits, &numSplits);
367
368
for (n = 0; n < numSplits; n++) {
369
BYTE const* const split = ip + splits[n] - minMatchLength;
370
U64 const xxhash = XXH64(split, minMatchLength, 0);
371
U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1));
372
373
candidates[n].split = split;
374
candidates[n].hash = hash;
375
candidates[n].checksum = (U32)(xxhash >> 32);
376
candidates[n].bucket = ZSTD_ldm_getBucket(ldmState, hash, *params);
377
PREFETCH_L1(candidates[n].bucket);
378
}
379
380
for (n = 0; n < numSplits; n++) {
381
size_t forwardMatchLength = 0, backwardMatchLength = 0,
382
bestMatchLength = 0, mLength;
383
U32 offset;
384
BYTE const* const split = candidates[n].split;
385
U32 const checksum = candidates[n].checksum;
386
U32 const hash = candidates[n].hash;
387
ldmEntry_t* const bucket = candidates[n].bucket;
388
ldmEntry_t const* cur;
389
ldmEntry_t const* bestEntry = NULL;
390
ldmEntry_t newEntry;
391
392
newEntry.offset = (U32)(split - base);
393
newEntry.checksum = checksum;
394
395
/* If a split point would generate a sequence overlapping with
396
* the previous one, we merely register it in the hash table and
397
* move on */
398
if (split < anchor) {
399
ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
400
continue;
401
}
402
403
for (cur = bucket; cur < bucket + entsPerBucket; cur++) {
404
size_t curForwardMatchLength, curBackwardMatchLength,
405
curTotalMatchLength;
406
if (cur->checksum != checksum || cur->offset <= lowestIndex) {
407
continue;
408
}
409
if (extDict) {
410
BYTE const* const curMatchBase =
411
cur->offset < dictLimit ? dictBase : base;
412
BYTE const* const pMatch = curMatchBase + cur->offset;
413
BYTE const* const matchEnd =
414
cur->offset < dictLimit ? dictEnd : iend;
415
BYTE const* const lowMatchPtr =
416
cur->offset < dictLimit ? dictStart : lowPrefixPtr;
417
curForwardMatchLength =
418
ZSTD_count_2segments(split, pMatch, iend, matchEnd, lowPrefixPtr);
419
if (curForwardMatchLength < minMatchLength) {
420
continue;
421
}
422
curBackwardMatchLength = ZSTD_ldm_countBackwardsMatch_2segments(
423
split, anchor, pMatch, lowMatchPtr, dictStart, dictEnd);
424
} else { /* !extDict */
425
BYTE const* const pMatch = base + cur->offset;
426
curForwardMatchLength = ZSTD_count(split, pMatch, iend);
427
if (curForwardMatchLength < minMatchLength) {
428
continue;
429
}
430
curBackwardMatchLength =
431
ZSTD_ldm_countBackwardsMatch(split, anchor, pMatch, lowPrefixPtr);
432
}
433
curTotalMatchLength = curForwardMatchLength + curBackwardMatchLength;
434
435
if (curTotalMatchLength > bestMatchLength) {
436
bestMatchLength = curTotalMatchLength;
437
forwardMatchLength = curForwardMatchLength;
438
backwardMatchLength = curBackwardMatchLength;
439
bestEntry = cur;
440
}
441
}
442
443
/* No match found -- insert an entry into the hash table
444
* and process the next candidate match */
445
if (bestEntry == NULL) {
446
ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
447
continue;
448
}
449
450
/* Match found */
451
offset = (U32)(split - base) - bestEntry->offset;
452
mLength = forwardMatchLength + backwardMatchLength;
453
{
454
rawSeq* const seq = rawSeqStore->seq + rawSeqStore->size;
455
456
/* Out of sequence storage */
457
if (rawSeqStore->size == rawSeqStore->capacity)
458
return ERROR(dstSize_tooSmall);
459
seq->litLength = (U32)(split - backwardMatchLength - anchor);
460
seq->matchLength = (U32)mLength;
461
seq->offset = offset;
462
rawSeqStore->size++;
463
}
464
465
/* Insert the current entry into the hash table --- it must be
466
* done after the previous block to avoid clobbering bestEntry */
467
ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
468
469
anchor = split + forwardMatchLength;
470
471
/* If we find a match that ends after the data that we've hashed
472
* then we have a repeating, overlapping, pattern. E.g. all zeros.
473
* If one repetition of the pattern matches our `stopMask` then all
474
* repetitions will. We don't need to insert them all into out table,
475
* only the first one. So skip over overlapping matches.
476
* This is a major speed boost (20x) for compressing a single byte
477
* repeated, when that byte ends up in the table.
478
*/
479
if (anchor > ip + hashed) {
480
ZSTD_ldm_gear_reset(&hashState, anchor - minMatchLength, minMatchLength);
481
/* Continue the outer loop at anchor (ip + hashed == anchor). */
482
ip = anchor - hashed;
483
break;
484
}
485
}
486
487
ip += hashed;
488
}
489
490
return iend - anchor;
491
}
492
493
/*! ZSTD_ldm_reduceTable() :
494
* reduce table indexes by `reducerValue` */
495
static void ZSTD_ldm_reduceTable(ldmEntry_t* const table, U32 const size,
496
U32 const reducerValue)
497
{
498
U32 u;
499
for (u = 0; u < size; u++) {
500
if (table[u].offset < reducerValue) table[u].offset = 0;
501
else table[u].offset -= reducerValue;
502
}
503
}
504
505
size_t ZSTD_ldm_generateSequences(
506
ldmState_t* ldmState, rawSeqStore_t* sequences,
507
ldmParams_t const* params, void const* src, size_t srcSize)
508
{
509
U32 const maxDist = 1U << params->windowLog;
510
BYTE const* const istart = (BYTE const*)src;
511
BYTE const* const iend = istart + srcSize;
512
size_t const kMaxChunkSize = 1 << 20;
513
size_t const nbChunks = (srcSize / kMaxChunkSize) + ((srcSize % kMaxChunkSize) != 0);
514
size_t chunk;
515
size_t leftoverSize = 0;
516
517
assert(ZSTD_CHUNKSIZE_MAX >= kMaxChunkSize);
518
/* Check that ZSTD_window_update() has been called for this chunk prior
519
* to passing it to this function.
520
*/
521
assert(ldmState->window.nextSrc >= (BYTE const*)src + srcSize);
522
/* The input could be very large (in zstdmt), so it must be broken up into
523
* chunks to enforce the maximum distance and handle overflow correction.
524
*/
525
assert(sequences->pos <= sequences->size);
526
assert(sequences->size <= sequences->capacity);
527
for (chunk = 0; chunk < nbChunks && sequences->size < sequences->capacity; ++chunk) {
528
BYTE const* const chunkStart = istart + chunk * kMaxChunkSize;
529
size_t const remaining = (size_t)(iend - chunkStart);
530
BYTE const *const chunkEnd =
531
(remaining < kMaxChunkSize) ? iend : chunkStart + kMaxChunkSize;
532
size_t const chunkSize = chunkEnd - chunkStart;
533
size_t newLeftoverSize;
534
size_t const prevSize = sequences->size;
535
536
assert(chunkStart < iend);
537
/* 1. Perform overflow correction if necessary. */
538
if (ZSTD_window_needOverflowCorrection(ldmState->window, 0, maxDist, ldmState->loadedDictEnd, chunkStart, chunkEnd)) {
539
U32 const ldmHSize = 1U << params->hashLog;
540
U32 const correction = ZSTD_window_correctOverflow(
541
&ldmState->window, /* cycleLog */ 0, maxDist, chunkStart);
542
ZSTD_ldm_reduceTable(ldmState->hashTable, ldmHSize, correction);
543
/* invalidate dictionaries on overflow correction */
544
ldmState->loadedDictEnd = 0;
545
}
546
/* 2. We enforce the maximum offset allowed.
547
*
548
* kMaxChunkSize should be small enough that we don't lose too much of
549
* the window through early invalidation.
550
* TODO: * Test the chunk size.
551
* * Try invalidation after the sequence generation and test the
552
* offset against maxDist directly.
553
*
554
* NOTE: Because of dictionaries + sequence splitting we MUST make sure
555
* that any offset used is valid at the END of the sequence, since it may
556
* be split into two sequences. This condition holds when using
557
* ZSTD_window_enforceMaxDist(), but if we move to checking offsets
558
* against maxDist directly, we'll have to carefully handle that case.
559
*/
560
ZSTD_window_enforceMaxDist(&ldmState->window, chunkEnd, maxDist, &ldmState->loadedDictEnd, NULL);
561
/* 3. Generate the sequences for the chunk, and get newLeftoverSize. */
562
newLeftoverSize = ZSTD_ldm_generateSequences_internal(
563
ldmState, sequences, params, chunkStart, chunkSize);
564
if (ZSTD_isError(newLeftoverSize))
565
return newLeftoverSize;
566
/* 4. We add the leftover literals from previous iterations to the first
567
* newly generated sequence, or add the `newLeftoverSize` if none are
568
* generated.
569
*/
570
/* Prepend the leftover literals from the last call */
571
if (prevSize < sequences->size) {
572
sequences->seq[prevSize].litLength += (U32)leftoverSize;
573
leftoverSize = newLeftoverSize;
574
} else {
575
assert(newLeftoverSize == chunkSize);
576
leftoverSize += chunkSize;
577
}
578
}
579
return 0;
580
}
581
582
void
583
ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch)
584
{
585
while (srcSize > 0 && rawSeqStore->pos < rawSeqStore->size) {
586
rawSeq* seq = rawSeqStore->seq + rawSeqStore->pos;
587
if (srcSize <= seq->litLength) {
588
/* Skip past srcSize literals */
589
seq->litLength -= (U32)srcSize;
590
return;
591
}
592
srcSize -= seq->litLength;
593
seq->litLength = 0;
594
if (srcSize < seq->matchLength) {
595
/* Skip past the first srcSize of the match */
596
seq->matchLength -= (U32)srcSize;
597
if (seq->matchLength < minMatch) {
598
/* The match is too short, omit it */
599
if (rawSeqStore->pos + 1 < rawSeqStore->size) {
600
seq[1].litLength += seq[0].matchLength;
601
}
602
rawSeqStore->pos++;
603
}
604
return;
605
}
606
srcSize -= seq->matchLength;
607
seq->matchLength = 0;
608
rawSeqStore->pos++;
609
}
610
}
611
612
/**
613
* If the sequence length is longer than remaining then the sequence is split
614
* between this block and the next.
615
*
616
* Returns the current sequence to handle, or if the rest of the block should
617
* be literals, it returns a sequence with offset == 0.
618
*/
619
static rawSeq maybeSplitSequence(rawSeqStore_t* rawSeqStore,
620
U32 const remaining, U32 const minMatch)
621
{
622
rawSeq sequence = rawSeqStore->seq[rawSeqStore->pos];
623
assert(sequence.offset > 0);
624
/* Likely: No partial sequence */
625
if (remaining >= sequence.litLength + sequence.matchLength) {
626
rawSeqStore->pos++;
627
return sequence;
628
}
629
/* Cut the sequence short (offset == 0 ==> rest is literals). */
630
if (remaining <= sequence.litLength) {
631
sequence.offset = 0;
632
} else if (remaining < sequence.litLength + sequence.matchLength) {
633
sequence.matchLength = remaining - sequence.litLength;
634
if (sequence.matchLength < minMatch) {
635
sequence.offset = 0;
636
}
637
}
638
/* Skip past `remaining` bytes for the future sequences. */
639
ZSTD_ldm_skipSequences(rawSeqStore, remaining, minMatch);
640
return sequence;
641
}
642
643
void ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes) {
644
U32 currPos = (U32)(rawSeqStore->posInSequence + nbBytes);
645
while (currPos && rawSeqStore->pos < rawSeqStore->size) {
646
rawSeq currSeq = rawSeqStore->seq[rawSeqStore->pos];
647
if (currPos >= currSeq.litLength + currSeq.matchLength) {
648
currPos -= currSeq.litLength + currSeq.matchLength;
649
rawSeqStore->pos++;
650
} else {
651
rawSeqStore->posInSequence = currPos;
652
break;
653
}
654
}
655
if (currPos == 0 || rawSeqStore->pos == rawSeqStore->size) {
656
rawSeqStore->posInSequence = 0;
657
}
658
}
659
660
size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
661
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
662
ZSTD_paramSwitch_e useRowMatchFinder,
663
void const* src, size_t srcSize)
664
{
665
const ZSTD_compressionParameters* const cParams = &ms->cParams;
666
unsigned const minMatch = cParams->minMatch;
667
ZSTD_blockCompressor const blockCompressor =
668
ZSTD_selectBlockCompressor(cParams->strategy, useRowMatchFinder, ZSTD_matchState_dictMode(ms));
669
/* Input bounds */
670
BYTE const* const istart = (BYTE const*)src;
671
BYTE const* const iend = istart + srcSize;
672
/* Input positions */
673
BYTE const* ip = istart;
674
675
DEBUGLOG(5, "ZSTD_ldm_blockCompress: srcSize=%zu", srcSize);
676
/* If using opt parser, use LDMs only as candidates rather than always accepting them */
677
if (cParams->strategy >= ZSTD_btopt) {
678
size_t lastLLSize;
679
ms->ldmSeqStore = rawSeqStore;
680
lastLLSize = blockCompressor(ms, seqStore, rep, src, srcSize);
681
ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore, srcSize);
682
return lastLLSize;
683
}
684
685
assert(rawSeqStore->pos <= rawSeqStore->size);
686
assert(rawSeqStore->size <= rawSeqStore->capacity);
687
/* Loop through each sequence and apply the block compressor to the literals */
688
while (rawSeqStore->pos < rawSeqStore->size && ip < iend) {
689
/* maybeSplitSequence updates rawSeqStore->pos */
690
rawSeq const sequence = maybeSplitSequence(rawSeqStore,
691
(U32)(iend - ip), minMatch);
692
int i;
693
/* End signal */
694
if (sequence.offset == 0)
695
break;
696
697
assert(ip + sequence.litLength + sequence.matchLength <= iend);
698
699
/* Fill tables for block compressor */
700
ZSTD_ldm_limitTableUpdate(ms, ip);
701
ZSTD_ldm_fillFastTables(ms, ip);
702
/* Run the block compressor */
703
DEBUGLOG(5, "pos %u : calling block compressor on segment of size %u", (unsigned)(ip-istart), sequence.litLength);
704
{
705
size_t const newLitLength =
706
blockCompressor(ms, seqStore, rep, ip, sequence.litLength);
707
ip += sequence.litLength;
708
/* Update the repcodes */
709
for (i = ZSTD_REP_NUM - 1; i > 0; i--)
710
rep[i] = rep[i-1];
711
rep[0] = sequence.offset;
712
/* Store the sequence */
713
ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength, iend,
714
OFFSET_TO_OFFBASE(sequence.offset),
715
sequence.matchLength);
716
ip += sequence.matchLength;
717
}
718
}
719
/* Fill the tables for the block compressor */
720
ZSTD_ldm_limitTableUpdate(ms, ip);
721
ZSTD_ldm_fillFastTables(ms, ip);
722
/* Compress the last literals */
723
return blockCompressor(ms, seqStore, rep, ip, iend - ip);
724
}
725
726