Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmzstd/lib/decompress/huf_decompress.c
3158 views
1
/* ******************************************************************
2
* huff0 huffman decoder,
3
* part of Finite State Entropy library
4
* Copyright (c) Meta Platforms, Inc. and affiliates.
5
*
6
* You can contact the author at :
7
* - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
8
*
9
* This source code is licensed under both the BSD-style license (found in the
10
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
11
* in the COPYING file in the root directory of this source tree).
12
* You may select, at your option, one of the above-listed licenses.
13
****************************************************************** */
14
15
/* **************************************************************
16
* Dependencies
17
****************************************************************/
18
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
19
#include "../common/compiler.h"
20
#include "../common/bitstream.h" /* BIT_* */
21
#include "../common/fse.h" /* to compress headers */
22
#include "../common/huf.h"
23
#include "../common/error_private.h"
24
#include "../common/zstd_internal.h"
25
#include "../common/bits.h" /* ZSTD_highbit32, ZSTD_countTrailingZeros64 */
26
27
/* **************************************************************
28
* Constants
29
****************************************************************/
30
31
#define HUF_DECODER_FAST_TABLELOG 11
32
33
/* **************************************************************
34
* Macros
35
****************************************************************/
36
37
/* These two optional macros force the use one way or another of the two
38
* Huffman decompression implementations. You can't force in both directions
39
* at the same time.
40
*/
41
#if defined(HUF_FORCE_DECOMPRESS_X1) && \
42
defined(HUF_FORCE_DECOMPRESS_X2)
43
#error "Cannot force the use of the X1 and X2 decoders at the same time!"
44
#endif
45
46
/* When DYNAMIC_BMI2 is enabled, fast decoders are only called when bmi2 is
47
* supported at runtime, so we can add the BMI2 target attribute.
48
* When it is disabled, we will still get BMI2 if it is enabled statically.
49
*/
50
#if DYNAMIC_BMI2
51
# define HUF_FAST_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE
52
#else
53
# define HUF_FAST_BMI2_ATTRS
54
#endif
55
56
#ifdef __cplusplus
57
# define HUF_EXTERN_C extern "C"
58
#else
59
# define HUF_EXTERN_C
60
#endif
61
#define HUF_ASM_DECL HUF_EXTERN_C
62
63
#if DYNAMIC_BMI2
64
# define HUF_NEED_BMI2_FUNCTION 1
65
#else
66
# define HUF_NEED_BMI2_FUNCTION 0
67
#endif
68
69
/* **************************************************************
70
* Error Management
71
****************************************************************/
72
#define HUF_isError ERR_isError
73
74
75
/* **************************************************************
76
* Byte alignment for workSpace management
77
****************************************************************/
78
#define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1)
79
#define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
80
81
82
/* **************************************************************
83
* BMI2 Variant Wrappers
84
****************************************************************/
85
typedef size_t (*HUF_DecompressUsingDTableFn)(void *dst, size_t dstSize,
86
const void *cSrc,
87
size_t cSrcSize,
88
const HUF_DTable *DTable);
89
90
#if DYNAMIC_BMI2
91
92
#define HUF_DGEN(fn) \
93
\
94
static size_t fn##_default( \
95
void* dst, size_t dstSize, \
96
const void* cSrc, size_t cSrcSize, \
97
const HUF_DTable* DTable) \
98
{ \
99
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
100
} \
101
\
102
static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2( \
103
void* dst, size_t dstSize, \
104
const void* cSrc, size_t cSrcSize, \
105
const HUF_DTable* DTable) \
106
{ \
107
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
108
} \
109
\
110
static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
111
size_t cSrcSize, HUF_DTable const* DTable, int flags) \
112
{ \
113
if (flags & HUF_flags_bmi2) { \
114
return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \
115
} \
116
return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \
117
}
118
119
#else
120
121
#define HUF_DGEN(fn) \
122
static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
123
size_t cSrcSize, HUF_DTable const* DTable, int flags) \
124
{ \
125
(void)flags; \
126
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
127
}
128
129
#endif
130
131
132
/*-***************************/
133
/* generic DTableDesc */
134
/*-***************************/
135
typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
136
137
static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
138
{
139
DTableDesc dtd;
140
ZSTD_memcpy(&dtd, table, sizeof(dtd));
141
return dtd;
142
}
143
144
static size_t HUF_initFastDStream(BYTE const* ip) {
145
BYTE const lastByte = ip[7];
146
size_t const bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0;
147
size_t const value = MEM_readLEST(ip) | 1;
148
assert(bitsConsumed <= 8);
149
assert(sizeof(size_t) == 8);
150
return value << bitsConsumed;
151
}
152
153
154
/**
155
* The input/output arguments to the Huffman fast decoding loop:
156
*
157
* ip [in/out] - The input pointers, must be updated to reflect what is consumed.
158
* op [in/out] - The output pointers, must be updated to reflect what is written.
159
* bits [in/out] - The bitstream containers, must be updated to reflect the current state.
160
* dt [in] - The decoding table.
161
* ilimit [in] - The input limit, stop when any input pointer is below ilimit.
162
* oend [in] - The end of the output stream. op[3] must not cross oend.
163
* iend [in] - The end of each input stream. ip[i] may cross iend[i],
164
* as long as it is above ilimit, but that indicates corruption.
165
*/
166
typedef struct {
167
BYTE const* ip[4];
168
BYTE* op[4];
169
U64 bits[4];
170
void const* dt;
171
BYTE const* ilimit;
172
BYTE* oend;
173
BYTE const* iend[4];
174
} HUF_DecompressFastArgs;
175
176
typedef void (*HUF_DecompressFastLoopFn)(HUF_DecompressFastArgs*);
177
178
/**
179
* Initializes args for the fast decoding loop.
180
* @returns 1 on success
181
* 0 if the fallback implementation should be used.
182
* Or an error code on failure.
183
*/
184
static size_t HUF_DecompressFastArgs_init(HUF_DecompressFastArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable)
185
{
186
void const* dt = DTable + 1;
187
U32 const dtLog = HUF_getDTableDesc(DTable).tableLog;
188
189
const BYTE* const ilimit = (const BYTE*)src + 6 + 8;
190
191
BYTE* const oend = (BYTE*)dst + dstSize;
192
193
/* The fast decoding loop assumes 64-bit little-endian.
194
* This condition is false on x32.
195
*/
196
if (!MEM_isLittleEndian() || MEM_32bits())
197
return 0;
198
199
/* strict minimum : jump table + 1 byte per stream */
200
if (srcSize < 10)
201
return ERROR(corruption_detected);
202
203
/* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers.
204
* If table log is not correct at this point, fallback to the old decoder.
205
* On small inputs we don't have enough data to trigger the fast loop, so use the old decoder.
206
*/
207
if (dtLog != HUF_DECODER_FAST_TABLELOG)
208
return 0;
209
210
/* Read the jump table. */
211
{
212
const BYTE* const istart = (const BYTE*)src;
213
size_t const length1 = MEM_readLE16(istart);
214
size_t const length2 = MEM_readLE16(istart+2);
215
size_t const length3 = MEM_readLE16(istart+4);
216
size_t const length4 = srcSize - (length1 + length2 + length3 + 6);
217
args->iend[0] = istart + 6; /* jumpTable */
218
args->iend[1] = args->iend[0] + length1;
219
args->iend[2] = args->iend[1] + length2;
220
args->iend[3] = args->iend[2] + length3;
221
222
/* HUF_initFastDStream() requires this, and this small of an input
223
* won't benefit from the ASM loop anyways.
224
* length1 must be >= 16 so that ip[0] >= ilimit before the loop
225
* starts.
226
*/
227
if (length1 < 16 || length2 < 8 || length3 < 8 || length4 < 8)
228
return 0;
229
if (length4 > srcSize) return ERROR(corruption_detected); /* overflow */
230
}
231
/* ip[] contains the position that is currently loaded into bits[]. */
232
args->ip[0] = args->iend[1] - sizeof(U64);
233
args->ip[1] = args->iend[2] - sizeof(U64);
234
args->ip[2] = args->iend[3] - sizeof(U64);
235
args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64);
236
237
/* op[] contains the output pointers. */
238
args->op[0] = (BYTE*)dst;
239
args->op[1] = args->op[0] + (dstSize+3)/4;
240
args->op[2] = args->op[1] + (dstSize+3)/4;
241
args->op[3] = args->op[2] + (dstSize+3)/4;
242
243
/* No point to call the ASM loop for tiny outputs. */
244
if (args->op[3] >= oend)
245
return 0;
246
247
/* bits[] is the bit container.
248
* It is read from the MSB down to the LSB.
249
* It is shifted left as it is read, and zeros are
250
* shifted in. After the lowest valid bit a 1 is
251
* set, so that CountTrailingZeros(bits[]) can be used
252
* to count how many bits we've consumed.
253
*/
254
args->bits[0] = HUF_initFastDStream(args->ip[0]);
255
args->bits[1] = HUF_initFastDStream(args->ip[1]);
256
args->bits[2] = HUF_initFastDStream(args->ip[2]);
257
args->bits[3] = HUF_initFastDStream(args->ip[3]);
258
259
/* If ip[] >= ilimit, it is guaranteed to be safe to
260
* reload bits[]. It may be beyond its section, but is
261
* guaranteed to be valid (>= istart).
262
*/
263
args->ilimit = ilimit;
264
265
args->oend = oend;
266
args->dt = dt;
267
268
return 1;
269
}
270
271
static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressFastArgs const* args, int stream, BYTE* segmentEnd)
272
{
273
/* Validate that we haven't overwritten. */
274
if (args->op[stream] > segmentEnd)
275
return ERROR(corruption_detected);
276
/* Validate that we haven't read beyond iend[].
277
* Note that ip[] may be < iend[] because the MSB is
278
* the next bit to read, and we may have consumed 100%
279
* of the stream, so down to iend[i] - 8 is valid.
280
*/
281
if (args->ip[stream] < args->iend[stream] - 8)
282
return ERROR(corruption_detected);
283
284
/* Construct the BIT_DStream_t. */
285
assert(sizeof(size_t) == 8);
286
bit->bitContainer = MEM_readLEST(args->ip[stream]);
287
bit->bitsConsumed = ZSTD_countTrailingZeros64(args->bits[stream]);
288
bit->start = (const char*)args->iend[0];
289
bit->limitPtr = bit->start + sizeof(size_t);
290
bit->ptr = (const char*)args->ip[stream];
291
292
return 0;
293
}
294
295
296
#ifndef HUF_FORCE_DECOMPRESS_X2
297
298
/*-***************************/
299
/* single-symbol decoding */
300
/*-***************************/
301
typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1; /* single-symbol decoding */
302
303
/**
304
* Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at
305
* a time.
306
*/
307
static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) {
308
U64 D4;
309
if (MEM_isLittleEndian()) {
310
D4 = (U64)((symbol << 8) + nbBits);
311
} else {
312
D4 = (U64)(symbol + (nbBits << 8));
313
}
314
assert(D4 < (1U << 16));
315
D4 *= 0x0001000100010001ULL;
316
return D4;
317
}
318
319
/**
320
* Increase the tableLog to targetTableLog and rescales the stats.
321
* If tableLog > targetTableLog this is a no-op.
322
* @returns New tableLog
323
*/
324
static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog)
325
{
326
if (tableLog > targetTableLog)
327
return tableLog;
328
if (tableLog < targetTableLog) {
329
U32 const scale = targetTableLog - tableLog;
330
U32 s;
331
/* Increase the weight for all non-zero probability symbols by scale. */
332
for (s = 0; s < nbSymbols; ++s) {
333
huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale);
334
}
335
/* Update rankVal to reflect the new weights.
336
* All weights except 0 get moved to weight + scale.
337
* Weights [1, scale] are empty.
338
*/
339
for (s = targetTableLog; s > scale; --s) {
340
rankVal[s] = rankVal[s - scale];
341
}
342
for (s = scale; s > 0; --s) {
343
rankVal[s] = 0;
344
}
345
}
346
return targetTableLog;
347
}
348
349
typedef struct {
350
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
351
U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1];
352
U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
353
BYTE symbols[HUF_SYMBOLVALUE_MAX + 1];
354
BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
355
} HUF_ReadDTableX1_Workspace;
356
357
size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags)
358
{
359
U32 tableLog = 0;
360
U32 nbSymbols = 0;
361
size_t iSize;
362
void* const dtPtr = DTable + 1;
363
HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr;
364
HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace;
365
366
DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp));
367
if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge);
368
369
DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
370
/* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
371
372
iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), flags);
373
if (HUF_isError(iSize)) return iSize;
374
375
376
/* Table header */
377
{ DTableDesc dtd = HUF_getDTableDesc(DTable);
378
U32 const maxTableLog = dtd.maxTableLog + 1;
379
U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG);
380
tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog);
381
if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */
382
dtd.tableType = 0;
383
dtd.tableLog = (BYTE)tableLog;
384
ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
385
}
386
387
/* Compute symbols and rankStart given rankVal:
388
*
389
* rankVal already contains the number of values of each weight.
390
*
391
* symbols contains the symbols ordered by weight. First are the rankVal[0]
392
* weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on.
393
* symbols[0] is filled (but unused) to avoid a branch.
394
*
395
* rankStart contains the offset where each rank belongs in the DTable.
396
* rankStart[0] is not filled because there are no entries in the table for
397
* weight 0.
398
*/
399
{ int n;
400
U32 nextRankStart = 0;
401
int const unroll = 4;
402
int const nLimit = (int)nbSymbols - unroll + 1;
403
for (n=0; n<(int)tableLog+1; n++) {
404
U32 const curr = nextRankStart;
405
nextRankStart += wksp->rankVal[n];
406
wksp->rankStart[n] = curr;
407
}
408
for (n=0; n < nLimit; n += unroll) {
409
int u;
410
for (u=0; u < unroll; ++u) {
411
size_t const w = wksp->huffWeight[n+u];
412
wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u);
413
}
414
}
415
for (; n < (int)nbSymbols; ++n) {
416
size_t const w = wksp->huffWeight[n];
417
wksp->symbols[wksp->rankStart[w]++] = (BYTE)n;
418
}
419
}
420
421
/* fill DTable
422
* We fill all entries of each weight in order.
423
* That way length is a constant for each iteration of the outer loop.
424
* We can switch based on the length to a different inner loop which is
425
* optimized for that particular case.
426
*/
427
{ U32 w;
428
int symbol = wksp->rankVal[0];
429
int rankStart = 0;
430
for (w=1; w<tableLog+1; ++w) {
431
int const symbolCount = wksp->rankVal[w];
432
int const length = (1 << w) >> 1;
433
int uStart = rankStart;
434
BYTE const nbBits = (BYTE)(tableLog + 1 - w);
435
int s;
436
int u;
437
switch (length) {
438
case 1:
439
for (s=0; s<symbolCount; ++s) {
440
HUF_DEltX1 D;
441
D.byte = wksp->symbols[symbol + s];
442
D.nbBits = nbBits;
443
dt[uStart] = D;
444
uStart += 1;
445
}
446
break;
447
case 2:
448
for (s=0; s<symbolCount; ++s) {
449
HUF_DEltX1 D;
450
D.byte = wksp->symbols[symbol + s];
451
D.nbBits = nbBits;
452
dt[uStart+0] = D;
453
dt[uStart+1] = D;
454
uStart += 2;
455
}
456
break;
457
case 4:
458
for (s=0; s<symbolCount; ++s) {
459
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
460
MEM_write64(dt + uStart, D4);
461
uStart += 4;
462
}
463
break;
464
case 8:
465
for (s=0; s<symbolCount; ++s) {
466
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
467
MEM_write64(dt + uStart, D4);
468
MEM_write64(dt + uStart + 4, D4);
469
uStart += 8;
470
}
471
break;
472
default:
473
for (s=0; s<symbolCount; ++s) {
474
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
475
for (u=0; u < length; u += 16) {
476
MEM_write64(dt + uStart + u + 0, D4);
477
MEM_write64(dt + uStart + u + 4, D4);
478
MEM_write64(dt + uStart + u + 8, D4);
479
MEM_write64(dt + uStart + u + 12, D4);
480
}
481
assert(u == length);
482
uStart += length;
483
}
484
break;
485
}
486
symbol += symbolCount;
487
rankStart += symbolCount * length;
488
}
489
}
490
return iSize;
491
}
492
493
FORCE_INLINE_TEMPLATE BYTE
494
HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog)
495
{
496
size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
497
BYTE const c = dt[val].byte;
498
BIT_skipBits(Dstream, dt[val].nbBits);
499
return c;
500
}
501
502
#define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \
503
*ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog)
504
505
#define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \
506
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
507
HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
508
509
#define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \
510
if (MEM_64bits()) \
511
HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
512
513
HINT_INLINE size_t
514
HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog)
515
{
516
BYTE* const pStart = p;
517
518
/* up to 4 symbols at a time */
519
if ((pEnd - p) > 3) {
520
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
521
HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
522
HUF_DECODE_SYMBOLX1_1(p, bitDPtr);
523
HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
524
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
525
}
526
} else {
527
BIT_reloadDStream(bitDPtr);
528
}
529
530
/* [0-3] symbols remaining */
531
if (MEM_32bits())
532
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd))
533
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
534
535
/* no more data to retrieve from bitstream, no need to reload */
536
while (p < pEnd)
537
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
538
539
return (size_t)(pEnd-pStart);
540
}
541
542
FORCE_INLINE_TEMPLATE size_t
543
HUF_decompress1X1_usingDTable_internal_body(
544
void* dst, size_t dstSize,
545
const void* cSrc, size_t cSrcSize,
546
const HUF_DTable* DTable)
547
{
548
BYTE* op = (BYTE*)dst;
549
BYTE* const oend = op + dstSize;
550
const void* dtPtr = DTable + 1;
551
const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
552
BIT_DStream_t bitD;
553
DTableDesc const dtd = HUF_getDTableDesc(DTable);
554
U32 const dtLog = dtd.tableLog;
555
556
CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
557
558
HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog);
559
560
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
561
562
return dstSize;
563
}
564
565
/* HUF_decompress4X1_usingDTable_internal_body():
566
* Conditions :
567
* @dstSize >= 6
568
*/
569
FORCE_INLINE_TEMPLATE size_t
570
HUF_decompress4X1_usingDTable_internal_body(
571
void* dst, size_t dstSize,
572
const void* cSrc, size_t cSrcSize,
573
const HUF_DTable* DTable)
574
{
575
/* Check */
576
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
577
578
{ const BYTE* const istart = (const BYTE*) cSrc;
579
BYTE* const ostart = (BYTE*) dst;
580
BYTE* const oend = ostart + dstSize;
581
BYTE* const olimit = oend - 3;
582
const void* const dtPtr = DTable + 1;
583
const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
584
585
/* Init */
586
BIT_DStream_t bitD1;
587
BIT_DStream_t bitD2;
588
BIT_DStream_t bitD3;
589
BIT_DStream_t bitD4;
590
size_t const length1 = MEM_readLE16(istart);
591
size_t const length2 = MEM_readLE16(istart+2);
592
size_t const length3 = MEM_readLE16(istart+4);
593
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
594
const BYTE* const istart1 = istart + 6; /* jumpTable */
595
const BYTE* const istart2 = istart1 + length1;
596
const BYTE* const istart3 = istart2 + length2;
597
const BYTE* const istart4 = istart3 + length3;
598
const size_t segmentSize = (dstSize+3) / 4;
599
BYTE* const opStart2 = ostart + segmentSize;
600
BYTE* const opStart3 = opStart2 + segmentSize;
601
BYTE* const opStart4 = opStart3 + segmentSize;
602
BYTE* op1 = ostart;
603
BYTE* op2 = opStart2;
604
BYTE* op3 = opStart3;
605
BYTE* op4 = opStart4;
606
DTableDesc const dtd = HUF_getDTableDesc(DTable);
607
U32 const dtLog = dtd.tableLog;
608
U32 endSignal = 1;
609
610
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
611
if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
612
if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */
613
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
614
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
615
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
616
CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
617
618
/* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */
619
if ((size_t)(oend - op4) >= sizeof(size_t)) {
620
for ( ; (endSignal) & (op4 < olimit) ; ) {
621
HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
622
HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
623
HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
624
HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
625
HUF_DECODE_SYMBOLX1_1(op1, &bitD1);
626
HUF_DECODE_SYMBOLX1_1(op2, &bitD2);
627
HUF_DECODE_SYMBOLX1_1(op3, &bitD3);
628
HUF_DECODE_SYMBOLX1_1(op4, &bitD4);
629
HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
630
HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
631
HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
632
HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
633
HUF_DECODE_SYMBOLX1_0(op1, &bitD1);
634
HUF_DECODE_SYMBOLX1_0(op2, &bitD2);
635
HUF_DECODE_SYMBOLX1_0(op3, &bitD3);
636
HUF_DECODE_SYMBOLX1_0(op4, &bitD4);
637
endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
638
endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
639
endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
640
endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
641
}
642
}
643
644
/* check corruption */
645
/* note : should not be necessary : op# advance in lock step, and we control op4.
646
* but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */
647
if (op1 > opStart2) return ERROR(corruption_detected);
648
if (op2 > opStart3) return ERROR(corruption_detected);
649
if (op3 > opStart4) return ERROR(corruption_detected);
650
/* note : op4 supposed already verified within main loop */
651
652
/* finish bitStreams one by one */
653
HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog);
654
HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog);
655
HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog);
656
HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog);
657
658
/* check */
659
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
660
if (!endCheck) return ERROR(corruption_detected); }
661
662
/* decoded size */
663
return dstSize;
664
}
665
}
666
667
#if HUF_NEED_BMI2_FUNCTION
668
static BMI2_TARGET_ATTRIBUTE
669
size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
670
size_t cSrcSize, HUF_DTable const* DTable) {
671
return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
672
}
673
#endif
674
675
static
676
size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
677
size_t cSrcSize, HUF_DTable const* DTable) {
678
return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
679
}
680
681
#if ZSTD_ENABLE_ASM_X86_64_BMI2
682
683
HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN;
684
685
#endif
686
687
static HUF_FAST_BMI2_ATTRS
688
void HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args)
689
{
690
U64 bits[4];
691
BYTE const* ip[4];
692
BYTE* op[4];
693
U16 const* const dtable = (U16 const*)args->dt;
694
BYTE* const oend = args->oend;
695
BYTE const* const ilimit = args->ilimit;
696
697
/* Copy the arguments to local variables */
698
ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
699
ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip));
700
ZSTD_memcpy(&op, &args->op, sizeof(op));
701
702
assert(MEM_isLittleEndian());
703
assert(!MEM_32bits());
704
705
for (;;) {
706
BYTE* olimit;
707
int stream;
708
int symbol;
709
710
/* Assert loop preconditions */
711
#ifndef NDEBUG
712
for (stream = 0; stream < 4; ++stream) {
713
assert(op[stream] <= (stream == 3 ? oend : op[stream + 1]));
714
assert(ip[stream] >= ilimit);
715
}
716
#endif
717
/* Compute olimit */
718
{
719
/* Each iteration produces 5 output symbols per stream */
720
size_t const oiters = (size_t)(oend - op[3]) / 5;
721
/* Each iteration consumes up to 11 bits * 5 = 55 bits < 7 bytes
722
* per stream.
723
*/
724
size_t const iiters = (size_t)(ip[0] - ilimit) / 7;
725
/* We can safely run iters iterations before running bounds checks */
726
size_t const iters = MIN(oiters, iiters);
727
size_t const symbols = iters * 5;
728
729
/* We can simply check that op[3] < olimit, instead of checking all
730
* of our bounds, since we can't hit the other bounds until we've run
731
* iters iterations, which only happens when op[3] == olimit.
732
*/
733
olimit = op[3] + symbols;
734
735
/* Exit fast decoding loop once we get close to the end. */
736
if (op[3] + 20 > olimit)
737
break;
738
739
/* Exit the decoding loop if any input pointer has crossed the
740
* previous one. This indicates corruption, and a precondition
741
* to our loop is that ip[i] >= ip[0].
742
*/
743
for (stream = 1; stream < 4; ++stream) {
744
if (ip[stream] < ip[stream - 1])
745
goto _out;
746
}
747
}
748
749
#ifndef NDEBUG
750
for (stream = 1; stream < 4; ++stream) {
751
assert(ip[stream] >= ip[stream - 1]);
752
}
753
#endif
754
755
do {
756
/* Decode 5 symbols in each of the 4 streams */
757
for (symbol = 0; symbol < 5; ++symbol) {
758
for (stream = 0; stream < 4; ++stream) {
759
int const index = (int)(bits[stream] >> 53);
760
int const entry = (int)dtable[index];
761
bits[stream] <<= (entry & 63);
762
op[stream][symbol] = (BYTE)((entry >> 8) & 0xFF);
763
}
764
}
765
/* Reload the bitstreams */
766
for (stream = 0; stream < 4; ++stream) {
767
int const ctz = ZSTD_countTrailingZeros64(bits[stream]);
768
int const nbBits = ctz & 7;
769
int const nbBytes = ctz >> 3;
770
op[stream] += 5;
771
ip[stream] -= nbBytes;
772
bits[stream] = MEM_read64(ip[stream]) | 1;
773
bits[stream] <<= nbBits;
774
}
775
} while (op[3] < olimit);
776
}
777
778
_out:
779
780
/* Save the final values of each of the state variables back to args. */
781
ZSTD_memcpy(&args->bits, &bits, sizeof(bits));
782
ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip));
783
ZSTD_memcpy(&args->op, &op, sizeof(op));
784
}
785
786
/**
787
* @returns @p dstSize on success (>= 6)
788
* 0 if the fallback implementation should be used
789
* An error if an error occurred
790
*/
791
static HUF_FAST_BMI2_ATTRS
792
size_t
793
HUF_decompress4X1_usingDTable_internal_fast(
794
void* dst, size_t dstSize,
795
const void* cSrc, size_t cSrcSize,
796
const HUF_DTable* DTable,
797
HUF_DecompressFastLoopFn loopFn)
798
{
799
void const* dt = DTable + 1;
800
const BYTE* const iend = (const BYTE*)cSrc + 6;
801
BYTE* const oend = (BYTE*)dst + dstSize;
802
HUF_DecompressFastArgs args;
803
{ size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
804
FORWARD_IF_ERROR(ret, "Failed to init fast loop args");
805
if (ret == 0)
806
return 0;
807
}
808
809
assert(args.ip[0] >= args.ilimit);
810
loopFn(&args);
811
812
/* Our loop guarantees that ip[] >= ilimit and that we haven't
813
* overwritten any op[].
814
*/
815
assert(args.ip[0] >= iend);
816
assert(args.ip[1] >= iend);
817
assert(args.ip[2] >= iend);
818
assert(args.ip[3] >= iend);
819
assert(args.op[3] <= oend);
820
(void)iend;
821
822
/* finish bit streams one by one. */
823
{ size_t const segmentSize = (dstSize+3) / 4;
824
BYTE* segmentEnd = (BYTE*)dst;
825
int i;
826
for (i = 0; i < 4; ++i) {
827
BIT_DStream_t bit;
828
if (segmentSize <= (size_t)(oend - segmentEnd))
829
segmentEnd += segmentSize;
830
else
831
segmentEnd = oend;
832
FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
833
/* Decompress and validate that we've produced exactly the expected length. */
834
args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG);
835
if (args.op[i] != segmentEnd) return ERROR(corruption_detected);
836
}
837
}
838
839
/* decoded size */
840
assert(dstSize != 0);
841
return dstSize;
842
}
843
844
HUF_DGEN(HUF_decompress1X1_usingDTable_internal)
845
846
static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
847
size_t cSrcSize, HUF_DTable const* DTable, int flags)
848
{
849
HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X1_usingDTable_internal_default;
850
HUF_DecompressFastLoopFn loopFn = HUF_decompress4X1_usingDTable_internal_fast_c_loop;
851
852
#if DYNAMIC_BMI2
853
if (flags & HUF_flags_bmi2) {
854
fallbackFn = HUF_decompress4X1_usingDTable_internal_bmi2;
855
# if ZSTD_ENABLE_ASM_X86_64_BMI2
856
if (!(flags & HUF_flags_disableAsm)) {
857
loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop;
858
}
859
# endif
860
} else {
861
return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
862
}
863
#endif
864
865
#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
866
if (!(flags & HUF_flags_disableAsm)) {
867
loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop;
868
}
869
#endif
870
871
if (!(flags & HUF_flags_disableFast)) {
872
size_t const ret = HUF_decompress4X1_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
873
if (ret != 0)
874
return ret;
875
}
876
return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
877
}
878
879
static size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
880
const void* cSrc, size_t cSrcSize,
881
void* workSpace, size_t wkspSize, int flags)
882
{
883
const BYTE* ip = (const BYTE*) cSrc;
884
885
size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags);
886
if (HUF_isError(hSize)) return hSize;
887
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
888
ip += hSize; cSrcSize -= hSize;
889
890
return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
891
}
892
893
#endif /* HUF_FORCE_DECOMPRESS_X2 */
894
895
896
#ifndef HUF_FORCE_DECOMPRESS_X1
897
898
/* *************************/
899
/* double-symbols decoding */
900
/* *************************/
901
902
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */
903
typedef struct { BYTE symbol; } sortedSymbol_t;
904
typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
905
typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX];
906
907
/**
908
* Constructs a HUF_DEltX2 in a U32.
909
*/
910
static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level)
911
{
912
U32 seq;
913
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0);
914
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2);
915
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3);
916
DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32));
917
if (MEM_isLittleEndian()) {
918
seq = level == 1 ? symbol : (baseSeq + (symbol << 8));
919
return seq + (nbBits << 16) + ((U32)level << 24);
920
} else {
921
seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol);
922
return (seq << 16) + (nbBits << 8) + (U32)level;
923
}
924
}
925
926
/**
927
* Constructs a HUF_DEltX2.
928
*/
929
static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level)
930
{
931
HUF_DEltX2 DElt;
932
U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
933
DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val));
934
ZSTD_memcpy(&DElt, &val, sizeof(val));
935
return DElt;
936
}
937
938
/**
939
* Constructs 2 HUF_DEltX2s and packs them into a U64.
940
*/
941
static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level)
942
{
943
U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
944
return (U64)DElt + ((U64)DElt << 32);
945
}
946
947
/**
948
* Fills the DTable rank with all the symbols from [begin, end) that are each
949
* nbBits long.
950
*
951
* @param DTableRank The start of the rank in the DTable.
952
* @param begin The first symbol to fill (inclusive).
953
* @param end The last symbol to fill (exclusive).
954
* @param nbBits Each symbol is nbBits long.
955
* @param tableLog The table log.
956
* @param baseSeq If level == 1 { 0 } else { the first level symbol }
957
* @param level The level in the table. Must be 1 or 2.
958
*/
959
static void HUF_fillDTableX2ForWeight(
960
HUF_DEltX2* DTableRank,
961
sortedSymbol_t const* begin, sortedSymbol_t const* end,
962
U32 nbBits, U32 tableLog,
963
U16 baseSeq, int const level)
964
{
965
U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */);
966
const sortedSymbol_t* ptr;
967
assert(level >= 1 && level <= 2);
968
switch (length) {
969
case 1:
970
for (ptr = begin; ptr != end; ++ptr) {
971
HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
972
*DTableRank++ = DElt;
973
}
974
break;
975
case 2:
976
for (ptr = begin; ptr != end; ++ptr) {
977
HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
978
DTableRank[0] = DElt;
979
DTableRank[1] = DElt;
980
DTableRank += 2;
981
}
982
break;
983
case 4:
984
for (ptr = begin; ptr != end; ++ptr) {
985
U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
986
ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
987
ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
988
DTableRank += 4;
989
}
990
break;
991
case 8:
992
for (ptr = begin; ptr != end; ++ptr) {
993
U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
994
ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
995
ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
996
ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
997
ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
998
DTableRank += 8;
999
}
1000
break;
1001
default:
1002
for (ptr = begin; ptr != end; ++ptr) {
1003
U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
1004
HUF_DEltX2* const DTableRankEnd = DTableRank + length;
1005
for (; DTableRank != DTableRankEnd; DTableRank += 8) {
1006
ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
1007
ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
1008
ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
1009
ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
1010
}
1011
}
1012
break;
1013
}
1014
}
1015
1016
/* HUF_fillDTableX2Level2() :
1017
* `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
1018
static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits,
1019
const U32* rankVal, const int minWeight, const int maxWeight1,
1020
const sortedSymbol_t* sortedSymbols, U32 const* rankStart,
1021
U32 nbBitsBaseline, U16 baseSeq)
1022
{
1023
/* Fill skipped values (all positions up to rankVal[minWeight]).
1024
* These are positions only get a single symbol because the combined weight
1025
* is too large.
1026
*/
1027
if (minWeight>1) {
1028
U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */);
1029
U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1);
1030
int const skipSize = rankVal[minWeight];
1031
assert(length > 1);
1032
assert((U32)skipSize < length);
1033
switch (length) {
1034
case 2:
1035
assert(skipSize == 1);
1036
ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2));
1037
break;
1038
case 4:
1039
assert(skipSize <= 4);
1040
ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2));
1041
ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2));
1042
break;
1043
default:
1044
{
1045
int i;
1046
for (i = 0; i < skipSize; i += 8) {
1047
ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2));
1048
ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2));
1049
ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2));
1050
ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2));
1051
}
1052
}
1053
}
1054
}
1055
1056
/* Fill each of the second level symbols by weight. */
1057
{
1058
int w;
1059
for (w = minWeight; w < maxWeight1; ++w) {
1060
int const begin = rankStart[w];
1061
int const end = rankStart[w+1];
1062
U32 const nbBits = nbBitsBaseline - w;
1063
U32 const totalBits = nbBits + consumedBits;
1064
HUF_fillDTableX2ForWeight(
1065
DTable + rankVal[w],
1066
sortedSymbols + begin, sortedSymbols + end,
1067
totalBits, targetLog,
1068
baseSeq, /* level */ 2);
1069
}
1070
}
1071
}
1072
1073
static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog,
1074
const sortedSymbol_t* sortedList,
1075
const U32* rankStart, rankValCol_t* rankValOrigin, const U32 maxWeight,
1076
const U32 nbBitsBaseline)
1077
{
1078
U32* const rankVal = rankValOrigin[0];
1079
const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
1080
const U32 minBits = nbBitsBaseline - maxWeight;
1081
int w;
1082
int const wEnd = (int)maxWeight + 1;
1083
1084
/* Fill DTable in order of weight. */
1085
for (w = 1; w < wEnd; ++w) {
1086
int const begin = (int)rankStart[w];
1087
int const end = (int)rankStart[w+1];
1088
U32 const nbBits = nbBitsBaseline - w;
1089
1090
if (targetLog-nbBits >= minBits) {
1091
/* Enough room for a second symbol. */
1092
int start = rankVal[w];
1093
U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */);
1094
int minWeight = nbBits + scaleLog;
1095
int s;
1096
if (minWeight < 1) minWeight = 1;
1097
/* Fill the DTable for every symbol of weight w.
1098
* These symbols get at least 1 second symbol.
1099
*/
1100
for (s = begin; s != end; ++s) {
1101
HUF_fillDTableX2Level2(
1102
DTable + start, targetLog, nbBits,
1103
rankValOrigin[nbBits], minWeight, wEnd,
1104
sortedList, rankStart,
1105
nbBitsBaseline, sortedList[s].symbol);
1106
start += length;
1107
}
1108
} else {
1109
/* Only a single symbol. */
1110
HUF_fillDTableX2ForWeight(
1111
DTable + rankVal[w],
1112
sortedList + begin, sortedList + end,
1113
nbBits, targetLog,
1114
/* baseSeq */ 0, /* level */ 1);
1115
}
1116
}
1117
}
1118
1119
typedef struct {
1120
rankValCol_t rankVal[HUF_TABLELOG_MAX];
1121
U32 rankStats[HUF_TABLELOG_MAX + 1];
1122
U32 rankStart0[HUF_TABLELOG_MAX + 3];
1123
sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
1124
BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
1125
U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
1126
} HUF_ReadDTableX2_Workspace;
1127
1128
size_t HUF_readDTableX2_wksp(HUF_DTable* DTable,
1129
const void* src, size_t srcSize,
1130
void* workSpace, size_t wkspSize, int flags)
1131
{
1132
U32 tableLog, maxW, nbSymbols;
1133
DTableDesc dtd = HUF_getDTableDesc(DTable);
1134
U32 maxTableLog = dtd.maxTableLog;
1135
size_t iSize;
1136
void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */
1137
HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
1138
U32 *rankStart;
1139
1140
HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace;
1141
1142
if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC);
1143
1144
rankStart = wksp->rankStart0 + 1;
1145
ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats));
1146
ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0));
1147
1148
DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */
1149
if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
1150
/* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */
1151
1152
iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), flags);
1153
if (HUF_isError(iSize)) return iSize;
1154
1155
/* check result */
1156
if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
1157
if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG;
1158
1159
/* find maxWeight */
1160
for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
1161
1162
/* Get start index of each weight */
1163
{ U32 w, nextRankStart = 0;
1164
for (w=1; w<maxW+1; w++) {
1165
U32 curr = nextRankStart;
1166
nextRankStart += wksp->rankStats[w];
1167
rankStart[w] = curr;
1168
}
1169
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
1170
rankStart[maxW+1] = nextRankStart;
1171
}
1172
1173
/* sort symbols by weight */
1174
{ U32 s;
1175
for (s=0; s<nbSymbols; s++) {
1176
U32 const w = wksp->weightList[s];
1177
U32 const r = rankStart[w]++;
1178
wksp->sortedSymbol[r].symbol = (BYTE)s;
1179
}
1180
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
1181
}
1182
1183
/* Build rankVal */
1184
{ U32* const rankVal0 = wksp->rankVal[0];
1185
{ int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */
1186
U32 nextRankVal = 0;
1187
U32 w;
1188
for (w=1; w<maxW+1; w++) {
1189
U32 curr = nextRankVal;
1190
nextRankVal += wksp->rankStats[w] << (w+rescale);
1191
rankVal0[w] = curr;
1192
} }
1193
{ U32 const minBits = tableLog+1 - maxW;
1194
U32 consumed;
1195
for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
1196
U32* const rankValPtr = wksp->rankVal[consumed];
1197
U32 w;
1198
for (w = 1; w < maxW+1; w++) {
1199
rankValPtr[w] = rankVal0[w] >> consumed;
1200
} } } }
1201
1202
HUF_fillDTableX2(dt, maxTableLog,
1203
wksp->sortedSymbol,
1204
wksp->rankStart0, wksp->rankVal, maxW,
1205
tableLog+1);
1206
1207
dtd.tableLog = (BYTE)maxTableLog;
1208
dtd.tableType = 1;
1209
ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
1210
return iSize;
1211
}
1212
1213
1214
FORCE_INLINE_TEMPLATE U32
1215
HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
1216
{
1217
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
1218
ZSTD_memcpy(op, &dt[val].sequence, 2);
1219
BIT_skipBits(DStream, dt[val].nbBits);
1220
return dt[val].length;
1221
}
1222
1223
FORCE_INLINE_TEMPLATE U32
1224
HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
1225
{
1226
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
1227
ZSTD_memcpy(op, &dt[val].sequence, 1);
1228
if (dt[val].length==1) {
1229
BIT_skipBits(DStream, dt[val].nbBits);
1230
} else {
1231
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
1232
BIT_skipBits(DStream, dt[val].nbBits);
1233
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
1234
/* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
1235
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
1236
}
1237
}
1238
return 1;
1239
}
1240
1241
#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
1242
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
1243
1244
#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
1245
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
1246
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
1247
1248
#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
1249
if (MEM_64bits()) \
1250
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
1251
1252
HINT_INLINE size_t
1253
HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd,
1254
const HUF_DEltX2* const dt, const U32 dtLog)
1255
{
1256
BYTE* const pStart = p;
1257
1258
/* up to 8 symbols at a time */
1259
if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) {
1260
if (dtLog <= 11 && MEM_64bits()) {
1261
/* up to 10 symbols at a time */
1262
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) {
1263
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1264
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1265
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1266
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1267
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1268
}
1269
} else {
1270
/* up to 8 symbols at a time */
1271
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
1272
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
1273
HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
1274
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
1275
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1276
}
1277
}
1278
} else {
1279
BIT_reloadDStream(bitDPtr);
1280
}
1281
1282
/* closer to end : up to 2 symbols at a time */
1283
if ((size_t)(pEnd - p) >= 2) {
1284
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
1285
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1286
1287
while (p <= pEnd-2)
1288
HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
1289
}
1290
1291
if (p < pEnd)
1292
p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog);
1293
1294
return p-pStart;
1295
}
1296
1297
FORCE_INLINE_TEMPLATE size_t
1298
HUF_decompress1X2_usingDTable_internal_body(
1299
void* dst, size_t dstSize,
1300
const void* cSrc, size_t cSrcSize,
1301
const HUF_DTable* DTable)
1302
{
1303
BIT_DStream_t bitD;
1304
1305
/* Init */
1306
CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
1307
1308
/* decode */
1309
{ BYTE* const ostart = (BYTE*) dst;
1310
BYTE* const oend = ostart + dstSize;
1311
const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
1312
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
1313
DTableDesc const dtd = HUF_getDTableDesc(DTable);
1314
HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog);
1315
}
1316
1317
/* check */
1318
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
1319
1320
/* decoded size */
1321
return dstSize;
1322
}
1323
1324
/* HUF_decompress4X2_usingDTable_internal_body():
1325
* Conditions:
1326
* @dstSize >= 6
1327
*/
1328
FORCE_INLINE_TEMPLATE size_t
1329
HUF_decompress4X2_usingDTable_internal_body(
1330
void* dst, size_t dstSize,
1331
const void* cSrc, size_t cSrcSize,
1332
const HUF_DTable* DTable)
1333
{
1334
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
1335
1336
{ const BYTE* const istart = (const BYTE*) cSrc;
1337
BYTE* const ostart = (BYTE*) dst;
1338
BYTE* const oend = ostart + dstSize;
1339
BYTE* const olimit = oend - (sizeof(size_t)-1);
1340
const void* const dtPtr = DTable+1;
1341
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
1342
1343
/* Init */
1344
BIT_DStream_t bitD1;
1345
BIT_DStream_t bitD2;
1346
BIT_DStream_t bitD3;
1347
BIT_DStream_t bitD4;
1348
size_t const length1 = MEM_readLE16(istart);
1349
size_t const length2 = MEM_readLE16(istart+2);
1350
size_t const length3 = MEM_readLE16(istart+4);
1351
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
1352
const BYTE* const istart1 = istart + 6; /* jumpTable */
1353
const BYTE* const istart2 = istart1 + length1;
1354
const BYTE* const istart3 = istart2 + length2;
1355
const BYTE* const istart4 = istart3 + length3;
1356
size_t const segmentSize = (dstSize+3) / 4;
1357
BYTE* const opStart2 = ostart + segmentSize;
1358
BYTE* const opStart3 = opStart2 + segmentSize;
1359
BYTE* const opStart4 = opStart3 + segmentSize;
1360
BYTE* op1 = ostart;
1361
BYTE* op2 = opStart2;
1362
BYTE* op3 = opStart3;
1363
BYTE* op4 = opStart4;
1364
U32 endSignal = 1;
1365
DTableDesc const dtd = HUF_getDTableDesc(DTable);
1366
U32 const dtLog = dtd.tableLog;
1367
1368
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
1369
if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
1370
if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */
1371
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
1372
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
1373
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
1374
CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
1375
1376
/* 16-32 symbols per loop (4-8 symbols per stream) */
1377
if ((size_t)(oend - op4) >= sizeof(size_t)) {
1378
for ( ; (endSignal) & (op4 < olimit); ) {
1379
#if defined(__clang__) && (defined(__x86_64__) || defined(__i386__))
1380
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1381
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
1382
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1383
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
1384
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1385
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
1386
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1387
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
1388
endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
1389
endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
1390
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1391
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
1392
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1393
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
1394
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1395
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
1396
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1397
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
1398
endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
1399
endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
1400
#else
1401
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1402
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1403
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1404
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1405
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
1406
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
1407
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
1408
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
1409
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1410
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1411
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1412
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1413
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
1414
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
1415
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
1416
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
1417
endSignal = (U32)LIKELY((U32)
1418
(BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished)
1419
& (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished)
1420
& (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished)
1421
& (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished));
1422
#endif
1423
}
1424
}
1425
1426
/* check corruption */
1427
if (op1 > opStart2) return ERROR(corruption_detected);
1428
if (op2 > opStart3) return ERROR(corruption_detected);
1429
if (op3 > opStart4) return ERROR(corruption_detected);
1430
/* note : op4 already verified within main loop */
1431
1432
/* finish bitStreams one by one */
1433
HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
1434
HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
1435
HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
1436
HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
1437
1438
/* check */
1439
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
1440
if (!endCheck) return ERROR(corruption_detected); }
1441
1442
/* decoded size */
1443
return dstSize;
1444
}
1445
}
1446
1447
#if HUF_NEED_BMI2_FUNCTION
1448
static BMI2_TARGET_ATTRIBUTE
1449
size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
1450
size_t cSrcSize, HUF_DTable const* DTable) {
1451
return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
1452
}
1453
#endif
1454
1455
static
1456
size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
1457
size_t cSrcSize, HUF_DTable const* DTable) {
1458
return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
1459
}
1460
1461
#if ZSTD_ENABLE_ASM_X86_64_BMI2
1462
1463
HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN;
1464
1465
#endif
1466
1467
static HUF_FAST_BMI2_ATTRS
1468
void HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args)
1469
{
1470
U64 bits[4];
1471
BYTE const* ip[4];
1472
BYTE* op[4];
1473
BYTE* oend[4];
1474
HUF_DEltX2 const* const dtable = (HUF_DEltX2 const*)args->dt;
1475
BYTE const* const ilimit = args->ilimit;
1476
1477
/* Copy the arguments to local registers. */
1478
ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
1479
ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip));
1480
ZSTD_memcpy(&op, &args->op, sizeof(op));
1481
1482
oend[0] = op[1];
1483
oend[1] = op[2];
1484
oend[2] = op[3];
1485
oend[3] = args->oend;
1486
1487
assert(MEM_isLittleEndian());
1488
assert(!MEM_32bits());
1489
1490
for (;;) {
1491
BYTE* olimit;
1492
int stream;
1493
int symbol;
1494
1495
/* Assert loop preconditions */
1496
#ifndef NDEBUG
1497
for (stream = 0; stream < 4; ++stream) {
1498
assert(op[stream] <= oend[stream]);
1499
assert(ip[stream] >= ilimit);
1500
}
1501
#endif
1502
/* Compute olimit */
1503
{
1504
/* Each loop does 5 table lookups for each of the 4 streams.
1505
* Each table lookup consumes up to 11 bits of input, and produces
1506
* up to 2 bytes of output.
1507
*/
1508
/* We can consume up to 7 bytes of input per iteration per stream.
1509
* We also know that each input pointer is >= ip[0]. So we can run
1510
* iters loops before running out of input.
1511
*/
1512
size_t iters = (size_t)(ip[0] - ilimit) / 7;
1513
/* Each iteration can produce up to 10 bytes of output per stream.
1514
* Each output stream my advance at different rates. So take the
1515
* minimum number of safe iterations among all the output streams.
1516
*/
1517
for (stream = 0; stream < 4; ++stream) {
1518
size_t const oiters = (size_t)(oend[stream] - op[stream]) / 10;
1519
iters = MIN(iters, oiters);
1520
}
1521
1522
/* Each iteration produces at least 5 output symbols. So until
1523
* op[3] crosses olimit, we know we haven't executed iters
1524
* iterations yet. This saves us maintaining an iters counter,
1525
* at the expense of computing the remaining # of iterations
1526
* more frequently.
1527
*/
1528
olimit = op[3] + (iters * 5);
1529
1530
/* Exit the fast decoding loop if we are too close to the end. */
1531
if (op[3] + 10 > olimit)
1532
break;
1533
1534
/* Exit the decoding loop if any input pointer has crossed the
1535
* previous one. This indicates corruption, and a precondition
1536
* to our loop is that ip[i] >= ip[0].
1537
*/
1538
for (stream = 1; stream < 4; ++stream) {
1539
if (ip[stream] < ip[stream - 1])
1540
goto _out;
1541
}
1542
}
1543
1544
#ifndef NDEBUG
1545
for (stream = 1; stream < 4; ++stream) {
1546
assert(ip[stream] >= ip[stream - 1]);
1547
}
1548
#endif
1549
1550
do {
1551
/* Do 5 table lookups for each of the first 3 streams */
1552
for (symbol = 0; symbol < 5; ++symbol) {
1553
for (stream = 0; stream < 3; ++stream) {
1554
int const index = (int)(bits[stream] >> 53);
1555
HUF_DEltX2 const entry = dtable[index];
1556
MEM_write16(op[stream], entry.sequence);
1557
bits[stream] <<= (entry.nbBits);
1558
op[stream] += (entry.length);
1559
}
1560
}
1561
/* Do 1 table lookup from the final stream */
1562
{
1563
int const index = (int)(bits[3] >> 53);
1564
HUF_DEltX2 const entry = dtable[index];
1565
MEM_write16(op[3], entry.sequence);
1566
bits[3] <<= (entry.nbBits);
1567
op[3] += (entry.length);
1568
}
1569
/* Do 4 table lookups from the final stream & reload bitstreams */
1570
for (stream = 0; stream < 4; ++stream) {
1571
/* Do a table lookup from the final stream.
1572
* This is interleaved with the reloading to reduce register
1573
* pressure. This shouldn't be necessary, but compilers can
1574
* struggle with codegen with high register pressure.
1575
*/
1576
{
1577
int const index = (int)(bits[3] >> 53);
1578
HUF_DEltX2 const entry = dtable[index];
1579
MEM_write16(op[3], entry.sequence);
1580
bits[3] <<= (entry.nbBits);
1581
op[3] += (entry.length);
1582
}
1583
/* Reload the bistreams. The final bitstream must be reloaded
1584
* after the 5th symbol was decoded.
1585
*/
1586
{
1587
int const ctz = ZSTD_countTrailingZeros64(bits[stream]);
1588
int const nbBits = ctz & 7;
1589
int const nbBytes = ctz >> 3;
1590
ip[stream] -= nbBytes;
1591
bits[stream] = MEM_read64(ip[stream]) | 1;
1592
bits[stream] <<= nbBits;
1593
}
1594
}
1595
} while (op[3] < olimit);
1596
}
1597
1598
_out:
1599
1600
/* Save the final values of each of the state variables back to args. */
1601
ZSTD_memcpy(&args->bits, &bits, sizeof(bits));
1602
ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip));
1603
ZSTD_memcpy(&args->op, &op, sizeof(op));
1604
}
1605
1606
1607
static HUF_FAST_BMI2_ATTRS size_t
1608
HUF_decompress4X2_usingDTable_internal_fast(
1609
void* dst, size_t dstSize,
1610
const void* cSrc, size_t cSrcSize,
1611
const HUF_DTable* DTable,
1612
HUF_DecompressFastLoopFn loopFn) {
1613
void const* dt = DTable + 1;
1614
const BYTE* const iend = (const BYTE*)cSrc + 6;
1615
BYTE* const oend = (BYTE*)dst + dstSize;
1616
HUF_DecompressFastArgs args;
1617
{
1618
size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
1619
FORWARD_IF_ERROR(ret, "Failed to init asm args");
1620
if (ret == 0)
1621
return 0;
1622
}
1623
1624
assert(args.ip[0] >= args.ilimit);
1625
loopFn(&args);
1626
1627
/* note : op4 already verified within main loop */
1628
assert(args.ip[0] >= iend);
1629
assert(args.ip[1] >= iend);
1630
assert(args.ip[2] >= iend);
1631
assert(args.ip[3] >= iend);
1632
assert(args.op[3] <= oend);
1633
(void)iend;
1634
1635
/* finish bitStreams one by one */
1636
{
1637
size_t const segmentSize = (dstSize+3) / 4;
1638
BYTE* segmentEnd = (BYTE*)dst;
1639
int i;
1640
for (i = 0; i < 4; ++i) {
1641
BIT_DStream_t bit;
1642
if (segmentSize <= (size_t)(oend - segmentEnd))
1643
segmentEnd += segmentSize;
1644
else
1645
segmentEnd = oend;
1646
FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
1647
args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG);
1648
if (args.op[i] != segmentEnd)
1649
return ERROR(corruption_detected);
1650
}
1651
}
1652
1653
/* decoded size */
1654
return dstSize;
1655
}
1656
1657
static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
1658
size_t cSrcSize, HUF_DTable const* DTable, int flags)
1659
{
1660
HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X2_usingDTable_internal_default;
1661
HUF_DecompressFastLoopFn loopFn = HUF_decompress4X2_usingDTable_internal_fast_c_loop;
1662
1663
#if DYNAMIC_BMI2
1664
if (flags & HUF_flags_bmi2) {
1665
fallbackFn = HUF_decompress4X2_usingDTable_internal_bmi2;
1666
# if ZSTD_ENABLE_ASM_X86_64_BMI2
1667
if (!(flags & HUF_flags_disableAsm)) {
1668
loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop;
1669
}
1670
# endif
1671
} else {
1672
return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
1673
}
1674
#endif
1675
1676
#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
1677
if (!(flags & HUF_flags_disableAsm)) {
1678
loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop;
1679
}
1680
#endif
1681
1682
if (!(flags & HUF_flags_disableFast)) {
1683
size_t const ret = HUF_decompress4X2_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
1684
if (ret != 0)
1685
return ret;
1686
}
1687
return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
1688
}
1689
1690
HUF_DGEN(HUF_decompress1X2_usingDTable_internal)
1691
1692
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
1693
const void* cSrc, size_t cSrcSize,
1694
void* workSpace, size_t wkspSize, int flags)
1695
{
1696
const BYTE* ip = (const BYTE*) cSrc;
1697
1698
size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize,
1699
workSpace, wkspSize, flags);
1700
if (HUF_isError(hSize)) return hSize;
1701
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
1702
ip += hSize; cSrcSize -= hSize;
1703
1704
return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, flags);
1705
}
1706
1707
static size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
1708
const void* cSrc, size_t cSrcSize,
1709
void* workSpace, size_t wkspSize, int flags)
1710
{
1711
const BYTE* ip = (const BYTE*) cSrc;
1712
1713
size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize,
1714
workSpace, wkspSize, flags);
1715
if (HUF_isError(hSize)) return hSize;
1716
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
1717
ip += hSize; cSrcSize -= hSize;
1718
1719
return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
1720
}
1721
1722
#endif /* HUF_FORCE_DECOMPRESS_X1 */
1723
1724
1725
/* ***********************************/
1726
/* Universal decompression selectors */
1727
/* ***********************************/
1728
1729
1730
#if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
1731
typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
1732
static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] =
1733
{
1734
/* single, double, quad */
1735
{{0,0}, {1,1}}, /* Q==0 : impossible */
1736
{{0,0}, {1,1}}, /* Q==1 : impossible */
1737
{{ 150,216}, { 381,119}}, /* Q == 2 : 12-18% */
1738
{{ 170,205}, { 514,112}}, /* Q == 3 : 18-25% */
1739
{{ 177,199}, { 539,110}}, /* Q == 4 : 25-32% */
1740
{{ 197,194}, { 644,107}}, /* Q == 5 : 32-38% */
1741
{{ 221,192}, { 735,107}}, /* Q == 6 : 38-44% */
1742
{{ 256,189}, { 881,106}}, /* Q == 7 : 44-50% */
1743
{{ 359,188}, {1167,109}}, /* Q == 8 : 50-56% */
1744
{{ 582,187}, {1570,114}}, /* Q == 9 : 56-62% */
1745
{{ 688,187}, {1712,122}}, /* Q ==10 : 62-69% */
1746
{{ 825,186}, {1965,136}}, /* Q ==11 : 69-75% */
1747
{{ 976,185}, {2131,150}}, /* Q ==12 : 75-81% */
1748
{{1180,186}, {2070,175}}, /* Q ==13 : 81-87% */
1749
{{1377,185}, {1731,202}}, /* Q ==14 : 87-93% */
1750
{{1412,185}, {1695,202}}, /* Q ==15 : 93-99% */
1751
};
1752
#endif
1753
1754
/** HUF_selectDecoder() :
1755
* Tells which decoder is likely to decode faster,
1756
* based on a set of pre-computed metrics.
1757
* @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
1758
* Assumption : 0 < dstSize <= 128 KB */
1759
U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
1760
{
1761
assert(dstSize > 0);
1762
assert(dstSize <= 128*1024);
1763
#if defined(HUF_FORCE_DECOMPRESS_X1)
1764
(void)dstSize;
1765
(void)cSrcSize;
1766
return 0;
1767
#elif defined(HUF_FORCE_DECOMPRESS_X2)
1768
(void)dstSize;
1769
(void)cSrcSize;
1770
return 1;
1771
#else
1772
/* decoder timing evaluation */
1773
{ U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */
1774
U32 const D256 = (U32)(dstSize >> 8);
1775
U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
1776
U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
1777
DTime1 += DTime1 >> 5; /* small advantage to algorithm using less memory, to reduce cache eviction */
1778
return DTime1 < DTime0;
1779
}
1780
#endif
1781
}
1782
1783
size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
1784
const void* cSrc, size_t cSrcSize,
1785
void* workSpace, size_t wkspSize, int flags)
1786
{
1787
/* validation checks */
1788
if (dstSize == 0) return ERROR(dstSize_tooSmall);
1789
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
1790
if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
1791
if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
1792
1793
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
1794
#if defined(HUF_FORCE_DECOMPRESS_X1)
1795
(void)algoNb;
1796
assert(algoNb == 0);
1797
return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
1798
cSrcSize, workSpace, wkspSize, flags);
1799
#elif defined(HUF_FORCE_DECOMPRESS_X2)
1800
(void)algoNb;
1801
assert(algoNb == 1);
1802
return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
1803
cSrcSize, workSpace, wkspSize, flags);
1804
#else
1805
return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
1806
cSrcSize, workSpace, wkspSize, flags):
1807
HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
1808
cSrcSize, workSpace, wkspSize, flags);
1809
#endif
1810
}
1811
}
1812
1813
1814
size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags)
1815
{
1816
DTableDesc const dtd = HUF_getDTableDesc(DTable);
1817
#if defined(HUF_FORCE_DECOMPRESS_X1)
1818
(void)dtd;
1819
assert(dtd.tableType == 0);
1820
return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1821
#elif defined(HUF_FORCE_DECOMPRESS_X2)
1822
(void)dtd;
1823
assert(dtd.tableType == 1);
1824
return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1825
#else
1826
return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) :
1827
HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1828
#endif
1829
}
1830
1831
#ifndef HUF_FORCE_DECOMPRESS_X2
1832
size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags)
1833
{
1834
const BYTE* ip = (const BYTE*) cSrc;
1835
1836
size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags);
1837
if (HUF_isError(hSize)) return hSize;
1838
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
1839
ip += hSize; cSrcSize -= hSize;
1840
1841
return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
1842
}
1843
#endif
1844
1845
size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags)
1846
{
1847
DTableDesc const dtd = HUF_getDTableDesc(DTable);
1848
#if defined(HUF_FORCE_DECOMPRESS_X1)
1849
(void)dtd;
1850
assert(dtd.tableType == 0);
1851
return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1852
#elif defined(HUF_FORCE_DECOMPRESS_X2)
1853
(void)dtd;
1854
assert(dtd.tableType == 1);
1855
return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1856
#else
1857
return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) :
1858
HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1859
#endif
1860
}
1861
1862
size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags)
1863
{
1864
/* validation checks */
1865
if (dstSize == 0) return ERROR(dstSize_tooSmall);
1866
if (cSrcSize == 0) return ERROR(corruption_detected);
1867
1868
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
1869
#if defined(HUF_FORCE_DECOMPRESS_X1)
1870
(void)algoNb;
1871
assert(algoNb == 0);
1872
return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
1873
#elif defined(HUF_FORCE_DECOMPRESS_X2)
1874
(void)algoNb;
1875
assert(algoNb == 1);
1876
return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
1877
#else
1878
return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags) :
1879
HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
1880
#endif
1881
}
1882
}
1883
1884