Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmzstd/lib/compress/zstdmt_compress.c
5020 views
1
/*
2
* Copyright (c) Meta Platforms, Inc. and affiliates.
3
* All rights reserved.
4
*
5
* This source code is licensed under both the BSD-style license (found in the
6
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
7
* in the COPYING file in the root directory of this source tree).
8
* You may select, at your option, one of the above-listed licenses.
9
*/
10
11
12
/* ====== Compiler specifics ====== */
13
#if defined(_MSC_VER)
14
# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
15
#endif
16
17
18
/* ====== Dependencies ====== */
19
#include "../common/allocations.h" /* ZSTD_customMalloc, ZSTD_customCalloc, ZSTD_customFree */
20
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset, INT_MAX, UINT_MAX */
21
#include "../common/mem.h" /* MEM_STATIC */
22
#include "../common/pool.h" /* threadpool */
23
#include "../common/threading.h" /* mutex */
24
#include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */
25
#include "zstd_ldm.h"
26
#include "zstdmt_compress.h"
27
28
/* Guards code to support resizing the SeqPool.
29
* We will want to resize the SeqPool to save memory in the future.
30
* Until then, comment the code out since it is unused.
31
*/
32
#define ZSTD_RESIZE_SEQPOOL 0
33
34
/* ====== Debug ====== */
35
#if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \
36
&& !defined(_MSC_VER) \
37
&& !defined(__MINGW32__)
38
39
# include <stdio.h>
40
# include <unistd.h>
41
# include <sys/times.h>
42
43
# define DEBUG_PRINTHEX(l,p,n) \
44
do { \
45
unsigned debug_u; \
46
for (debug_u=0; debug_u<(n); debug_u++) \
47
RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \
48
RAWLOG(l, " \n"); \
49
} while (0)
50
51
static unsigned long long GetCurrentClockTimeMicroseconds(void)
52
{
53
static clock_t _ticksPerSecond = 0;
54
if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK);
55
56
{ struct tms junk; clock_t newTicks = (clock_t) times(&junk);
57
return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond);
58
} }
59
60
#define MUTEX_WAIT_TIME_DLEVEL 6
61
#define ZSTD_PTHREAD_MUTEX_LOCK(mutex) \
62
do { \
63
if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) { \
64
unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \
65
ZSTD_pthread_mutex_lock(mutex); \
66
{ unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \
67
unsigned long long const elapsedTime = (afterTime-beforeTime); \
68
if (elapsedTime > 1000) { \
69
/* or whatever threshold you like; I'm using 1 millisecond here */ \
70
DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, \
71
"Thread took %llu microseconds to acquire mutex %s \n", \
72
elapsedTime, #mutex); \
73
} } \
74
} else { \
75
ZSTD_pthread_mutex_lock(mutex); \
76
} \
77
} while (0)
78
79
#else
80
81
# define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m)
82
# define DEBUG_PRINTHEX(l,p,n) do { } while (0)
83
84
#endif
85
86
87
/* ===== Buffer Pool ===== */
88
/* a single Buffer Pool can be invoked from multiple threads in parallel */
89
90
typedef struct buffer_s {
91
void* start;
92
size_t capacity;
93
} Buffer;
94
95
static const Buffer g_nullBuffer = { NULL, 0 };
96
97
typedef struct ZSTDMT_bufferPool_s {
98
ZSTD_pthread_mutex_t poolMutex;
99
size_t bufferSize;
100
unsigned totalBuffers;
101
unsigned nbBuffers;
102
ZSTD_customMem cMem;
103
Buffer* buffers;
104
} ZSTDMT_bufferPool;
105
106
static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool)
107
{
108
DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool);
109
if (!bufPool) return; /* compatibility with free on NULL */
110
if (bufPool->buffers) {
111
unsigned u;
112
for (u=0; u<bufPool->totalBuffers; u++) {
113
DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->buffers[u].start);
114
ZSTD_customFree(bufPool->buffers[u].start, bufPool->cMem);
115
}
116
ZSTD_customFree(bufPool->buffers, bufPool->cMem);
117
}
118
ZSTD_pthread_mutex_destroy(&bufPool->poolMutex);
119
ZSTD_customFree(bufPool, bufPool->cMem);
120
}
121
122
static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned maxNbBuffers, ZSTD_customMem cMem)
123
{
124
ZSTDMT_bufferPool* const bufPool =
125
(ZSTDMT_bufferPool*)ZSTD_customCalloc(sizeof(ZSTDMT_bufferPool), cMem);
126
if (bufPool==NULL) return NULL;
127
if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) {
128
ZSTD_customFree(bufPool, cMem);
129
return NULL;
130
}
131
bufPool->buffers = (Buffer*)ZSTD_customCalloc(maxNbBuffers * sizeof(Buffer), cMem);
132
if (bufPool->buffers==NULL) {
133
ZSTDMT_freeBufferPool(bufPool);
134
return NULL;
135
}
136
bufPool->bufferSize = 64 KB;
137
bufPool->totalBuffers = maxNbBuffers;
138
bufPool->nbBuffers = 0;
139
bufPool->cMem = cMem;
140
return bufPool;
141
}
142
143
/* only works at initialization, not during compression */
144
static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool)
145
{
146
size_t const poolSize = sizeof(*bufPool);
147
size_t const arraySize = bufPool->totalBuffers * sizeof(Buffer);
148
unsigned u;
149
size_t totalBufferSize = 0;
150
ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
151
for (u=0; u<bufPool->totalBuffers; u++)
152
totalBufferSize += bufPool->buffers[u].capacity;
153
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
154
155
return poolSize + arraySize + totalBufferSize;
156
}
157
158
/* ZSTDMT_setBufferSize() :
159
* all future buffers provided by this buffer pool will have _at least_ this size
160
* note : it's better for all buffers to have same size,
161
* as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */
162
static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize)
163
{
164
ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
165
DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize);
166
bufPool->bufferSize = bSize;
167
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
168
}
169
170
171
static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, unsigned maxNbBuffers)
172
{
173
if (srcBufPool==NULL) return NULL;
174
if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */
175
return srcBufPool;
176
/* need a larger buffer pool */
177
{ ZSTD_customMem const cMem = srcBufPool->cMem;
178
size_t const bSize = srcBufPool->bufferSize; /* forward parameters */
179
ZSTDMT_bufferPool* newBufPool;
180
ZSTDMT_freeBufferPool(srcBufPool);
181
newBufPool = ZSTDMT_createBufferPool(maxNbBuffers, cMem);
182
if (newBufPool==NULL) return newBufPool;
183
ZSTDMT_setBufferSize(newBufPool, bSize);
184
return newBufPool;
185
}
186
}
187
188
/** ZSTDMT_getBuffer() :
189
* assumption : bufPool must be valid
190
* @return : a buffer, with start pointer and size
191
* note: allocation may fail, in this case, start==NULL and size==0 */
192
static Buffer ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool)
193
{
194
size_t const bSize = bufPool->bufferSize;
195
DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize);
196
ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
197
if (bufPool->nbBuffers) { /* try to use an existing buffer */
198
Buffer const buf = bufPool->buffers[--(bufPool->nbBuffers)];
199
size_t const availBufferSize = buf.capacity;
200
bufPool->buffers[bufPool->nbBuffers] = g_nullBuffer;
201
if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) {
202
/* large enough, but not too much */
203
DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u",
204
bufPool->nbBuffers, (U32)buf.capacity);
205
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
206
return buf;
207
}
208
/* size conditions not respected : scratch this buffer, create new one */
209
DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing");
210
ZSTD_customFree(buf.start, bufPool->cMem);
211
}
212
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
213
/* create new buffer */
214
DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer");
215
{ Buffer buffer;
216
void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
217
buffer.start = start; /* note : start can be NULL if malloc fails ! */
218
buffer.capacity = (start==NULL) ? 0 : bSize;
219
if (start==NULL) {
220
DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!");
221
} else {
222
DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize);
223
}
224
return buffer;
225
}
226
}
227
228
#if ZSTD_RESIZE_SEQPOOL
229
/** ZSTDMT_resizeBuffer() :
230
* assumption : bufPool must be valid
231
* @return : a buffer that is at least the buffer pool buffer size.
232
* If a reallocation happens, the data in the input buffer is copied.
233
*/
234
static Buffer ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, Buffer buffer)
235
{
236
size_t const bSize = bufPool->bufferSize;
237
if (buffer.capacity < bSize) {
238
void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
239
Buffer newBuffer;
240
newBuffer.start = start;
241
newBuffer.capacity = start == NULL ? 0 : bSize;
242
if (start != NULL) {
243
assert(newBuffer.capacity >= buffer.capacity);
244
ZSTD_memcpy(newBuffer.start, buffer.start, buffer.capacity);
245
DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize);
246
return newBuffer;
247
}
248
DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!");
249
}
250
return buffer;
251
}
252
#endif
253
254
/* store buffer for later re-use, up to pool capacity */
255
static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, Buffer buf)
256
{
257
DEBUGLOG(5, "ZSTDMT_releaseBuffer");
258
if (buf.start == NULL) return; /* compatible with release on NULL */
259
ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
260
if (bufPool->nbBuffers < bufPool->totalBuffers) {
261
bufPool->buffers[bufPool->nbBuffers++] = buf; /* stored for later use */
262
DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u",
263
(U32)buf.capacity, (U32)(bufPool->nbBuffers-1));
264
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
265
return;
266
}
267
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
268
/* Reached bufferPool capacity (note: should not happen) */
269
DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing ");
270
ZSTD_customFree(buf.start, bufPool->cMem);
271
}
272
273
/* We need 2 output buffers per worker since each dstBuff must be flushed after it is released.
274
* The 3 additional buffers are as follows:
275
* 1 buffer for input loading
276
* 1 buffer for "next input" when submitting current one
277
* 1 buffer stuck in queue */
278
#define BUF_POOL_MAX_NB_BUFFERS(nbWorkers) (2*(nbWorkers) + 3)
279
280
/* After a worker releases its rawSeqStore, it is immediately ready for reuse.
281
* So we only need one seq buffer per worker. */
282
#define SEQ_POOL_MAX_NB_BUFFERS(nbWorkers) (nbWorkers)
283
284
/* ===== Seq Pool Wrapper ====== */
285
286
typedef ZSTDMT_bufferPool ZSTDMT_seqPool;
287
288
static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool)
289
{
290
return ZSTDMT_sizeof_bufferPool(seqPool);
291
}
292
293
static RawSeqStore_t bufferToSeq(Buffer buffer)
294
{
295
RawSeqStore_t seq = kNullRawSeqStore;
296
seq.seq = (rawSeq*)buffer.start;
297
seq.capacity = buffer.capacity / sizeof(rawSeq);
298
return seq;
299
}
300
301
static Buffer seqToBuffer(RawSeqStore_t seq)
302
{
303
Buffer buffer;
304
buffer.start = seq.seq;
305
buffer.capacity = seq.capacity * sizeof(rawSeq);
306
return buffer;
307
}
308
309
static RawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool)
310
{
311
if (seqPool->bufferSize == 0) {
312
return kNullRawSeqStore;
313
}
314
return bufferToSeq(ZSTDMT_getBuffer(seqPool));
315
}
316
317
#if ZSTD_RESIZE_SEQPOOL
318
static RawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, RawSeqStore_t seq)
319
{
320
return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq)));
321
}
322
#endif
323
324
static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, RawSeqStore_t seq)
325
{
326
ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq));
327
}
328
329
static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq)
330
{
331
ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq));
332
}
333
334
static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem)
335
{
336
ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(SEQ_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
337
if (seqPool == NULL) return NULL;
338
ZSTDMT_setNbSeq(seqPool, 0);
339
return seqPool;
340
}
341
342
static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool)
343
{
344
ZSTDMT_freeBufferPool(seqPool);
345
}
346
347
static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers)
348
{
349
return ZSTDMT_expandBufferPool(pool, SEQ_POOL_MAX_NB_BUFFERS(nbWorkers));
350
}
351
352
353
/* ===== CCtx Pool ===== */
354
/* a single CCtx Pool can be invoked from multiple threads in parallel */
355
356
typedef struct {
357
ZSTD_pthread_mutex_t poolMutex;
358
int totalCCtx;
359
int availCCtx;
360
ZSTD_customMem cMem;
361
ZSTD_CCtx** cctxs;
362
} ZSTDMT_CCtxPool;
363
364
/* note : all CCtx borrowed from the pool must be reverted back to the pool _before_ freeing the pool */
365
static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool)
366
{
367
if (!pool) return;
368
ZSTD_pthread_mutex_destroy(&pool->poolMutex);
369
if (pool->cctxs) {
370
int cid;
371
for (cid=0; cid<pool->totalCCtx; cid++)
372
ZSTD_freeCCtx(pool->cctxs[cid]); /* free compatible with NULL */
373
ZSTD_customFree(pool->cctxs, pool->cMem);
374
}
375
ZSTD_customFree(pool, pool->cMem);
376
}
377
378
/* ZSTDMT_createCCtxPool() :
379
* implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */
380
static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers,
381
ZSTD_customMem cMem)
382
{
383
ZSTDMT_CCtxPool* const cctxPool =
384
(ZSTDMT_CCtxPool*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtxPool), cMem);
385
assert(nbWorkers > 0);
386
if (!cctxPool) return NULL;
387
if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) {
388
ZSTD_customFree(cctxPool, cMem);
389
return NULL;
390
}
391
cctxPool->totalCCtx = nbWorkers;
392
cctxPool->cctxs = (ZSTD_CCtx**)ZSTD_customCalloc(nbWorkers * sizeof(ZSTD_CCtx*), cMem);
393
if (!cctxPool->cctxs) {
394
ZSTDMT_freeCCtxPool(cctxPool);
395
return NULL;
396
}
397
cctxPool->cMem = cMem;
398
cctxPool->cctxs[0] = ZSTD_createCCtx_advanced(cMem);
399
if (!cctxPool->cctxs[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; }
400
cctxPool->availCCtx = 1; /* at least one cctx for single-thread mode */
401
DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers);
402
return cctxPool;
403
}
404
405
static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool,
406
int nbWorkers)
407
{
408
if (srcPool==NULL) return NULL;
409
if (nbWorkers <= srcPool->totalCCtx) return srcPool; /* good enough */
410
/* need a larger cctx pool */
411
{ ZSTD_customMem const cMem = srcPool->cMem;
412
ZSTDMT_freeCCtxPool(srcPool);
413
return ZSTDMT_createCCtxPool(nbWorkers, cMem);
414
}
415
}
416
417
/* only works during initialization phase, not during compression */
418
static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool)
419
{
420
ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
421
{ unsigned const nbWorkers = cctxPool->totalCCtx;
422
size_t const poolSize = sizeof(*cctxPool);
423
size_t const arraySize = cctxPool->totalCCtx * sizeof(ZSTD_CCtx*);
424
size_t totalCCtxSize = 0;
425
unsigned u;
426
for (u=0; u<nbWorkers; u++) {
427
totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctxs[u]);
428
}
429
ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
430
assert(nbWorkers > 0);
431
return poolSize + arraySize + totalCCtxSize;
432
}
433
}
434
435
static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool)
436
{
437
DEBUGLOG(5, "ZSTDMT_getCCtx");
438
ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
439
if (cctxPool->availCCtx) {
440
cctxPool->availCCtx--;
441
{ ZSTD_CCtx* const cctx = cctxPool->cctxs[cctxPool->availCCtx];
442
ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
443
return cctx;
444
} }
445
ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
446
DEBUGLOG(5, "create one more CCtx");
447
return ZSTD_createCCtx_advanced(cctxPool->cMem); /* note : can be NULL, when creation fails ! */
448
}
449
450
static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx)
451
{
452
if (cctx==NULL) return; /* compatibility with release on NULL */
453
ZSTD_pthread_mutex_lock(&pool->poolMutex);
454
if (pool->availCCtx < pool->totalCCtx)
455
pool->cctxs[pool->availCCtx++] = cctx;
456
else {
457
/* pool overflow : should not happen, since totalCCtx==nbWorkers */
458
DEBUGLOG(4, "CCtx pool overflow : free cctx");
459
ZSTD_freeCCtx(cctx);
460
}
461
ZSTD_pthread_mutex_unlock(&pool->poolMutex);
462
}
463
464
/* ==== Serial State ==== */
465
466
typedef struct {
467
void const* start;
468
size_t size;
469
} Range;
470
471
typedef struct {
472
/* All variables in the struct are protected by mutex. */
473
ZSTD_pthread_mutex_t mutex;
474
ZSTD_pthread_cond_t cond;
475
ZSTD_CCtx_params params;
476
ldmState_t ldmState;
477
XXH64_state_t xxhState;
478
unsigned nextJobID;
479
/* Protects ldmWindow.
480
* Must be acquired after the main mutex when acquiring both.
481
*/
482
ZSTD_pthread_mutex_t ldmWindowMutex;
483
ZSTD_pthread_cond_t ldmWindowCond; /* Signaled when ldmWindow is updated */
484
ZSTD_window_t ldmWindow; /* A thread-safe copy of ldmState.window */
485
} SerialState;
486
487
static int
488
ZSTDMT_serialState_reset(SerialState* serialState,
489
ZSTDMT_seqPool* seqPool,
490
ZSTD_CCtx_params params,
491
size_t jobSize,
492
const void* dict, size_t const dictSize,
493
ZSTD_dictContentType_e dictContentType)
494
{
495
/* Adjust parameters */
496
if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
497
DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10);
498
ZSTD_ldm_adjustParameters(&params.ldmParams, &params.cParams);
499
assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
500
assert(params.ldmParams.hashRateLog < 32);
501
} else {
502
ZSTD_memset(&params.ldmParams, 0, sizeof(params.ldmParams));
503
}
504
serialState->nextJobID = 0;
505
if (params.fParams.checksumFlag)
506
XXH64_reset(&serialState->xxhState, 0);
507
if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
508
ZSTD_customMem cMem = params.customMem;
509
unsigned const hashLog = params.ldmParams.hashLog;
510
size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t);
511
unsigned const bucketLog =
512
params.ldmParams.hashLog - params.ldmParams.bucketSizeLog;
513
unsigned const prevBucketLog =
514
serialState->params.ldmParams.hashLog -
515
serialState->params.ldmParams.bucketSizeLog;
516
size_t const numBuckets = (size_t)1 << bucketLog;
517
/* Size the seq pool tables */
518
ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize));
519
/* Reset the window */
520
ZSTD_window_init(&serialState->ldmState.window);
521
/* Resize tables and output space if necessary. */
522
if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) {
523
ZSTD_customFree(serialState->ldmState.hashTable, cMem);
524
serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_customMalloc(hashSize, cMem);
525
}
526
if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) {
527
ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
528
serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_customMalloc(numBuckets, cMem);
529
}
530
if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets)
531
return 1;
532
/* Zero the tables */
533
ZSTD_memset(serialState->ldmState.hashTable, 0, hashSize);
534
ZSTD_memset(serialState->ldmState.bucketOffsets, 0, numBuckets);
535
536
/* Update window state and fill hash table with dict */
537
serialState->ldmState.loadedDictEnd = 0;
538
if (dictSize > 0) {
539
if (dictContentType == ZSTD_dct_rawContent) {
540
BYTE const* const dictEnd = (const BYTE*)dict + dictSize;
541
ZSTD_window_update(&serialState->ldmState.window, dict, dictSize, /* forceNonContiguous */ 0);
542
ZSTD_ldm_fillHashTable(&serialState->ldmState, (const BYTE*)dict, dictEnd, &params.ldmParams);
543
serialState->ldmState.loadedDictEnd = params.forceWindow ? 0 : (U32)(dictEnd - serialState->ldmState.window.base);
544
} else {
545
/* don't even load anything */
546
}
547
}
548
549
/* Initialize serialState's copy of ldmWindow. */
550
serialState->ldmWindow = serialState->ldmState.window;
551
}
552
553
serialState->params = params;
554
serialState->params.jobSize = (U32)jobSize;
555
return 0;
556
}
557
558
static int ZSTDMT_serialState_init(SerialState* serialState)
559
{
560
int initError = 0;
561
ZSTD_memset(serialState, 0, sizeof(*serialState));
562
initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL);
563
initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL);
564
initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL);
565
initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL);
566
return initError;
567
}
568
569
static void ZSTDMT_serialState_free(SerialState* serialState)
570
{
571
ZSTD_customMem cMem = serialState->params.customMem;
572
ZSTD_pthread_mutex_destroy(&serialState->mutex);
573
ZSTD_pthread_cond_destroy(&serialState->cond);
574
ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex);
575
ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond);
576
ZSTD_customFree(serialState->ldmState.hashTable, cMem);
577
ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
578
}
579
580
static void
581
ZSTDMT_serialState_genSequences(SerialState* serialState,
582
RawSeqStore_t* seqStore,
583
Range src, unsigned jobID)
584
{
585
/* Wait for our turn */
586
ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
587
while (serialState->nextJobID < jobID) {
588
DEBUGLOG(5, "wait for serialState->cond");
589
ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex);
590
}
591
/* A future job may error and skip our job */
592
if (serialState->nextJobID == jobID) {
593
/* It is now our turn, do any processing necessary */
594
if (serialState->params.ldmParams.enableLdm == ZSTD_ps_enable) {
595
size_t error;
596
DEBUGLOG(6, "ZSTDMT_serialState_genSequences: LDM update");
597
assert(seqStore->seq != NULL && seqStore->pos == 0 &&
598
seqStore->size == 0 && seqStore->capacity > 0);
599
assert(src.size <= serialState->params.jobSize);
600
ZSTD_window_update(&serialState->ldmState.window, src.start, src.size, /* forceNonContiguous */ 0);
601
error = ZSTD_ldm_generateSequences(
602
&serialState->ldmState, seqStore,
603
&serialState->params.ldmParams, src.start, src.size);
604
/* We provide a large enough buffer to never fail. */
605
assert(!ZSTD_isError(error)); (void)error;
606
/* Update ldmWindow to match the ldmState.window and signal the main
607
* thread if it is waiting for a buffer.
608
*/
609
ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
610
serialState->ldmWindow = serialState->ldmState.window;
611
ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
612
ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
613
}
614
if (serialState->params.fParams.checksumFlag && src.size > 0)
615
XXH64_update(&serialState->xxhState, src.start, src.size);
616
}
617
/* Now it is the next jobs turn */
618
serialState->nextJobID++;
619
ZSTD_pthread_cond_broadcast(&serialState->cond);
620
ZSTD_pthread_mutex_unlock(&serialState->mutex);
621
}
622
623
static void
624
ZSTDMT_serialState_applySequences(const SerialState* serialState, /* just for an assert() check */
625
ZSTD_CCtx* jobCCtx,
626
const RawSeqStore_t* seqStore)
627
{
628
if (seqStore->size > 0) {
629
DEBUGLOG(5, "ZSTDMT_serialState_applySequences: uploading %u external sequences", (unsigned)seqStore->size);
630
assert(serialState->params.ldmParams.enableLdm == ZSTD_ps_enable); (void)serialState;
631
assert(jobCCtx);
632
ZSTD_referenceExternalSequences(jobCCtx, seqStore->seq, seqStore->size);
633
}
634
}
635
636
static void ZSTDMT_serialState_ensureFinished(SerialState* serialState,
637
unsigned jobID, size_t cSize)
638
{
639
ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
640
if (serialState->nextJobID <= jobID) {
641
assert(ZSTD_isError(cSize)); (void)cSize;
642
DEBUGLOG(5, "Skipping past job %u because of error", jobID);
643
serialState->nextJobID = jobID + 1;
644
ZSTD_pthread_cond_broadcast(&serialState->cond);
645
646
ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
647
ZSTD_window_clear(&serialState->ldmWindow);
648
ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
649
ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
650
}
651
ZSTD_pthread_mutex_unlock(&serialState->mutex);
652
653
}
654
655
656
/* ------------------------------------------ */
657
/* ===== Worker thread ===== */
658
/* ------------------------------------------ */
659
660
static const Range kNullRange = { NULL, 0 };
661
662
typedef struct {
663
size_t consumed; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */
664
size_t cSize; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */
665
ZSTD_pthread_mutex_t job_mutex; /* Thread-safe - used by mtctx and worker */
666
ZSTD_pthread_cond_t job_cond; /* Thread-safe - used by mtctx and worker */
667
ZSTDMT_CCtxPool* cctxPool; /* Thread-safe - used by mtctx and (all) workers */
668
ZSTDMT_bufferPool* bufPool; /* Thread-safe - used by mtctx and (all) workers */
669
ZSTDMT_seqPool* seqPool; /* Thread-safe - used by mtctx and (all) workers */
670
SerialState* serial; /* Thread-safe - used by mtctx and (all) workers */
671
Buffer dstBuff; /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */
672
Range prefix; /* set by mtctx, then read by worker & mtctx => no barrier */
673
Range src; /* set by mtctx, then read by worker & mtctx => no barrier */
674
unsigned jobID; /* set by mtctx, then read by worker => no barrier */
675
unsigned firstJob; /* set by mtctx, then read by worker => no barrier */
676
unsigned lastJob; /* set by mtctx, then read by worker => no barrier */
677
ZSTD_CCtx_params params; /* set by mtctx, then read by worker => no barrier */
678
const ZSTD_CDict* cdict; /* set by mtctx, then read by worker => no barrier */
679
unsigned long long fullFrameSize; /* set by mtctx, then read by worker => no barrier */
680
size_t dstFlushed; /* used only by mtctx */
681
unsigned frameChecksumNeeded; /* used only by mtctx */
682
} ZSTDMT_jobDescription;
683
684
#define JOB_ERROR(e) \
685
do { \
686
ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); \
687
job->cSize = e; \
688
ZSTD_pthread_mutex_unlock(&job->job_mutex); \
689
goto _endJob; \
690
} while (0)
691
692
/* ZSTDMT_compressionJob() is a POOL_function type */
693
static void ZSTDMT_compressionJob(void* jobDescription)
694
{
695
ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription;
696
ZSTD_CCtx_params jobParams = job->params; /* do not modify job->params ! copy it, modify the copy */
697
ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool);
698
RawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool);
699
Buffer dstBuff = job->dstBuff;
700
size_t lastCBlockSize = 0;
701
702
DEBUGLOG(5, "ZSTDMT_compressionJob: job %u", job->jobID);
703
/* resources */
704
if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation));
705
if (dstBuff.start == NULL) { /* streaming job : doesn't provide a dstBuffer */
706
dstBuff = ZSTDMT_getBuffer(job->bufPool);
707
if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation));
708
job->dstBuff = dstBuff; /* this value can be read in ZSTDMT_flush, when it copies the whole job */
709
}
710
if (jobParams.ldmParams.enableLdm == ZSTD_ps_enable && rawSeqStore.seq == NULL)
711
JOB_ERROR(ERROR(memory_allocation));
712
713
/* Don't compute the checksum for chunks, since we compute it externally,
714
* but write it in the header.
715
*/
716
if (job->jobID != 0) jobParams.fParams.checksumFlag = 0;
717
/* Don't run LDM for the chunks, since we handle it externally */
718
jobParams.ldmParams.enableLdm = ZSTD_ps_disable;
719
/* Correct nbWorkers to 0. */
720
jobParams.nbWorkers = 0;
721
722
723
/* init */
724
725
/* Perform serial step as early as possible */
726
ZSTDMT_serialState_genSequences(job->serial, &rawSeqStore, job->src, job->jobID);
727
728
if (job->cdict) {
729
size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, &jobParams, job->fullFrameSize);
730
assert(job->firstJob); /* only allowed for first job */
731
if (ZSTD_isError(initError)) JOB_ERROR(initError);
732
} else {
733
U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size;
734
{ size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob);
735
if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError);
736
}
737
if (!job->firstJob) {
738
size_t const err = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_deterministicRefPrefix, 0);
739
if (ZSTD_isError(err)) JOB_ERROR(err);
740
}
741
DEBUGLOG(6, "ZSTDMT_compressionJob: job %u: loading prefix of size %zu", job->jobID, job->prefix.size);
742
{ size_t const initError = ZSTD_compressBegin_advanced_internal(cctx,
743
job->prefix.start, job->prefix.size, ZSTD_dct_rawContent,
744
ZSTD_dtlm_fast,
745
NULL, /*cdict*/
746
&jobParams, pledgedSrcSize);
747
if (ZSTD_isError(initError)) JOB_ERROR(initError);
748
} }
749
750
/* External Sequences can only be applied after CCtx initialization */
751
ZSTDMT_serialState_applySequences(job->serial, cctx, &rawSeqStore);
752
753
if (!job->firstJob) { /* flush and overwrite frame header when it's not first job */
754
size_t const hSize = ZSTD_compressContinue_public(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0);
755
if (ZSTD_isError(hSize)) JOB_ERROR(hSize);
756
DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize);
757
ZSTD_invalidateRepCodes(cctx);
758
}
759
760
/* compress the entire job by smaller chunks, for better granularity */
761
{ size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX;
762
int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize);
763
const BYTE* ip = (const BYTE*) job->src.start;
764
BYTE* const ostart = (BYTE*)dstBuff.start;
765
BYTE* op = ostart;
766
BYTE* oend = op + dstBuff.capacity;
767
int chunkNb;
768
if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize); /* check overflow */
769
DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks);
770
assert(job->cSize == 0);
771
for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) {
772
size_t const cSize = ZSTD_compressContinue_public(cctx, op, oend-op, ip, chunkSize);
773
if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
774
ip += chunkSize;
775
op += cSize; assert(op < oend);
776
/* stats */
777
ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
778
job->cSize += cSize;
779
job->consumed = chunkSize * chunkNb;
780
DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)",
781
(U32)cSize, (U32)job->cSize);
782
ZSTD_pthread_cond_signal(&job->job_cond); /* warns some more data is ready to be flushed */
783
ZSTD_pthread_mutex_unlock(&job->job_mutex);
784
}
785
/* last block */
786
assert(chunkSize > 0);
787
assert((chunkSize & (chunkSize - 1)) == 0); /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */
788
if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) {
789
size_t const lastBlockSize1 = job->src.size & (chunkSize-1);
790
size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1;
791
size_t const cSize = (job->lastJob) ?
792
ZSTD_compressEnd_public(cctx, op, oend-op, ip, lastBlockSize) :
793
ZSTD_compressContinue_public(cctx, op, oend-op, ip, lastBlockSize);
794
if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
795
lastCBlockSize = cSize;
796
} }
797
if (!job->firstJob) {
798
/* Double check that we don't have an ext-dict, because then our
799
* repcode invalidation doesn't work.
800
*/
801
assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window));
802
}
803
ZSTD_CCtx_trace(cctx, 0);
804
805
_endJob:
806
ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize);
807
if (job->prefix.size > 0)
808
DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start);
809
DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start);
810
/* release resources */
811
ZSTDMT_releaseSeq(job->seqPool, rawSeqStore);
812
ZSTDMT_releaseCCtx(job->cctxPool, cctx);
813
/* report */
814
ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
815
if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0);
816
job->cSize += lastCBlockSize;
817
job->consumed = job->src.size; /* when job->consumed == job->src.size , compression job is presumed completed */
818
ZSTD_pthread_cond_signal(&job->job_cond);
819
ZSTD_pthread_mutex_unlock(&job->job_mutex);
820
}
821
822
823
/* ------------------------------------------ */
824
/* ===== Multi-threaded compression ===== */
825
/* ------------------------------------------ */
826
827
typedef struct {
828
Range prefix; /* read-only non-owned prefix buffer */
829
Buffer buffer;
830
size_t filled;
831
} InBuff_t;
832
833
typedef struct {
834
BYTE* buffer; /* The round input buffer. All jobs get references
835
* to pieces of the buffer. ZSTDMT_tryGetInputRange()
836
* handles handing out job input buffers, and makes
837
* sure it doesn't overlap with any pieces still in use.
838
*/
839
size_t capacity; /* The capacity of buffer. */
840
size_t pos; /* The position of the current inBuff in the round
841
* buffer. Updated past the end if the inBuff once
842
* the inBuff is sent to the worker thread.
843
* pos <= capacity.
844
*/
845
} RoundBuff_t;
846
847
static const RoundBuff_t kNullRoundBuff = {NULL, 0, 0};
848
849
#define RSYNC_LENGTH 32
850
/* Don't create chunks smaller than the zstd block size.
851
* This stops us from regressing compression ratio too much,
852
* and ensures our output fits in ZSTD_compressBound().
853
*
854
* If this is shrunk < ZSTD_BLOCKSIZELOG_MIN then
855
* ZSTD_COMPRESSBOUND() will need to be updated.
856
*/
857
#define RSYNC_MIN_BLOCK_LOG ZSTD_BLOCKSIZELOG_MAX
858
#define RSYNC_MIN_BLOCK_SIZE (1<<RSYNC_MIN_BLOCK_LOG)
859
860
typedef struct {
861
U64 hash;
862
U64 hitMask;
863
U64 primePower;
864
} RSyncState_t;
865
866
struct ZSTDMT_CCtx_s {
867
POOL_ctx* factory;
868
ZSTDMT_jobDescription* jobs;
869
ZSTDMT_bufferPool* bufPool;
870
ZSTDMT_CCtxPool* cctxPool;
871
ZSTDMT_seqPool* seqPool;
872
ZSTD_CCtx_params params;
873
size_t targetSectionSize;
874
size_t targetPrefixSize;
875
int jobReady; /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */
876
InBuff_t inBuff;
877
RoundBuff_t roundBuff;
878
SerialState serial;
879
RSyncState_t rsync;
880
unsigned jobIDMask;
881
unsigned doneJobID;
882
unsigned nextJobID;
883
unsigned frameEnded;
884
unsigned allJobsCompleted;
885
unsigned long long frameContentSize;
886
unsigned long long consumed;
887
unsigned long long produced;
888
ZSTD_customMem cMem;
889
ZSTD_CDict* cdictLocal;
890
const ZSTD_CDict* cdict;
891
unsigned providedFactory: 1;
892
};
893
894
static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem)
895
{
896
U32 jobNb;
897
if (jobTable == NULL) return;
898
for (jobNb=0; jobNb<nbJobs; jobNb++) {
899
ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex);
900
ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond);
901
}
902
ZSTD_customFree(jobTable, cMem);
903
}
904
905
/* ZSTDMT_allocJobsTable()
906
* allocate and init a job table.
907
* update *nbJobsPtr to next power of 2 value, as size of table */
908
static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem)
909
{
910
U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1;
911
U32 const nbJobs = 1 << nbJobsLog2;
912
U32 jobNb;
913
ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*)
914
ZSTD_customCalloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem);
915
int initError = 0;
916
if (jobTable==NULL) return NULL;
917
*nbJobsPtr = nbJobs;
918
for (jobNb=0; jobNb<nbJobs; jobNb++) {
919
initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL);
920
initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL);
921
}
922
if (initError != 0) {
923
ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem);
924
return NULL;
925
}
926
return jobTable;
927
}
928
929
static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) {
930
U32 nbJobs = nbWorkers + 2;
931
if (nbJobs > mtctx->jobIDMask+1) { /* need more job capacity */
932
ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
933
mtctx->jobIDMask = 0;
934
mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem);
935
if (mtctx->jobs==NULL) return ERROR(memory_allocation);
936
assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0)); /* ensure nbJobs is a power of 2 */
937
mtctx->jobIDMask = nbJobs - 1;
938
}
939
return 0;
940
}
941
942
943
/* ZSTDMT_CCtxParam_setNbWorkers():
944
* Internal use only */
945
static size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers)
946
{
947
return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers);
948
}
949
950
MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
951
{
952
ZSTDMT_CCtx* mtctx;
953
U32 nbJobs = nbWorkers + 2;
954
int initError;
955
DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers);
956
957
if (nbWorkers < 1) return NULL;
958
nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX);
959
if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL))
960
/* invalid custom allocator */
961
return NULL;
962
963
mtctx = (ZSTDMT_CCtx*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtx), cMem);
964
if (!mtctx) return NULL;
965
ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
966
mtctx->cMem = cMem;
967
mtctx->allJobsCompleted = 1;
968
if (pool != NULL) {
969
mtctx->factory = pool;
970
mtctx->providedFactory = 1;
971
}
972
else {
973
mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem);
974
mtctx->providedFactory = 0;
975
}
976
mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem);
977
assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0); /* ensure nbJobs is a power of 2 */
978
mtctx->jobIDMask = nbJobs - 1;
979
mtctx->bufPool = ZSTDMT_createBufferPool(BUF_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
980
mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem);
981
mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem);
982
initError = ZSTDMT_serialState_init(&mtctx->serial);
983
mtctx->roundBuff = kNullRoundBuff;
984
if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) {
985
ZSTDMT_freeCCtx(mtctx);
986
return NULL;
987
}
988
DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers);
989
return mtctx;
990
}
991
992
ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
993
{
994
#ifdef ZSTD_MULTITHREAD
995
return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem, pool);
996
#else
997
(void)nbWorkers;
998
(void)cMem;
999
(void)pool;
1000
return NULL;
1001
#endif
1002
}
1003
1004
1005
/* ZSTDMT_releaseAllJobResources() :
1006
* note : ensure all workers are killed first ! */
1007
static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx)
1008
{
1009
unsigned jobID;
1010
DEBUGLOG(3, "ZSTDMT_releaseAllJobResources");
1011
for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) {
1012
/* Copy the mutex/cond out */
1013
ZSTD_pthread_mutex_t const mutex = mtctx->jobs[jobID].job_mutex;
1014
ZSTD_pthread_cond_t const cond = mtctx->jobs[jobID].job_cond;
1015
1016
DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start);
1017
ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff);
1018
1019
/* Clear the job description, but keep the mutex/cond */
1020
ZSTD_memset(&mtctx->jobs[jobID], 0, sizeof(mtctx->jobs[jobID]));
1021
mtctx->jobs[jobID].job_mutex = mutex;
1022
mtctx->jobs[jobID].job_cond = cond;
1023
}
1024
mtctx->inBuff.buffer = g_nullBuffer;
1025
mtctx->inBuff.filled = 0;
1026
mtctx->allJobsCompleted = 1;
1027
}
1028
1029
static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx)
1030
{
1031
DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted");
1032
while (mtctx->doneJobID < mtctx->nextJobID) {
1033
unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask;
1034
ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex);
1035
while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) {
1036
DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID); /* we want to block when waiting for data to flush */
1037
ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex);
1038
}
1039
ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex);
1040
mtctx->doneJobID++;
1041
}
1042
}
1043
1044
size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx)
1045
{
1046
if (mtctx==NULL) return 0; /* compatible with free on NULL */
1047
if (!mtctx->providedFactory)
1048
POOL_free(mtctx->factory); /* stop and free worker threads */
1049
ZSTDMT_releaseAllJobResources(mtctx); /* release job resources into pools first */
1050
ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
1051
ZSTDMT_freeBufferPool(mtctx->bufPool);
1052
ZSTDMT_freeCCtxPool(mtctx->cctxPool);
1053
ZSTDMT_freeSeqPool(mtctx->seqPool);
1054
ZSTDMT_serialState_free(&mtctx->serial);
1055
ZSTD_freeCDict(mtctx->cdictLocal);
1056
if (mtctx->roundBuff.buffer)
1057
ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
1058
ZSTD_customFree(mtctx, mtctx->cMem);
1059
return 0;
1060
}
1061
1062
size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx)
1063
{
1064
if (mtctx == NULL) return 0; /* supports sizeof NULL */
1065
return sizeof(*mtctx)
1066
+ POOL_sizeof(mtctx->factory)
1067
+ ZSTDMT_sizeof_bufferPool(mtctx->bufPool)
1068
+ (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription)
1069
+ ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool)
1070
+ ZSTDMT_sizeof_seqPool(mtctx->seqPool)
1071
+ ZSTD_sizeof_CDict(mtctx->cdictLocal)
1072
+ mtctx->roundBuff.capacity;
1073
}
1074
1075
1076
/* ZSTDMT_resize() :
1077
* @return : error code if fails, 0 on success */
1078
static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers)
1079
{
1080
if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation);
1081
FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) , "");
1082
mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, BUF_POOL_MAX_NB_BUFFERS(nbWorkers));
1083
if (mtctx->bufPool == NULL) return ERROR(memory_allocation);
1084
mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers);
1085
if (mtctx->cctxPool == NULL) return ERROR(memory_allocation);
1086
mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers);
1087
if (mtctx->seqPool == NULL) return ERROR(memory_allocation);
1088
ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
1089
return 0;
1090
}
1091
1092
1093
/*! ZSTDMT_updateCParams_whileCompressing() :
1094
* Updates a selected set of compression parameters, remaining compatible with currently active frame.
1095
* New parameters will be applied to next compression job. */
1096
void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams)
1097
{
1098
U32 const saved_wlog = mtctx->params.cParams.windowLog; /* Do not modify windowLog while compressing */
1099
int const compressionLevel = cctxParams->compressionLevel;
1100
DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)",
1101
compressionLevel);
1102
mtctx->params.compressionLevel = compressionLevel;
1103
{ ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
1104
cParams.windowLog = saved_wlog;
1105
mtctx->params.cParams = cParams;
1106
}
1107
}
1108
1109
/* ZSTDMT_getFrameProgression():
1110
* tells how much data has been consumed (input) and produced (output) for current frame.
1111
* able to count progression inside worker threads.
1112
* Note : mutex will be acquired during statistics collection inside workers. */
1113
ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx)
1114
{
1115
ZSTD_frameProgression fps;
1116
DEBUGLOG(5, "ZSTDMT_getFrameProgression");
1117
fps.ingested = mtctx->consumed + mtctx->inBuff.filled;
1118
fps.consumed = mtctx->consumed;
1119
fps.produced = fps.flushed = mtctx->produced;
1120
fps.currentJobID = mtctx->nextJobID;
1121
fps.nbActiveWorkers = 0;
1122
{ unsigned jobNb;
1123
unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1);
1124
DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)",
1125
mtctx->doneJobID, lastJobNb, mtctx->jobReady);
1126
for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) {
1127
unsigned const wJobID = jobNb & mtctx->jobIDMask;
1128
ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID];
1129
ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
1130
{ size_t const cResult = jobPtr->cSize;
1131
size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
1132
size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
1133
assert(flushed <= produced);
1134
fps.ingested += jobPtr->src.size;
1135
fps.consumed += jobPtr->consumed;
1136
fps.produced += produced;
1137
fps.flushed += flushed;
1138
fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size);
1139
}
1140
ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1141
}
1142
}
1143
return fps;
1144
}
1145
1146
1147
size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx)
1148
{
1149
size_t toFlush;
1150
unsigned const jobID = mtctx->doneJobID;
1151
assert(jobID <= mtctx->nextJobID);
1152
if (jobID == mtctx->nextJobID) return 0; /* no active job => nothing to flush */
1153
1154
/* look into oldest non-fully-flushed job */
1155
{ unsigned const wJobID = jobID & mtctx->jobIDMask;
1156
ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID];
1157
ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
1158
{ size_t const cResult = jobPtr->cSize;
1159
size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
1160
size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
1161
assert(flushed <= produced);
1162
assert(jobPtr->consumed <= jobPtr->src.size);
1163
toFlush = produced - flushed;
1164
/* if toFlush==0, nothing is available to flush.
1165
* However, jobID is expected to still be active:
1166
* if jobID was already completed and fully flushed,
1167
* ZSTDMT_flushProduced() should have already moved onto next job.
1168
* Therefore, some input has not yet been consumed. */
1169
if (toFlush==0) {
1170
assert(jobPtr->consumed < jobPtr->src.size);
1171
}
1172
}
1173
ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1174
}
1175
1176
return toFlush;
1177
}
1178
1179
1180
/* ------------------------------------------ */
1181
/* ===== Multi-threaded compression ===== */
1182
/* ------------------------------------------ */
1183
1184
static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params)
1185
{
1186
unsigned jobLog;
1187
if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
1188
/* In Long Range Mode, the windowLog is typically oversized.
1189
* In which case, it's preferable to determine the jobSize
1190
* based on cycleLog instead. */
1191
jobLog = MAX(21, ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy) + 3);
1192
} else {
1193
jobLog = MAX(20, params->cParams.windowLog + 2);
1194
}
1195
return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX);
1196
}
1197
1198
static int ZSTDMT_overlapLog_default(ZSTD_strategy strat)
1199
{
1200
switch(strat)
1201
{
1202
case ZSTD_btultra2:
1203
return 9;
1204
case ZSTD_btultra:
1205
case ZSTD_btopt:
1206
return 8;
1207
case ZSTD_btlazy2:
1208
case ZSTD_lazy2:
1209
return 7;
1210
case ZSTD_lazy:
1211
case ZSTD_greedy:
1212
case ZSTD_dfast:
1213
case ZSTD_fast:
1214
default:;
1215
}
1216
return 6;
1217
}
1218
1219
static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat)
1220
{
1221
assert(0 <= ovlog && ovlog <= 9);
1222
if (ovlog == 0) return ZSTDMT_overlapLog_default(strat);
1223
return ovlog;
1224
}
1225
1226
static size_t ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params* params)
1227
{
1228
int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy);
1229
int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog);
1230
assert(0 <= overlapRLog && overlapRLog <= 8);
1231
if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
1232
/* In Long Range Mode, the windowLog is typically oversized.
1233
* In which case, it's preferable to determine the jobSize
1234
* based on chainLog instead.
1235
* Then, ovLog becomes a fraction of the jobSize, rather than windowSize */
1236
ovLog = MIN(params->cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2)
1237
- overlapRLog;
1238
}
1239
assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX);
1240
DEBUGLOG(4, "overlapLog : %i", params->overlapLog);
1241
DEBUGLOG(4, "overlap size : %i", 1 << ovLog);
1242
return (ovLog==0) ? 0 : (size_t)1 << ovLog;
1243
}
1244
1245
/* ====================================== */
1246
/* ======= Streaming API ======= */
1247
/* ====================================== */
1248
1249
size_t ZSTDMT_initCStream_internal(
1250
ZSTDMT_CCtx* mtctx,
1251
const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
1252
const ZSTD_CDict* cdict, ZSTD_CCtx_params params,
1253
unsigned long long pledgedSrcSize)
1254
{
1255
DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)",
1256
(U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx);
1257
1258
/* params supposed partially fully validated at this point */
1259
assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
1260
assert(!((dict) && (cdict))); /* either dict or cdict, not both */
1261
1262
/* init */
1263
if (params.nbWorkers != mtctx->params.nbWorkers)
1264
FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, (unsigned)params.nbWorkers) , "");
1265
1266
if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN;
1267
if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX;
1268
1269
if (mtctx->allJobsCompleted == 0) { /* previous compression not correctly finished */
1270
ZSTDMT_waitForAllJobsCompleted(mtctx);
1271
ZSTDMT_releaseAllJobResources(mtctx);
1272
mtctx->allJobsCompleted = 1;
1273
}
1274
1275
mtctx->params = params;
1276
mtctx->frameContentSize = pledgedSrcSize;
1277
ZSTD_freeCDict(mtctx->cdictLocal);
1278
if (dict) {
1279
mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize,
1280
ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */
1281
params.cParams, mtctx->cMem);
1282
mtctx->cdict = mtctx->cdictLocal;
1283
if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation);
1284
} else {
1285
mtctx->cdictLocal = NULL;
1286
mtctx->cdict = cdict;
1287
}
1288
1289
mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(&params);
1290
DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10));
1291
mtctx->targetSectionSize = params.jobSize;
1292
if (mtctx->targetSectionSize == 0) {
1293
mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(&params);
1294
}
1295
assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX);
1296
1297
if (params.rsyncable) {
1298
/* Aim for the targetsectionSize as the average job size. */
1299
U32 const jobSizeKB = (U32)(mtctx->targetSectionSize >> 10);
1300
U32 const rsyncBits = (assert(jobSizeKB >= 1), ZSTD_highbit32(jobSizeKB) + 10);
1301
/* We refuse to create jobs < RSYNC_MIN_BLOCK_SIZE bytes, so make sure our
1302
* expected job size is at least 4x larger. */
1303
assert(rsyncBits >= RSYNC_MIN_BLOCK_LOG + 2);
1304
DEBUGLOG(4, "rsyncLog = %u", rsyncBits);
1305
mtctx->rsync.hash = 0;
1306
mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1;
1307
mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH);
1308
}
1309
if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize; /* job size must be >= overlap size */
1310
DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize);
1311
DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10));
1312
ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize));
1313
{
1314
/* If ldm is enabled we need windowSize space. */
1315
size_t const windowSize = mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable ? (1U << mtctx->params.cParams.windowLog) : 0;
1316
/* Two buffers of slack, plus extra space for the overlap
1317
* This is the minimum slack that LDM works with. One extra because
1318
* flush might waste up to targetSectionSize-1 bytes. Another extra
1319
* for the overlap (if > 0), then one to fill which doesn't overlap
1320
* with the LDM window.
1321
*/
1322
size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0);
1323
size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers;
1324
/* Compute the total size, and always have enough slack */
1325
size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1);
1326
size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers;
1327
size_t const capacity = MAX(windowSize, sectionsSize) + slackSize;
1328
if (mtctx->roundBuff.capacity < capacity) {
1329
if (mtctx->roundBuff.buffer)
1330
ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
1331
mtctx->roundBuff.buffer = (BYTE*)ZSTD_customMalloc(capacity, mtctx->cMem);
1332
if (mtctx->roundBuff.buffer == NULL) {
1333
mtctx->roundBuff.capacity = 0;
1334
return ERROR(memory_allocation);
1335
}
1336
mtctx->roundBuff.capacity = capacity;
1337
}
1338
}
1339
DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10));
1340
mtctx->roundBuff.pos = 0;
1341
mtctx->inBuff.buffer = g_nullBuffer;
1342
mtctx->inBuff.filled = 0;
1343
mtctx->inBuff.prefix = kNullRange;
1344
mtctx->doneJobID = 0;
1345
mtctx->nextJobID = 0;
1346
mtctx->frameEnded = 0;
1347
mtctx->allJobsCompleted = 0;
1348
mtctx->consumed = 0;
1349
mtctx->produced = 0;
1350
1351
/* update dictionary */
1352
ZSTD_freeCDict(mtctx->cdictLocal);
1353
mtctx->cdictLocal = NULL;
1354
mtctx->cdict = NULL;
1355
if (dict) {
1356
if (dictContentType == ZSTD_dct_rawContent) {
1357
mtctx->inBuff.prefix.start = (const BYTE*)dict;
1358
mtctx->inBuff.prefix.size = dictSize;
1359
} else {
1360
/* note : a loadPrefix becomes an internal CDict */
1361
mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize,
1362
ZSTD_dlm_byRef, dictContentType,
1363
params.cParams, mtctx->cMem);
1364
mtctx->cdict = mtctx->cdictLocal;
1365
if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation);
1366
}
1367
} else {
1368
mtctx->cdict = cdict;
1369
}
1370
1371
if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize,
1372
dict, dictSize, dictContentType))
1373
return ERROR(memory_allocation);
1374
1375
1376
return 0;
1377
}
1378
1379
1380
/* ZSTDMT_writeLastEmptyBlock()
1381
* Write a single empty block with an end-of-frame to finish a frame.
1382
* Job must be created from streaming variant.
1383
* This function is always successful if expected conditions are fulfilled.
1384
*/
1385
static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job)
1386
{
1387
assert(job->lastJob == 1);
1388
assert(job->src.size == 0); /* last job is empty -> will be simplified into a last empty block */
1389
assert(job->firstJob == 0); /* cannot be first job, as it also needs to create frame header */
1390
assert(job->dstBuff.start == NULL); /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */
1391
job->dstBuff = ZSTDMT_getBuffer(job->bufPool);
1392
if (job->dstBuff.start == NULL) {
1393
job->cSize = ERROR(memory_allocation);
1394
return;
1395
}
1396
assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize); /* no buffer should ever be that small */
1397
job->src = kNullRange;
1398
job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity);
1399
assert(!ZSTD_isError(job->cSize));
1400
assert(job->consumed == 0);
1401
}
1402
1403
static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp)
1404
{
1405
unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask;
1406
int const endFrame = (endOp == ZSTD_e_end);
1407
1408
if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) {
1409
DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full");
1410
assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask));
1411
return 0;
1412
}
1413
1414
if (!mtctx->jobReady) {
1415
BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start;
1416
DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ",
1417
mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size);
1418
mtctx->jobs[jobID].src.start = src;
1419
mtctx->jobs[jobID].src.size = srcSize;
1420
assert(mtctx->inBuff.filled >= srcSize);
1421
mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix;
1422
mtctx->jobs[jobID].consumed = 0;
1423
mtctx->jobs[jobID].cSize = 0;
1424
mtctx->jobs[jobID].params = mtctx->params;
1425
mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL;
1426
mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize;
1427
mtctx->jobs[jobID].dstBuff = g_nullBuffer;
1428
mtctx->jobs[jobID].cctxPool = mtctx->cctxPool;
1429
mtctx->jobs[jobID].bufPool = mtctx->bufPool;
1430
mtctx->jobs[jobID].seqPool = mtctx->seqPool;
1431
mtctx->jobs[jobID].serial = &mtctx->serial;
1432
mtctx->jobs[jobID].jobID = mtctx->nextJobID;
1433
mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0);
1434
mtctx->jobs[jobID].lastJob = endFrame;
1435
mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0);
1436
mtctx->jobs[jobID].dstFlushed = 0;
1437
1438
/* Update the round buffer pos and clear the input buffer to be reset */
1439
mtctx->roundBuff.pos += srcSize;
1440
mtctx->inBuff.buffer = g_nullBuffer;
1441
mtctx->inBuff.filled = 0;
1442
/* Set the prefix for next job */
1443
if (!endFrame) {
1444
size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize);
1445
mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize;
1446
mtctx->inBuff.prefix.size = newPrefixSize;
1447
} else { /* endFrame==1 => no need for another input buffer */
1448
mtctx->inBuff.prefix = kNullRange;
1449
mtctx->frameEnded = endFrame;
1450
if (mtctx->nextJobID == 0) {
1451
/* single job exception : checksum is already calculated directly within worker thread */
1452
mtctx->params.fParams.checksumFlag = 0;
1453
} }
1454
1455
if ( (srcSize == 0)
1456
&& (mtctx->nextJobID>0)/*single job must also write frame header*/ ) {
1457
DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame");
1458
assert(endOp == ZSTD_e_end); /* only possible case : need to end the frame with an empty last block */
1459
ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID);
1460
mtctx->nextJobID++;
1461
return 0;
1462
}
1463
}
1464
1465
DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes (end:%u, jobNb == %u (mod:%u))",
1466
mtctx->nextJobID,
1467
(U32)mtctx->jobs[jobID].src.size,
1468
mtctx->jobs[jobID].lastJob,
1469
mtctx->nextJobID,
1470
jobID);
1471
if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) {
1472
mtctx->nextJobID++;
1473
mtctx->jobReady = 0;
1474
} else {
1475
DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID);
1476
mtctx->jobReady = 1;
1477
}
1478
return 0;
1479
}
1480
1481
1482
/*! ZSTDMT_flushProduced() :
1483
* flush whatever data has been produced but not yet flushed in current job.
1484
* move to next job if current one is fully flushed.
1485
* `output` : `pos` will be updated with amount of data flushed .
1486
* `blockToFlush` : if >0, the function will block and wait if there is no data available to flush .
1487
* @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */
1488
static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end)
1489
{
1490
unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask;
1491
DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)",
1492
blockToFlush, mtctx->doneJobID, mtctx->nextJobID);
1493
assert(output->size >= output->pos);
1494
1495
ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
1496
if ( blockToFlush
1497
&& (mtctx->doneJobID < mtctx->nextJobID) ) {
1498
assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize);
1499
while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) { /* nothing to flush */
1500
if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) {
1501
DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none",
1502
mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size);
1503
break;
1504
}
1505
DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)",
1506
mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
1507
ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex); /* block when nothing to flush but some to come */
1508
} }
1509
1510
/* try to flush something */
1511
{ size_t cSize = mtctx->jobs[wJobID].cSize; /* shared */
1512
size_t const srcConsumed = mtctx->jobs[wJobID].consumed; /* shared */
1513
size_t const srcSize = mtctx->jobs[wJobID].src.size; /* read-only, could be done after mutex lock, but no-declaration-after-statement */
1514
ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1515
if (ZSTD_isError(cSize)) {
1516
DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s",
1517
mtctx->doneJobID, ZSTD_getErrorName(cSize));
1518
ZSTDMT_waitForAllJobsCompleted(mtctx);
1519
ZSTDMT_releaseAllJobResources(mtctx);
1520
return cSize;
1521
}
1522
/* add frame checksum if necessary (can only happen once) */
1523
assert(srcConsumed <= srcSize);
1524
if ( (srcConsumed == srcSize) /* job completed -> worker no longer active */
1525
&& mtctx->jobs[wJobID].frameChecksumNeeded ) {
1526
U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState);
1527
DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum);
1528
MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum);
1529
cSize += 4;
1530
mtctx->jobs[wJobID].cSize += 4; /* can write this shared value, as worker is no longer active */
1531
mtctx->jobs[wJobID].frameChecksumNeeded = 0;
1532
}
1533
1534
if (cSize > 0) { /* compression is ongoing or completed */
1535
size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos);
1536
DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)",
1537
(U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize);
1538
assert(mtctx->doneJobID < mtctx->nextJobID);
1539
assert(cSize >= mtctx->jobs[wJobID].dstFlushed);
1540
assert(mtctx->jobs[wJobID].dstBuff.start != NULL);
1541
if (toFlush > 0) {
1542
ZSTD_memcpy((char*)output->dst + output->pos,
1543
(const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed,
1544
toFlush);
1545
}
1546
output->pos += toFlush;
1547
mtctx->jobs[wJobID].dstFlushed += toFlush; /* can write : this value is only used by mtctx */
1548
1549
if ( (srcConsumed == srcSize) /* job is completed */
1550
&& (mtctx->jobs[wJobID].dstFlushed == cSize) ) { /* output buffer fully flushed => free this job position */
1551
DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one",
1552
mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
1553
ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff);
1554
DEBUGLOG(5, "dstBuffer released");
1555
mtctx->jobs[wJobID].dstBuff = g_nullBuffer;
1556
mtctx->jobs[wJobID].cSize = 0; /* ensure this job slot is considered "not started" in future check */
1557
mtctx->consumed += srcSize;
1558
mtctx->produced += cSize;
1559
mtctx->doneJobID++;
1560
} }
1561
1562
/* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */
1563
if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed);
1564
if (srcSize > srcConsumed) return 1; /* current job not completely compressed */
1565
}
1566
if (mtctx->doneJobID < mtctx->nextJobID) return 1; /* some more jobs ongoing */
1567
if (mtctx->jobReady) return 1; /* one job is ready to push, just not yet in the list */
1568
if (mtctx->inBuff.filled > 0) return 1; /* input is not empty, and still needs to be converted into a job */
1569
mtctx->allJobsCompleted = mtctx->frameEnded; /* all jobs are entirely flushed => if this one is last one, frame is completed */
1570
if (end == ZSTD_e_end) return !mtctx->frameEnded; /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */
1571
return 0; /* internal buffers fully flushed */
1572
}
1573
1574
/**
1575
* Returns the range of data used by the earliest job that is not yet complete.
1576
* If the data of the first job is broken up into two segments, we cover both
1577
* sections.
1578
*/
1579
static Range ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx)
1580
{
1581
unsigned const firstJobID = mtctx->doneJobID;
1582
unsigned const lastJobID = mtctx->nextJobID;
1583
unsigned jobID;
1584
1585
/* no need to check during first round */
1586
size_t roundBuffCapacity = mtctx->roundBuff.capacity;
1587
size_t nbJobs1stRoundMin = roundBuffCapacity / mtctx->targetSectionSize;
1588
if (lastJobID < nbJobs1stRoundMin) return kNullRange;
1589
1590
for (jobID = firstJobID; jobID < lastJobID; ++jobID) {
1591
unsigned const wJobID = jobID & mtctx->jobIDMask;
1592
size_t consumed;
1593
1594
ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
1595
consumed = mtctx->jobs[wJobID].consumed;
1596
ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1597
1598
if (consumed < mtctx->jobs[wJobID].src.size) {
1599
Range range = mtctx->jobs[wJobID].prefix;
1600
if (range.size == 0) {
1601
/* Empty prefix */
1602
range = mtctx->jobs[wJobID].src;
1603
}
1604
/* Job source in multiple segments not supported yet */
1605
assert(range.start <= mtctx->jobs[wJobID].src.start);
1606
return range;
1607
}
1608
}
1609
return kNullRange;
1610
}
1611
1612
/**
1613
* Returns non-zero iff buffer and range overlap.
1614
*/
1615
static int ZSTDMT_isOverlapped(Buffer buffer, Range range)
1616
{
1617
BYTE const* const bufferStart = (BYTE const*)buffer.start;
1618
BYTE const* const rangeStart = (BYTE const*)range.start;
1619
1620
if (rangeStart == NULL || bufferStart == NULL)
1621
return 0;
1622
1623
{
1624
BYTE const* const bufferEnd = bufferStart + buffer.capacity;
1625
BYTE const* const rangeEnd = rangeStart + range.size;
1626
1627
/* Empty ranges cannot overlap */
1628
if (bufferStart == bufferEnd || rangeStart == rangeEnd)
1629
return 0;
1630
1631
return bufferStart < rangeEnd && rangeStart < bufferEnd;
1632
}
1633
}
1634
1635
static int ZSTDMT_doesOverlapWindow(Buffer buffer, ZSTD_window_t window)
1636
{
1637
Range extDict;
1638
Range prefix;
1639
1640
DEBUGLOG(5, "ZSTDMT_doesOverlapWindow");
1641
extDict.start = window.dictBase + window.lowLimit;
1642
extDict.size = window.dictLimit - window.lowLimit;
1643
1644
prefix.start = window.base + window.dictLimit;
1645
prefix.size = window.nextSrc - (window.base + window.dictLimit);
1646
DEBUGLOG(5, "extDict [0x%zx, 0x%zx)",
1647
(size_t)extDict.start,
1648
(size_t)extDict.start + extDict.size);
1649
DEBUGLOG(5, "prefix [0x%zx, 0x%zx)",
1650
(size_t)prefix.start,
1651
(size_t)prefix.start + prefix.size);
1652
1653
return ZSTDMT_isOverlapped(buffer, extDict)
1654
|| ZSTDMT_isOverlapped(buffer, prefix);
1655
}
1656
1657
static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, Buffer buffer)
1658
{
1659
if (mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable) {
1660
ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex;
1661
DEBUGLOG(5, "ZSTDMT_waitForLdmComplete");
1662
DEBUGLOG(5, "source [0x%zx, 0x%zx)",
1663
(size_t)buffer.start,
1664
(size_t)buffer.start + buffer.capacity);
1665
ZSTD_PTHREAD_MUTEX_LOCK(mutex);
1666
while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) {
1667
DEBUGLOG(5, "Waiting for LDM to finish...");
1668
ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex);
1669
}
1670
DEBUGLOG(6, "Done waiting for LDM to finish");
1671
ZSTD_pthread_mutex_unlock(mutex);
1672
}
1673
}
1674
1675
/**
1676
* Attempts to set the inBuff to the next section to fill.
1677
* If any part of the new section is still in use we give up.
1678
* Returns non-zero if the buffer is filled.
1679
*/
1680
static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx)
1681
{
1682
Range const inUse = ZSTDMT_getInputDataInUse(mtctx);
1683
size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos;
1684
size_t const spaceNeeded = mtctx->targetSectionSize;
1685
Buffer buffer;
1686
1687
DEBUGLOG(5, "ZSTDMT_tryGetInputRange");
1688
assert(mtctx->inBuff.buffer.start == NULL);
1689
assert(mtctx->roundBuff.capacity >= spaceNeeded);
1690
1691
if (spaceLeft < spaceNeeded) {
1692
/* ZSTD_invalidateRepCodes() doesn't work for extDict variants.
1693
* Simply copy the prefix to the beginning in that case.
1694
*/
1695
BYTE* const start = (BYTE*)mtctx->roundBuff.buffer;
1696
size_t const prefixSize = mtctx->inBuff.prefix.size;
1697
1698
buffer.start = start;
1699
buffer.capacity = prefixSize;
1700
if (ZSTDMT_isOverlapped(buffer, inUse)) {
1701
DEBUGLOG(5, "Waiting for buffer...");
1702
return 0;
1703
}
1704
ZSTDMT_waitForLdmComplete(mtctx, buffer);
1705
ZSTD_memmove(start, mtctx->inBuff.prefix.start, prefixSize);
1706
mtctx->inBuff.prefix.start = start;
1707
mtctx->roundBuff.pos = prefixSize;
1708
}
1709
buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos;
1710
buffer.capacity = spaceNeeded;
1711
1712
if (ZSTDMT_isOverlapped(buffer, inUse)) {
1713
DEBUGLOG(5, "Waiting for buffer...");
1714
return 0;
1715
}
1716
assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix));
1717
1718
ZSTDMT_waitForLdmComplete(mtctx, buffer);
1719
1720
DEBUGLOG(5, "Using prefix range [%zx, %zx)",
1721
(size_t)mtctx->inBuff.prefix.start,
1722
(size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size);
1723
DEBUGLOG(5, "Using source range [%zx, %zx)",
1724
(size_t)buffer.start,
1725
(size_t)buffer.start + buffer.capacity);
1726
1727
1728
mtctx->inBuff.buffer = buffer;
1729
mtctx->inBuff.filled = 0;
1730
assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity);
1731
return 1;
1732
}
1733
1734
typedef struct {
1735
size_t toLoad; /* The number of bytes to load from the input. */
1736
int flush; /* Boolean declaring if we must flush because we found a synchronization point. */
1737
} SyncPoint;
1738
1739
/**
1740
* Searches through the input for a synchronization point. If one is found, we
1741
* will instruct the caller to flush, and return the number of bytes to load.
1742
* Otherwise, we will load as many bytes as possible and instruct the caller
1743
* to continue as normal.
1744
*/
1745
static SyncPoint
1746
findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input)
1747
{
1748
BYTE const* const istart = (BYTE const*)input.src + input.pos;
1749
U64 const primePower = mtctx->rsync.primePower;
1750
U64 const hitMask = mtctx->rsync.hitMask;
1751
1752
SyncPoint syncPoint;
1753
U64 hash;
1754
BYTE const* prev;
1755
size_t pos;
1756
1757
syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled);
1758
syncPoint.flush = 0;
1759
if (!mtctx->params.rsyncable)
1760
/* Rsync is disabled. */
1761
return syncPoint;
1762
if (mtctx->inBuff.filled + input.size - input.pos < RSYNC_MIN_BLOCK_SIZE)
1763
/* We don't emit synchronization points if it would produce too small blocks.
1764
* We don't have enough input to find a synchronization point, so don't look.
1765
*/
1766
return syncPoint;
1767
if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH)
1768
/* Not enough to compute the hash.
1769
* We will miss any synchronization points in this RSYNC_LENGTH byte
1770
* window. However, since it depends only in the internal buffers, if the
1771
* state is already synchronized, we will remain synchronized.
1772
* Additionally, the probability that we miss a synchronization point is
1773
* low: RSYNC_LENGTH / targetSectionSize.
1774
*/
1775
return syncPoint;
1776
/* Initialize the loop variables. */
1777
if (mtctx->inBuff.filled < RSYNC_MIN_BLOCK_SIZE) {
1778
/* We don't need to scan the first RSYNC_MIN_BLOCK_SIZE positions
1779
* because they can't possibly be a sync point. So we can start
1780
* part way through the input buffer.
1781
*/
1782
pos = RSYNC_MIN_BLOCK_SIZE - mtctx->inBuff.filled;
1783
if (pos >= RSYNC_LENGTH) {
1784
prev = istart + pos - RSYNC_LENGTH;
1785
hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
1786
} else {
1787
assert(mtctx->inBuff.filled >= RSYNC_LENGTH);
1788
prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
1789
hash = ZSTD_rollingHash_compute(prev + pos, (RSYNC_LENGTH - pos));
1790
hash = ZSTD_rollingHash_append(hash, istart, pos);
1791
}
1792
} else {
1793
/* We have enough bytes buffered to initialize the hash,
1794
* and have processed enough bytes to find a sync point.
1795
* Start scanning at the beginning of the input.
1796
*/
1797
assert(mtctx->inBuff.filled >= RSYNC_MIN_BLOCK_SIZE);
1798
assert(RSYNC_MIN_BLOCK_SIZE >= RSYNC_LENGTH);
1799
pos = 0;
1800
prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
1801
hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
1802
if ((hash & hitMask) == hitMask) {
1803
/* We're already at a sync point so don't load any more until
1804
* we're able to flush this sync point.
1805
* This likely happened because the job table was full so we
1806
* couldn't add our job.
1807
*/
1808
syncPoint.toLoad = 0;
1809
syncPoint.flush = 1;
1810
return syncPoint;
1811
}
1812
}
1813
/* Starting with the hash of the previous RSYNC_LENGTH bytes, roll
1814
* through the input. If we hit a synchronization point, then cut the
1815
* job off, and tell the compressor to flush the job. Otherwise, load
1816
* all the bytes and continue as normal.
1817
* If we go too long without a synchronization point (targetSectionSize)
1818
* then a block will be emitted anyways, but this is okay, since if we
1819
* are already synchronized we will remain synchronized.
1820
*/
1821
assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
1822
for (; pos < syncPoint.toLoad; ++pos) {
1823
BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH];
1824
/* This assert is very expensive, and Debian compiles with asserts enabled.
1825
* So disable it for now. We can get similar coverage by checking it at the
1826
* beginning & end of the loop.
1827
* assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
1828
*/
1829
hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower);
1830
assert(mtctx->inBuff.filled + pos >= RSYNC_MIN_BLOCK_SIZE);
1831
if ((hash & hitMask) == hitMask) {
1832
syncPoint.toLoad = pos + 1;
1833
syncPoint.flush = 1;
1834
++pos; /* for assert */
1835
break;
1836
}
1837
}
1838
assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
1839
return syncPoint;
1840
}
1841
1842
size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx)
1843
{
1844
size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled;
1845
if (hintInSize==0) hintInSize = mtctx->targetSectionSize;
1846
return hintInSize;
1847
}
1848
1849
/** ZSTDMT_compressStream_generic() :
1850
* internal use only - exposed to be invoked from zstd_compress.c
1851
* assumption : output and input are valid (pos <= size)
1852
* @return : minimum amount of data remaining to flush, 0 if none */
1853
size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
1854
ZSTD_outBuffer* output,
1855
ZSTD_inBuffer* input,
1856
ZSTD_EndDirective endOp)
1857
{
1858
unsigned forwardInputProgress = 0;
1859
DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)",
1860
(U32)endOp, (U32)(input->size - input->pos));
1861
assert(output->pos <= output->size);
1862
assert(input->pos <= input->size);
1863
1864
if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) {
1865
/* current frame being ended. Only flush/end are allowed */
1866
return ERROR(stage_wrong);
1867
}
1868
1869
/* fill input buffer */
1870
if ( (!mtctx->jobReady)
1871
&& (input->size > input->pos) ) { /* support NULL input */
1872
if (mtctx->inBuff.buffer.start == NULL) {
1873
assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */
1874
if (!ZSTDMT_tryGetInputRange(mtctx)) {
1875
/* It is only possible for this operation to fail if there are
1876
* still compression jobs ongoing.
1877
*/
1878
DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed");
1879
assert(mtctx->doneJobID != mtctx->nextJobID);
1880
} else
1881
DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start);
1882
}
1883
if (mtctx->inBuff.buffer.start != NULL) {
1884
SyncPoint const syncPoint = findSynchronizationPoint(mtctx, *input);
1885
if (syncPoint.flush && endOp == ZSTD_e_continue) {
1886
endOp = ZSTD_e_flush;
1887
}
1888
assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize);
1889
DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u",
1890
(U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize);
1891
ZSTD_memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad);
1892
input->pos += syncPoint.toLoad;
1893
mtctx->inBuff.filled += syncPoint.toLoad;
1894
forwardInputProgress = syncPoint.toLoad>0;
1895
}
1896
}
1897
if ((input->pos < input->size) && (endOp == ZSTD_e_end)) {
1898
/* Can't end yet because the input is not fully consumed.
1899
* We are in one of these cases:
1900
* - mtctx->inBuff is NULL & empty: we couldn't get an input buffer so don't create a new job.
1901
* - We filled the input buffer: flush this job but don't end the frame.
1902
* - We hit a synchronization point: flush this job but don't end the frame.
1903
*/
1904
assert(mtctx->inBuff.filled == 0 || mtctx->inBuff.filled == mtctx->targetSectionSize || mtctx->params.rsyncable);
1905
endOp = ZSTD_e_flush;
1906
}
1907
1908
if ( (mtctx->jobReady)
1909
|| (mtctx->inBuff.filled >= mtctx->targetSectionSize) /* filled enough : let's compress */
1910
|| ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0)) /* something to flush : let's go */
1911
|| ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) { /* must finish the frame with a zero-size block */
1912
size_t const jobSize = mtctx->inBuff.filled;
1913
assert(mtctx->inBuff.filled <= mtctx->targetSectionSize);
1914
FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) , "");
1915
}
1916
1917
/* check for potential compressed data ready to be flushed */
1918
{ size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */
1919
if (input->pos < input->size) return MAX(remainingToFlush, 1); /* input not consumed : do not end flush yet */
1920
DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush);
1921
return remainingToFlush;
1922
}
1923
}
1924
1925