Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmzstd/lib/decompress/huf_decompress.c
5040 views
1
/* ******************************************************************
2
* huff0 huffman decoder,
3
* part of Finite State Entropy library
4
* Copyright (c) Meta Platforms, Inc. and affiliates.
5
*
6
* You can contact the author at :
7
* - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
8
*
9
* This source code is licensed under both the BSD-style license (found in the
10
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
11
* in the COPYING file in the root directory of this source tree).
12
* You may select, at your option, one of the above-listed licenses.
13
****************************************************************** */
14
15
/* **************************************************************
16
* Dependencies
17
****************************************************************/
18
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
19
#include "../common/compiler.h"
20
#include "../common/bitstream.h" /* BIT_* */
21
#include "../common/fse.h" /* to compress headers */
22
#include "../common/huf.h"
23
#include "../common/error_private.h"
24
#include "../common/zstd_internal.h"
25
#include "../common/bits.h" /* ZSTD_highbit32, ZSTD_countTrailingZeros64 */
26
27
/* **************************************************************
28
* Constants
29
****************************************************************/
30
31
#define HUF_DECODER_FAST_TABLELOG 11
32
33
/* **************************************************************
34
* Macros
35
****************************************************************/
36
37
#ifdef HUF_DISABLE_FAST_DECODE
38
# define HUF_ENABLE_FAST_DECODE 0
39
#else
40
# define HUF_ENABLE_FAST_DECODE 1
41
#endif
42
43
/* These two optional macros force the use one way or another of the two
44
* Huffman decompression implementations. You can't force in both directions
45
* at the same time.
46
*/
47
#if defined(HUF_FORCE_DECOMPRESS_X1) && \
48
defined(HUF_FORCE_DECOMPRESS_X2)
49
#error "Cannot force the use of the X1 and X2 decoders at the same time!"
50
#endif
51
52
/* When DYNAMIC_BMI2 is enabled, fast decoders are only called when bmi2 is
53
* supported at runtime, so we can add the BMI2 target attribute.
54
* When it is disabled, we will still get BMI2 if it is enabled statically.
55
*/
56
#if DYNAMIC_BMI2
57
# define HUF_FAST_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE
58
#else
59
# define HUF_FAST_BMI2_ATTRS
60
#endif
61
62
#ifdef __cplusplus
63
# define HUF_EXTERN_C extern "C"
64
#else
65
# define HUF_EXTERN_C
66
#endif
67
#define HUF_ASM_DECL HUF_EXTERN_C
68
69
#if DYNAMIC_BMI2
70
# define HUF_NEED_BMI2_FUNCTION 1
71
#else
72
# define HUF_NEED_BMI2_FUNCTION 0
73
#endif
74
75
/* **************************************************************
76
* Error Management
77
****************************************************************/
78
#define HUF_isError ERR_isError
79
80
81
/* **************************************************************
82
* Byte alignment for workSpace management
83
****************************************************************/
84
#define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1)
85
#define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
86
87
88
/* **************************************************************
89
* BMI2 Variant Wrappers
90
****************************************************************/
91
typedef size_t (*HUF_DecompressUsingDTableFn)(void *dst, size_t dstSize,
92
const void *cSrc,
93
size_t cSrcSize,
94
const HUF_DTable *DTable);
95
96
#if DYNAMIC_BMI2
97
98
#define HUF_DGEN(fn) \
99
\
100
static size_t fn##_default( \
101
void* dst, size_t dstSize, \
102
const void* cSrc, size_t cSrcSize, \
103
const HUF_DTable* DTable) \
104
{ \
105
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
106
} \
107
\
108
static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2( \
109
void* dst, size_t dstSize, \
110
const void* cSrc, size_t cSrcSize, \
111
const HUF_DTable* DTable) \
112
{ \
113
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
114
} \
115
\
116
static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
117
size_t cSrcSize, HUF_DTable const* DTable, int flags) \
118
{ \
119
if (flags & HUF_flags_bmi2) { \
120
return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \
121
} \
122
return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \
123
}
124
125
#else
126
127
#define HUF_DGEN(fn) \
128
static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
129
size_t cSrcSize, HUF_DTable const* DTable, int flags) \
130
{ \
131
(void)flags; \
132
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
133
}
134
135
#endif
136
137
138
/*-***************************/
139
/* generic DTableDesc */
140
/*-***************************/
141
typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
142
143
static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
144
{
145
DTableDesc dtd;
146
ZSTD_memcpy(&dtd, table, sizeof(dtd));
147
return dtd;
148
}
149
150
static size_t HUF_initFastDStream(BYTE const* ip) {
151
BYTE const lastByte = ip[7];
152
size_t const bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0;
153
size_t const value = MEM_readLEST(ip) | 1;
154
assert(bitsConsumed <= 8);
155
assert(sizeof(size_t) == 8);
156
return value << bitsConsumed;
157
}
158
159
160
/**
161
* The input/output arguments to the Huffman fast decoding loop:
162
*
163
* ip [in/out] - The input pointers, must be updated to reflect what is consumed.
164
* op [in/out] - The output pointers, must be updated to reflect what is written.
165
* bits [in/out] - The bitstream containers, must be updated to reflect the current state.
166
* dt [in] - The decoding table.
167
* ilowest [in] - The beginning of the valid range of the input. Decoders may read
168
* down to this pointer. It may be below iend[0].
169
* oend [in] - The end of the output stream. op[3] must not cross oend.
170
* iend [in] - The end of each input stream. ip[i] may cross iend[i],
171
* as long as it is above ilowest, but that indicates corruption.
172
*/
173
typedef struct {
174
BYTE const* ip[4];
175
BYTE* op[4];
176
U64 bits[4];
177
void const* dt;
178
BYTE const* ilowest;
179
BYTE* oend;
180
BYTE const* iend[4];
181
} HUF_DecompressFastArgs;
182
183
typedef void (*HUF_DecompressFastLoopFn)(HUF_DecompressFastArgs*);
184
185
/**
186
* Initializes args for the fast decoding loop.
187
* @returns 1 on success
188
* 0 if the fallback implementation should be used.
189
* Or an error code on failure.
190
*/
191
static size_t HUF_DecompressFastArgs_init(HUF_DecompressFastArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable)
192
{
193
void const* dt = DTable + 1;
194
U32 const dtLog = HUF_getDTableDesc(DTable).tableLog;
195
196
const BYTE* const istart = (const BYTE*)src;
197
198
BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize);
199
200
/* The fast decoding loop assumes 64-bit little-endian.
201
* This condition is false on x32.
202
*/
203
if (!MEM_isLittleEndian() || MEM_32bits())
204
return 0;
205
206
/* Avoid nullptr addition */
207
if (dstSize == 0)
208
return 0;
209
assert(dst != NULL);
210
211
/* strict minimum : jump table + 1 byte per stream */
212
if (srcSize < 10)
213
return ERROR(corruption_detected);
214
215
/* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers.
216
* If table log is not correct at this point, fallback to the old decoder.
217
* On small inputs we don't have enough data to trigger the fast loop, so use the old decoder.
218
*/
219
if (dtLog != HUF_DECODER_FAST_TABLELOG)
220
return 0;
221
222
/* Read the jump table. */
223
{
224
size_t const length1 = MEM_readLE16(istart);
225
size_t const length2 = MEM_readLE16(istart+2);
226
size_t const length3 = MEM_readLE16(istart+4);
227
size_t const length4 = srcSize - (length1 + length2 + length3 + 6);
228
args->iend[0] = istart + 6; /* jumpTable */
229
args->iend[1] = args->iend[0] + length1;
230
args->iend[2] = args->iend[1] + length2;
231
args->iend[3] = args->iend[2] + length3;
232
233
/* HUF_initFastDStream() requires this, and this small of an input
234
* won't benefit from the ASM loop anyways.
235
*/
236
if (length1 < 8 || length2 < 8 || length3 < 8 || length4 < 8)
237
return 0;
238
if (length4 > srcSize) return ERROR(corruption_detected); /* overflow */
239
}
240
/* ip[] contains the position that is currently loaded into bits[]. */
241
args->ip[0] = args->iend[1] - sizeof(U64);
242
args->ip[1] = args->iend[2] - sizeof(U64);
243
args->ip[2] = args->iend[3] - sizeof(U64);
244
args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64);
245
246
/* op[] contains the output pointers. */
247
args->op[0] = (BYTE*)dst;
248
args->op[1] = args->op[0] + (dstSize+3)/4;
249
args->op[2] = args->op[1] + (dstSize+3)/4;
250
args->op[3] = args->op[2] + (dstSize+3)/4;
251
252
/* No point to call the ASM loop for tiny outputs. */
253
if (args->op[3] >= oend)
254
return 0;
255
256
/* bits[] is the bit container.
257
* It is read from the MSB down to the LSB.
258
* It is shifted left as it is read, and zeros are
259
* shifted in. After the lowest valid bit a 1 is
260
* set, so that CountTrailingZeros(bits[]) can be used
261
* to count how many bits we've consumed.
262
*/
263
args->bits[0] = HUF_initFastDStream(args->ip[0]);
264
args->bits[1] = HUF_initFastDStream(args->ip[1]);
265
args->bits[2] = HUF_initFastDStream(args->ip[2]);
266
args->bits[3] = HUF_initFastDStream(args->ip[3]);
267
268
/* The decoders must be sure to never read beyond ilowest.
269
* This is lower than iend[0], but allowing decoders to read
270
* down to ilowest can allow an extra iteration or two in the
271
* fast loop.
272
*/
273
args->ilowest = istart;
274
275
args->oend = oend;
276
args->dt = dt;
277
278
return 1;
279
}
280
281
static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressFastArgs const* args, int stream, BYTE* segmentEnd)
282
{
283
/* Validate that we haven't overwritten. */
284
if (args->op[stream] > segmentEnd)
285
return ERROR(corruption_detected);
286
/* Validate that we haven't read beyond iend[].
287
* Note that ip[] may be < iend[] because the MSB is
288
* the next bit to read, and we may have consumed 100%
289
* of the stream, so down to iend[i] - 8 is valid.
290
*/
291
if (args->ip[stream] < args->iend[stream] - 8)
292
return ERROR(corruption_detected);
293
294
/* Construct the BIT_DStream_t. */
295
assert(sizeof(size_t) == 8);
296
bit->bitContainer = MEM_readLEST(args->ip[stream]);
297
bit->bitsConsumed = ZSTD_countTrailingZeros64(args->bits[stream]);
298
bit->start = (const char*)args->ilowest;
299
bit->limitPtr = bit->start + sizeof(size_t);
300
bit->ptr = (const char*)args->ip[stream];
301
302
return 0;
303
}
304
305
/* Calls X(N) for each stream 0, 1, 2, 3. */
306
#define HUF_4X_FOR_EACH_STREAM(X) \
307
do { \
308
X(0); \
309
X(1); \
310
X(2); \
311
X(3); \
312
} while (0)
313
314
/* Calls X(N, var) for each stream 0, 1, 2, 3. */
315
#define HUF_4X_FOR_EACH_STREAM_WITH_VAR(X, var) \
316
do { \
317
X(0, (var)); \
318
X(1, (var)); \
319
X(2, (var)); \
320
X(3, (var)); \
321
} while (0)
322
323
324
#ifndef HUF_FORCE_DECOMPRESS_X2
325
326
/*-***************************/
327
/* single-symbol decoding */
328
/*-***************************/
329
typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1; /* single-symbol decoding */
330
331
/**
332
* Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at
333
* a time.
334
*/
335
static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) {
336
U64 D4;
337
if (MEM_isLittleEndian()) {
338
D4 = (U64)((symbol << 8) + nbBits);
339
} else {
340
D4 = (U64)(symbol + (nbBits << 8));
341
}
342
assert(D4 < (1U << 16));
343
D4 *= 0x0001000100010001ULL;
344
return D4;
345
}
346
347
/**
348
* Increase the tableLog to targetTableLog and rescales the stats.
349
* If tableLog > targetTableLog this is a no-op.
350
* @returns New tableLog
351
*/
352
static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog)
353
{
354
if (tableLog > targetTableLog)
355
return tableLog;
356
if (tableLog < targetTableLog) {
357
U32 const scale = targetTableLog - tableLog;
358
U32 s;
359
/* Increase the weight for all non-zero probability symbols by scale. */
360
for (s = 0; s < nbSymbols; ++s) {
361
huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale);
362
}
363
/* Update rankVal to reflect the new weights.
364
* All weights except 0 get moved to weight + scale.
365
* Weights [1, scale] are empty.
366
*/
367
for (s = targetTableLog; s > scale; --s) {
368
rankVal[s] = rankVal[s - scale];
369
}
370
for (s = scale; s > 0; --s) {
371
rankVal[s] = 0;
372
}
373
}
374
return targetTableLog;
375
}
376
377
typedef struct {
378
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
379
U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1];
380
U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
381
BYTE symbols[HUF_SYMBOLVALUE_MAX + 1];
382
BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
383
} HUF_ReadDTableX1_Workspace;
384
385
size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags)
386
{
387
U32 tableLog = 0;
388
U32 nbSymbols = 0;
389
size_t iSize;
390
void* const dtPtr = DTable + 1;
391
HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr;
392
HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace;
393
394
DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp));
395
if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge);
396
397
DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
398
/* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
399
400
iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), flags);
401
if (HUF_isError(iSize)) return iSize;
402
403
404
/* Table header */
405
{ DTableDesc dtd = HUF_getDTableDesc(DTable);
406
U32 const maxTableLog = dtd.maxTableLog + 1;
407
U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG);
408
tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog);
409
if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */
410
dtd.tableType = 0;
411
dtd.tableLog = (BYTE)tableLog;
412
ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
413
}
414
415
/* Compute symbols and rankStart given rankVal:
416
*
417
* rankVal already contains the number of values of each weight.
418
*
419
* symbols contains the symbols ordered by weight. First are the rankVal[0]
420
* weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on.
421
* symbols[0] is filled (but unused) to avoid a branch.
422
*
423
* rankStart contains the offset where each rank belongs in the DTable.
424
* rankStart[0] is not filled because there are no entries in the table for
425
* weight 0.
426
*/
427
{ int n;
428
U32 nextRankStart = 0;
429
int const unroll = 4;
430
int const nLimit = (int)nbSymbols - unroll + 1;
431
for (n=0; n<(int)tableLog+1; n++) {
432
U32 const curr = nextRankStart;
433
nextRankStart += wksp->rankVal[n];
434
wksp->rankStart[n] = curr;
435
}
436
for (n=0; n < nLimit; n += unroll) {
437
int u;
438
for (u=0; u < unroll; ++u) {
439
size_t const w = wksp->huffWeight[n+u];
440
wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u);
441
}
442
}
443
for (; n < (int)nbSymbols; ++n) {
444
size_t const w = wksp->huffWeight[n];
445
wksp->symbols[wksp->rankStart[w]++] = (BYTE)n;
446
}
447
}
448
449
/* fill DTable
450
* We fill all entries of each weight in order.
451
* That way length is a constant for each iteration of the outer loop.
452
* We can switch based on the length to a different inner loop which is
453
* optimized for that particular case.
454
*/
455
{ U32 w;
456
int symbol = wksp->rankVal[0];
457
int rankStart = 0;
458
for (w=1; w<tableLog+1; ++w) {
459
int const symbolCount = wksp->rankVal[w];
460
int const length = (1 << w) >> 1;
461
int uStart = rankStart;
462
BYTE const nbBits = (BYTE)(tableLog + 1 - w);
463
int s;
464
int u;
465
switch (length) {
466
case 1:
467
for (s=0; s<symbolCount; ++s) {
468
HUF_DEltX1 D;
469
D.byte = wksp->symbols[symbol + s];
470
D.nbBits = nbBits;
471
dt[uStart] = D;
472
uStart += 1;
473
}
474
break;
475
case 2:
476
for (s=0; s<symbolCount; ++s) {
477
HUF_DEltX1 D;
478
D.byte = wksp->symbols[symbol + s];
479
D.nbBits = nbBits;
480
dt[uStart+0] = D;
481
dt[uStart+1] = D;
482
uStart += 2;
483
}
484
break;
485
case 4:
486
for (s=0; s<symbolCount; ++s) {
487
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
488
MEM_write64(dt + uStart, D4);
489
uStart += 4;
490
}
491
break;
492
case 8:
493
for (s=0; s<symbolCount; ++s) {
494
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
495
MEM_write64(dt + uStart, D4);
496
MEM_write64(dt + uStart + 4, D4);
497
uStart += 8;
498
}
499
break;
500
default:
501
for (s=0; s<symbolCount; ++s) {
502
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
503
for (u=0; u < length; u += 16) {
504
MEM_write64(dt + uStart + u + 0, D4);
505
MEM_write64(dt + uStart + u + 4, D4);
506
MEM_write64(dt + uStart + u + 8, D4);
507
MEM_write64(dt + uStart + u + 12, D4);
508
}
509
assert(u == length);
510
uStart += length;
511
}
512
break;
513
}
514
symbol += symbolCount;
515
rankStart += symbolCount * length;
516
}
517
}
518
return iSize;
519
}
520
521
FORCE_INLINE_TEMPLATE BYTE
522
HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog)
523
{
524
size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
525
BYTE const c = dt[val].byte;
526
BIT_skipBits(Dstream, dt[val].nbBits);
527
return c;
528
}
529
530
#define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \
531
do { *ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog); } while (0)
532
533
#define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \
534
do { \
535
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
536
HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr); \
537
} while (0)
538
539
#define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \
540
do { \
541
if (MEM_64bits()) \
542
HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr); \
543
} while (0)
544
545
HINT_INLINE size_t
546
HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog)
547
{
548
BYTE* const pStart = p;
549
550
/* up to 4 symbols at a time */
551
if ((pEnd - p) > 3) {
552
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
553
HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
554
HUF_DECODE_SYMBOLX1_1(p, bitDPtr);
555
HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
556
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
557
}
558
} else {
559
BIT_reloadDStream(bitDPtr);
560
}
561
562
/* [0-3] symbols remaining */
563
if (MEM_32bits())
564
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd))
565
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
566
567
/* no more data to retrieve from bitstream, no need to reload */
568
while (p < pEnd)
569
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
570
571
return (size_t)(pEnd-pStart);
572
}
573
574
FORCE_INLINE_TEMPLATE size_t
575
HUF_decompress1X1_usingDTable_internal_body(
576
void* dst, size_t dstSize,
577
const void* cSrc, size_t cSrcSize,
578
const HUF_DTable* DTable)
579
{
580
BYTE* op = (BYTE*)dst;
581
BYTE* const oend = ZSTD_maybeNullPtrAdd(op, dstSize);
582
const void* dtPtr = DTable + 1;
583
const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
584
BIT_DStream_t bitD;
585
DTableDesc const dtd = HUF_getDTableDesc(DTable);
586
U32 const dtLog = dtd.tableLog;
587
588
CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
589
590
HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog);
591
592
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
593
594
return dstSize;
595
}
596
597
/* HUF_decompress4X1_usingDTable_internal_body():
598
* Conditions :
599
* @dstSize >= 6
600
*/
601
FORCE_INLINE_TEMPLATE size_t
602
HUF_decompress4X1_usingDTable_internal_body(
603
void* dst, size_t dstSize,
604
const void* cSrc, size_t cSrcSize,
605
const HUF_DTable* DTable)
606
{
607
/* Check */
608
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
609
if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */
610
611
{ const BYTE* const istart = (const BYTE*) cSrc;
612
BYTE* const ostart = (BYTE*) dst;
613
BYTE* const oend = ostart + dstSize;
614
BYTE* const olimit = oend - 3;
615
const void* const dtPtr = DTable + 1;
616
const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
617
618
/* Init */
619
BIT_DStream_t bitD1;
620
BIT_DStream_t bitD2;
621
BIT_DStream_t bitD3;
622
BIT_DStream_t bitD4;
623
size_t const length1 = MEM_readLE16(istart);
624
size_t const length2 = MEM_readLE16(istart+2);
625
size_t const length3 = MEM_readLE16(istart+4);
626
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
627
const BYTE* const istart1 = istart + 6; /* jumpTable */
628
const BYTE* const istart2 = istart1 + length1;
629
const BYTE* const istart3 = istart2 + length2;
630
const BYTE* const istart4 = istart3 + length3;
631
const size_t segmentSize = (dstSize+3) / 4;
632
BYTE* const opStart2 = ostart + segmentSize;
633
BYTE* const opStart3 = opStart2 + segmentSize;
634
BYTE* const opStart4 = opStart3 + segmentSize;
635
BYTE* op1 = ostart;
636
BYTE* op2 = opStart2;
637
BYTE* op3 = opStart3;
638
BYTE* op4 = opStart4;
639
DTableDesc const dtd = HUF_getDTableDesc(DTable);
640
U32 const dtLog = dtd.tableLog;
641
U32 endSignal = 1;
642
643
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
644
if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
645
assert(dstSize >= 6); /* validated above */
646
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
647
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
648
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
649
CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
650
651
/* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */
652
if ((size_t)(oend - op4) >= sizeof(size_t)) {
653
for ( ; (endSignal) & (op4 < olimit) ; ) {
654
HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
655
HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
656
HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
657
HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
658
HUF_DECODE_SYMBOLX1_1(op1, &bitD1);
659
HUF_DECODE_SYMBOLX1_1(op2, &bitD2);
660
HUF_DECODE_SYMBOLX1_1(op3, &bitD3);
661
HUF_DECODE_SYMBOLX1_1(op4, &bitD4);
662
HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
663
HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
664
HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
665
HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
666
HUF_DECODE_SYMBOLX1_0(op1, &bitD1);
667
HUF_DECODE_SYMBOLX1_0(op2, &bitD2);
668
HUF_DECODE_SYMBOLX1_0(op3, &bitD3);
669
HUF_DECODE_SYMBOLX1_0(op4, &bitD4);
670
endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
671
endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
672
endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
673
endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
674
}
675
}
676
677
/* check corruption */
678
/* note : should not be necessary : op# advance in lock step, and we control op4.
679
* but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */
680
if (op1 > opStart2) return ERROR(corruption_detected);
681
if (op2 > opStart3) return ERROR(corruption_detected);
682
if (op3 > opStart4) return ERROR(corruption_detected);
683
/* note : op4 supposed already verified within main loop */
684
685
/* finish bitStreams one by one */
686
HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog);
687
HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog);
688
HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog);
689
HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog);
690
691
/* check */
692
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
693
if (!endCheck) return ERROR(corruption_detected); }
694
695
/* decoded size */
696
return dstSize;
697
}
698
}
699
700
#if HUF_NEED_BMI2_FUNCTION
701
static BMI2_TARGET_ATTRIBUTE
702
size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
703
size_t cSrcSize, HUF_DTable const* DTable) {
704
return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
705
}
706
#endif
707
708
static
709
size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
710
size_t cSrcSize, HUF_DTable const* DTable) {
711
return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
712
}
713
714
#if ZSTD_ENABLE_ASM_X86_64_BMI2
715
716
HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN;
717
718
#endif
719
720
static HUF_FAST_BMI2_ATTRS
721
void HUF_decompress4X1_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args)
722
{
723
U64 bits[4];
724
BYTE const* ip[4];
725
BYTE* op[4];
726
U16 const* const dtable = (U16 const*)args->dt;
727
BYTE* const oend = args->oend;
728
BYTE const* const ilowest = args->ilowest;
729
730
/* Copy the arguments to local variables */
731
ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
732
ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip));
733
ZSTD_memcpy(&op, &args->op, sizeof(op));
734
735
assert(MEM_isLittleEndian());
736
assert(!MEM_32bits());
737
738
for (;;) {
739
BYTE* olimit;
740
int stream;
741
742
/* Assert loop preconditions */
743
#ifndef NDEBUG
744
for (stream = 0; stream < 4; ++stream) {
745
assert(op[stream] <= (stream == 3 ? oend : op[stream + 1]));
746
assert(ip[stream] >= ilowest);
747
}
748
#endif
749
/* Compute olimit */
750
{
751
/* Each iteration produces 5 output symbols per stream */
752
size_t const oiters = (size_t)(oend - op[3]) / 5;
753
/* Each iteration consumes up to 11 bits * 5 = 55 bits < 7 bytes
754
* per stream.
755
*/
756
size_t const iiters = (size_t)(ip[0] - ilowest) / 7;
757
/* We can safely run iters iterations before running bounds checks */
758
size_t const iters = MIN(oiters, iiters);
759
size_t const symbols = iters * 5;
760
761
/* We can simply check that op[3] < olimit, instead of checking all
762
* of our bounds, since we can't hit the other bounds until we've run
763
* iters iterations, which only happens when op[3] == olimit.
764
*/
765
olimit = op[3] + symbols;
766
767
/* Exit fast decoding loop once we reach the end. */
768
if (op[3] == olimit)
769
break;
770
771
/* Exit the decoding loop if any input pointer has crossed the
772
* previous one. This indicates corruption, and a precondition
773
* to our loop is that ip[i] >= ip[0].
774
*/
775
for (stream = 1; stream < 4; ++stream) {
776
if (ip[stream] < ip[stream - 1])
777
goto _out;
778
}
779
}
780
781
#ifndef NDEBUG
782
for (stream = 1; stream < 4; ++stream) {
783
assert(ip[stream] >= ip[stream - 1]);
784
}
785
#endif
786
787
#define HUF_4X1_DECODE_SYMBOL(_stream, _symbol) \
788
do { \
789
int const index = (int)(bits[(_stream)] >> 53); \
790
int const entry = (int)dtable[index]; \
791
bits[(_stream)] <<= (entry & 0x3F); \
792
op[(_stream)][(_symbol)] = (BYTE)((entry >> 8) & 0xFF); \
793
} while (0)
794
795
#define HUF_4X1_RELOAD_STREAM(_stream) \
796
do { \
797
int const ctz = ZSTD_countTrailingZeros64(bits[(_stream)]); \
798
int const nbBits = ctz & 7; \
799
int const nbBytes = ctz >> 3; \
800
op[(_stream)] += 5; \
801
ip[(_stream)] -= nbBytes; \
802
bits[(_stream)] = MEM_read64(ip[(_stream)]) | 1; \
803
bits[(_stream)] <<= nbBits; \
804
} while (0)
805
806
/* Manually unroll the loop because compilers don't consistently
807
* unroll the inner loops, which destroys performance.
808
*/
809
do {
810
/* Decode 5 symbols in each of the 4 streams */
811
HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 0);
812
HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 1);
813
HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 2);
814
HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 3);
815
HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X1_DECODE_SYMBOL, 4);
816
817
/* Reload each of the 4 the bitstreams */
818
HUF_4X_FOR_EACH_STREAM(HUF_4X1_RELOAD_STREAM);
819
} while (op[3] < olimit);
820
821
#undef HUF_4X1_DECODE_SYMBOL
822
#undef HUF_4X1_RELOAD_STREAM
823
}
824
825
_out:
826
827
/* Save the final values of each of the state variables back to args. */
828
ZSTD_memcpy(&args->bits, &bits, sizeof(bits));
829
ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip));
830
ZSTD_memcpy(&args->op, &op, sizeof(op));
831
}
832
833
/**
834
* @returns @p dstSize on success (>= 6)
835
* 0 if the fallback implementation should be used
836
* An error if an error occurred
837
*/
838
static HUF_FAST_BMI2_ATTRS
839
size_t
840
HUF_decompress4X1_usingDTable_internal_fast(
841
void* dst, size_t dstSize,
842
const void* cSrc, size_t cSrcSize,
843
const HUF_DTable* DTable,
844
HUF_DecompressFastLoopFn loopFn)
845
{
846
void const* dt = DTable + 1;
847
BYTE const* const ilowest = (BYTE const*)cSrc;
848
BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize);
849
HUF_DecompressFastArgs args;
850
{ size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
851
FORWARD_IF_ERROR(ret, "Failed to init fast loop args");
852
if (ret == 0)
853
return 0;
854
}
855
856
assert(args.ip[0] >= args.ilowest);
857
loopFn(&args);
858
859
/* Our loop guarantees that ip[] >= ilowest and that we haven't
860
* overwritten any op[].
861
*/
862
assert(args.ip[0] >= ilowest);
863
assert(args.ip[0] >= ilowest);
864
assert(args.ip[1] >= ilowest);
865
assert(args.ip[2] >= ilowest);
866
assert(args.ip[3] >= ilowest);
867
assert(args.op[3] <= oend);
868
869
assert(ilowest == args.ilowest);
870
assert(ilowest + 6 == args.iend[0]);
871
(void)ilowest;
872
873
/* finish bit streams one by one. */
874
{ size_t const segmentSize = (dstSize+3) / 4;
875
BYTE* segmentEnd = (BYTE*)dst;
876
int i;
877
for (i = 0; i < 4; ++i) {
878
BIT_DStream_t bit;
879
if (segmentSize <= (size_t)(oend - segmentEnd))
880
segmentEnd += segmentSize;
881
else
882
segmentEnd = oend;
883
FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
884
/* Decompress and validate that we've produced exactly the expected length. */
885
args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG);
886
if (args.op[i] != segmentEnd) return ERROR(corruption_detected);
887
}
888
}
889
890
/* decoded size */
891
assert(dstSize != 0);
892
return dstSize;
893
}
894
895
HUF_DGEN(HUF_decompress1X1_usingDTable_internal)
896
897
static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
898
size_t cSrcSize, HUF_DTable const* DTable, int flags)
899
{
900
HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X1_usingDTable_internal_default;
901
HUF_DecompressFastLoopFn loopFn = HUF_decompress4X1_usingDTable_internal_fast_c_loop;
902
903
#if DYNAMIC_BMI2
904
if (flags & HUF_flags_bmi2) {
905
fallbackFn = HUF_decompress4X1_usingDTable_internal_bmi2;
906
# if ZSTD_ENABLE_ASM_X86_64_BMI2
907
if (!(flags & HUF_flags_disableAsm)) {
908
loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop;
909
}
910
# endif
911
} else {
912
return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
913
}
914
#endif
915
916
#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
917
if (!(flags & HUF_flags_disableAsm)) {
918
loopFn = HUF_decompress4X1_usingDTable_internal_fast_asm_loop;
919
}
920
#endif
921
922
if (HUF_ENABLE_FAST_DECODE && !(flags & HUF_flags_disableFast)) {
923
size_t const ret = HUF_decompress4X1_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
924
if (ret != 0)
925
return ret;
926
}
927
return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
928
}
929
930
static size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
931
const void* cSrc, size_t cSrcSize,
932
void* workSpace, size_t wkspSize, int flags)
933
{
934
const BYTE* ip = (const BYTE*) cSrc;
935
936
size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags);
937
if (HUF_isError(hSize)) return hSize;
938
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
939
ip += hSize; cSrcSize -= hSize;
940
941
return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
942
}
943
944
#endif /* HUF_FORCE_DECOMPRESS_X2 */
945
946
947
#ifndef HUF_FORCE_DECOMPRESS_X1
948
949
/* *************************/
950
/* double-symbols decoding */
951
/* *************************/
952
953
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */
954
typedef struct { BYTE symbol; } sortedSymbol_t;
955
typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
956
typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX];
957
958
/**
959
* Constructs a HUF_DEltX2 in a U32.
960
*/
961
static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level)
962
{
963
U32 seq;
964
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0);
965
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2);
966
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3);
967
DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32));
968
if (MEM_isLittleEndian()) {
969
seq = level == 1 ? symbol : (baseSeq + (symbol << 8));
970
return seq + (nbBits << 16) + ((U32)level << 24);
971
} else {
972
seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol);
973
return (seq << 16) + (nbBits << 8) + (U32)level;
974
}
975
}
976
977
/**
978
* Constructs a HUF_DEltX2.
979
*/
980
static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level)
981
{
982
HUF_DEltX2 DElt;
983
U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
984
DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val));
985
ZSTD_memcpy(&DElt, &val, sizeof(val));
986
return DElt;
987
}
988
989
/**
990
* Constructs 2 HUF_DEltX2s and packs them into a U64.
991
*/
992
static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level)
993
{
994
U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
995
return (U64)DElt + ((U64)DElt << 32);
996
}
997
998
/**
999
* Fills the DTable rank with all the symbols from [begin, end) that are each
1000
* nbBits long.
1001
*
1002
* @param DTableRank The start of the rank in the DTable.
1003
* @param begin The first symbol to fill (inclusive).
1004
* @param end The last symbol to fill (exclusive).
1005
* @param nbBits Each symbol is nbBits long.
1006
* @param tableLog The table log.
1007
* @param baseSeq If level == 1 { 0 } else { the first level symbol }
1008
* @param level The level in the table. Must be 1 or 2.
1009
*/
1010
static void HUF_fillDTableX2ForWeight(
1011
HUF_DEltX2* DTableRank,
1012
sortedSymbol_t const* begin, sortedSymbol_t const* end,
1013
U32 nbBits, U32 tableLog,
1014
U16 baseSeq, int const level)
1015
{
1016
U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */);
1017
const sortedSymbol_t* ptr;
1018
assert(level >= 1 && level <= 2);
1019
switch (length) {
1020
case 1:
1021
for (ptr = begin; ptr != end; ++ptr) {
1022
HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
1023
*DTableRank++ = DElt;
1024
}
1025
break;
1026
case 2:
1027
for (ptr = begin; ptr != end; ++ptr) {
1028
HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
1029
DTableRank[0] = DElt;
1030
DTableRank[1] = DElt;
1031
DTableRank += 2;
1032
}
1033
break;
1034
case 4:
1035
for (ptr = begin; ptr != end; ++ptr) {
1036
U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
1037
ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
1038
ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
1039
DTableRank += 4;
1040
}
1041
break;
1042
case 8:
1043
for (ptr = begin; ptr != end; ++ptr) {
1044
U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
1045
ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
1046
ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
1047
ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
1048
ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
1049
DTableRank += 8;
1050
}
1051
break;
1052
default:
1053
for (ptr = begin; ptr != end; ++ptr) {
1054
U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
1055
HUF_DEltX2* const DTableRankEnd = DTableRank + length;
1056
for (; DTableRank != DTableRankEnd; DTableRank += 8) {
1057
ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
1058
ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
1059
ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
1060
ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
1061
}
1062
}
1063
break;
1064
}
1065
}
1066
1067
/* HUF_fillDTableX2Level2() :
1068
* `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
1069
static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits,
1070
const U32* rankVal, const int minWeight, const int maxWeight1,
1071
const sortedSymbol_t* sortedSymbols, U32 const* rankStart,
1072
U32 nbBitsBaseline, U16 baseSeq)
1073
{
1074
/* Fill skipped values (all positions up to rankVal[minWeight]).
1075
* These are positions only get a single symbol because the combined weight
1076
* is too large.
1077
*/
1078
if (minWeight>1) {
1079
U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */);
1080
U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1);
1081
int const skipSize = rankVal[minWeight];
1082
assert(length > 1);
1083
assert((U32)skipSize < length);
1084
switch (length) {
1085
case 2:
1086
assert(skipSize == 1);
1087
ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2));
1088
break;
1089
case 4:
1090
assert(skipSize <= 4);
1091
ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2));
1092
ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2));
1093
break;
1094
default:
1095
{
1096
int i;
1097
for (i = 0; i < skipSize; i += 8) {
1098
ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2));
1099
ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2));
1100
ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2));
1101
ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2));
1102
}
1103
}
1104
}
1105
}
1106
1107
/* Fill each of the second level symbols by weight. */
1108
{
1109
int w;
1110
for (w = minWeight; w < maxWeight1; ++w) {
1111
int const begin = rankStart[w];
1112
int const end = rankStart[w+1];
1113
U32 const nbBits = nbBitsBaseline - w;
1114
U32 const totalBits = nbBits + consumedBits;
1115
HUF_fillDTableX2ForWeight(
1116
DTable + rankVal[w],
1117
sortedSymbols + begin, sortedSymbols + end,
1118
totalBits, targetLog,
1119
baseSeq, /* level */ 2);
1120
}
1121
}
1122
}
1123
1124
static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog,
1125
const sortedSymbol_t* sortedList,
1126
const U32* rankStart, rankValCol_t* rankValOrigin, const U32 maxWeight,
1127
const U32 nbBitsBaseline)
1128
{
1129
U32* const rankVal = rankValOrigin[0];
1130
const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
1131
const U32 minBits = nbBitsBaseline - maxWeight;
1132
int w;
1133
int const wEnd = (int)maxWeight + 1;
1134
1135
/* Fill DTable in order of weight. */
1136
for (w = 1; w < wEnd; ++w) {
1137
int const begin = (int)rankStart[w];
1138
int const end = (int)rankStart[w+1];
1139
U32 const nbBits = nbBitsBaseline - w;
1140
1141
if (targetLog-nbBits >= minBits) {
1142
/* Enough room for a second symbol. */
1143
int start = rankVal[w];
1144
U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */);
1145
int minWeight = nbBits + scaleLog;
1146
int s;
1147
if (minWeight < 1) minWeight = 1;
1148
/* Fill the DTable for every symbol of weight w.
1149
* These symbols get at least 1 second symbol.
1150
*/
1151
for (s = begin; s != end; ++s) {
1152
HUF_fillDTableX2Level2(
1153
DTable + start, targetLog, nbBits,
1154
rankValOrigin[nbBits], minWeight, wEnd,
1155
sortedList, rankStart,
1156
nbBitsBaseline, sortedList[s].symbol);
1157
start += length;
1158
}
1159
} else {
1160
/* Only a single symbol. */
1161
HUF_fillDTableX2ForWeight(
1162
DTable + rankVal[w],
1163
sortedList + begin, sortedList + end,
1164
nbBits, targetLog,
1165
/* baseSeq */ 0, /* level */ 1);
1166
}
1167
}
1168
}
1169
1170
typedef struct {
1171
rankValCol_t rankVal[HUF_TABLELOG_MAX];
1172
U32 rankStats[HUF_TABLELOG_MAX + 1];
1173
U32 rankStart0[HUF_TABLELOG_MAX + 3];
1174
sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
1175
BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
1176
U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
1177
} HUF_ReadDTableX2_Workspace;
1178
1179
size_t HUF_readDTableX2_wksp(HUF_DTable* DTable,
1180
const void* src, size_t srcSize,
1181
void* workSpace, size_t wkspSize, int flags)
1182
{
1183
U32 tableLog, maxW, nbSymbols;
1184
DTableDesc dtd = HUF_getDTableDesc(DTable);
1185
U32 maxTableLog = dtd.maxTableLog;
1186
size_t iSize;
1187
void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */
1188
HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
1189
U32 *rankStart;
1190
1191
HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace;
1192
1193
if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC);
1194
1195
rankStart = wksp->rankStart0 + 1;
1196
ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats));
1197
ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0));
1198
1199
DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */
1200
if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
1201
/* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */
1202
1203
iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), flags);
1204
if (HUF_isError(iSize)) return iSize;
1205
1206
/* check result */
1207
if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
1208
if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG;
1209
1210
/* find maxWeight */
1211
for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
1212
1213
/* Get start index of each weight */
1214
{ U32 w, nextRankStart = 0;
1215
for (w=1; w<maxW+1; w++) {
1216
U32 curr = nextRankStart;
1217
nextRankStart += wksp->rankStats[w];
1218
rankStart[w] = curr;
1219
}
1220
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
1221
rankStart[maxW+1] = nextRankStart;
1222
}
1223
1224
/* sort symbols by weight */
1225
{ U32 s;
1226
for (s=0; s<nbSymbols; s++) {
1227
U32 const w = wksp->weightList[s];
1228
U32 const r = rankStart[w]++;
1229
wksp->sortedSymbol[r].symbol = (BYTE)s;
1230
}
1231
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
1232
}
1233
1234
/* Build rankVal */
1235
{ U32* const rankVal0 = wksp->rankVal[0];
1236
{ int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */
1237
U32 nextRankVal = 0;
1238
U32 w;
1239
for (w=1; w<maxW+1; w++) {
1240
U32 curr = nextRankVal;
1241
nextRankVal += wksp->rankStats[w] << (w+rescale);
1242
rankVal0[w] = curr;
1243
} }
1244
{ U32 const minBits = tableLog+1 - maxW;
1245
U32 consumed;
1246
for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
1247
U32* const rankValPtr = wksp->rankVal[consumed];
1248
U32 w;
1249
for (w = 1; w < maxW+1; w++) {
1250
rankValPtr[w] = rankVal0[w] >> consumed;
1251
} } } }
1252
1253
HUF_fillDTableX2(dt, maxTableLog,
1254
wksp->sortedSymbol,
1255
wksp->rankStart0, wksp->rankVal, maxW,
1256
tableLog+1);
1257
1258
dtd.tableLog = (BYTE)maxTableLog;
1259
dtd.tableType = 1;
1260
ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
1261
return iSize;
1262
}
1263
1264
1265
FORCE_INLINE_TEMPLATE U32
1266
HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
1267
{
1268
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
1269
ZSTD_memcpy(op, &dt[val].sequence, 2);
1270
BIT_skipBits(DStream, dt[val].nbBits);
1271
return dt[val].length;
1272
}
1273
1274
FORCE_INLINE_TEMPLATE U32
1275
HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
1276
{
1277
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
1278
ZSTD_memcpy(op, &dt[val].sequence, 1);
1279
if (dt[val].length==1) {
1280
BIT_skipBits(DStream, dt[val].nbBits);
1281
} else {
1282
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
1283
BIT_skipBits(DStream, dt[val].nbBits);
1284
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
1285
/* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
1286
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
1287
}
1288
}
1289
return 1;
1290
}
1291
1292
#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
1293
do { ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); } while (0)
1294
1295
#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
1296
do { \
1297
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
1298
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); \
1299
} while (0)
1300
1301
#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
1302
do { \
1303
if (MEM_64bits()) \
1304
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog); \
1305
} while (0)
1306
1307
HINT_INLINE size_t
1308
HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd,
1309
const HUF_DEltX2* const dt, const U32 dtLog)
1310
{
1311
BYTE* const pStart = p;
1312
1313
/* up to 8 symbols at a time */
1314
if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) {
1315
if (dtLog <= 11 && MEM_64bits()) {
1316
/* up to 10 symbols at a time */
1317
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) {
1318
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1319
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1320
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1321
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1322
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1323
}
1324
} else {
1325
/* up to 8 symbols at a time */
1326
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
1327
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
1328
HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
1329
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
1330
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1331
}
1332
}
1333
} else {
1334
BIT_reloadDStream(bitDPtr);
1335
}
1336
1337
/* closer to end : up to 2 symbols at a time */
1338
if ((size_t)(pEnd - p) >= 2) {
1339
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
1340
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1341
1342
while (p <= pEnd-2)
1343
HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
1344
}
1345
1346
if (p < pEnd)
1347
p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog);
1348
1349
return p-pStart;
1350
}
1351
1352
FORCE_INLINE_TEMPLATE size_t
1353
HUF_decompress1X2_usingDTable_internal_body(
1354
void* dst, size_t dstSize,
1355
const void* cSrc, size_t cSrcSize,
1356
const HUF_DTable* DTable)
1357
{
1358
BIT_DStream_t bitD;
1359
1360
/* Init */
1361
CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
1362
1363
/* decode */
1364
{ BYTE* const ostart = (BYTE*) dst;
1365
BYTE* const oend = ZSTD_maybeNullPtrAdd(ostart, dstSize);
1366
const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
1367
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
1368
DTableDesc const dtd = HUF_getDTableDesc(DTable);
1369
HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog);
1370
}
1371
1372
/* check */
1373
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
1374
1375
/* decoded size */
1376
return dstSize;
1377
}
1378
1379
/* HUF_decompress4X2_usingDTable_internal_body():
1380
* Conditions:
1381
* @dstSize >= 6
1382
*/
1383
FORCE_INLINE_TEMPLATE size_t
1384
HUF_decompress4X2_usingDTable_internal_body(
1385
void* dst, size_t dstSize,
1386
const void* cSrc, size_t cSrcSize,
1387
const HUF_DTable* DTable)
1388
{
1389
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
1390
if (dstSize < 6) return ERROR(corruption_detected); /* stream 4-split doesn't work */
1391
1392
{ const BYTE* const istart = (const BYTE*) cSrc;
1393
BYTE* const ostart = (BYTE*) dst;
1394
BYTE* const oend = ostart + dstSize;
1395
BYTE* const olimit = oend - (sizeof(size_t)-1);
1396
const void* const dtPtr = DTable+1;
1397
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
1398
1399
/* Init */
1400
BIT_DStream_t bitD1;
1401
BIT_DStream_t bitD2;
1402
BIT_DStream_t bitD3;
1403
BIT_DStream_t bitD4;
1404
size_t const length1 = MEM_readLE16(istart);
1405
size_t const length2 = MEM_readLE16(istart+2);
1406
size_t const length3 = MEM_readLE16(istart+4);
1407
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
1408
const BYTE* const istart1 = istart + 6; /* jumpTable */
1409
const BYTE* const istart2 = istart1 + length1;
1410
const BYTE* const istart3 = istart2 + length2;
1411
const BYTE* const istart4 = istart3 + length3;
1412
size_t const segmentSize = (dstSize+3) / 4;
1413
BYTE* const opStart2 = ostart + segmentSize;
1414
BYTE* const opStart3 = opStart2 + segmentSize;
1415
BYTE* const opStart4 = opStart3 + segmentSize;
1416
BYTE* op1 = ostart;
1417
BYTE* op2 = opStart2;
1418
BYTE* op3 = opStart3;
1419
BYTE* op4 = opStart4;
1420
U32 endSignal = 1;
1421
DTableDesc const dtd = HUF_getDTableDesc(DTable);
1422
U32 const dtLog = dtd.tableLog;
1423
1424
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
1425
if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
1426
assert(dstSize >= 6 /* validated above */);
1427
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
1428
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
1429
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
1430
CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
1431
1432
/* 16-32 symbols per loop (4-8 symbols per stream) */
1433
if ((size_t)(oend - op4) >= sizeof(size_t)) {
1434
for ( ; (endSignal) & (op4 < olimit); ) {
1435
#if defined(__clang__) && (defined(__x86_64__) || defined(__i386__))
1436
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1437
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
1438
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1439
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
1440
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1441
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
1442
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1443
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
1444
endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
1445
endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
1446
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1447
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
1448
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1449
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
1450
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1451
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
1452
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1453
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
1454
endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
1455
endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
1456
#else
1457
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1458
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1459
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1460
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1461
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
1462
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
1463
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
1464
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
1465
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1466
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1467
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1468
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1469
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
1470
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
1471
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
1472
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
1473
endSignal = (U32)LIKELY((U32)
1474
(BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished)
1475
& (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished)
1476
& (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished)
1477
& (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished));
1478
#endif
1479
}
1480
}
1481
1482
/* check corruption */
1483
if (op1 > opStart2) return ERROR(corruption_detected);
1484
if (op2 > opStart3) return ERROR(corruption_detected);
1485
if (op3 > opStart4) return ERROR(corruption_detected);
1486
/* note : op4 already verified within main loop */
1487
1488
/* finish bitStreams one by one */
1489
HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
1490
HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
1491
HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
1492
HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
1493
1494
/* check */
1495
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
1496
if (!endCheck) return ERROR(corruption_detected); }
1497
1498
/* decoded size */
1499
return dstSize;
1500
}
1501
}
1502
1503
#if HUF_NEED_BMI2_FUNCTION
1504
static BMI2_TARGET_ATTRIBUTE
1505
size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
1506
size_t cSrcSize, HUF_DTable const* DTable) {
1507
return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
1508
}
1509
#endif
1510
1511
static
1512
size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
1513
size_t cSrcSize, HUF_DTable const* DTable) {
1514
return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
1515
}
1516
1517
#if ZSTD_ENABLE_ASM_X86_64_BMI2
1518
1519
HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_fast_asm_loop(HUF_DecompressFastArgs* args) ZSTDLIB_HIDDEN;
1520
1521
#endif
1522
1523
static HUF_FAST_BMI2_ATTRS
1524
void HUF_decompress4X2_usingDTable_internal_fast_c_loop(HUF_DecompressFastArgs* args)
1525
{
1526
U64 bits[4];
1527
BYTE const* ip[4];
1528
BYTE* op[4];
1529
BYTE* oend[4];
1530
HUF_DEltX2 const* const dtable = (HUF_DEltX2 const*)args->dt;
1531
BYTE const* const ilowest = args->ilowest;
1532
1533
/* Copy the arguments to local registers. */
1534
ZSTD_memcpy(&bits, &args->bits, sizeof(bits));
1535
ZSTD_memcpy((void*)(&ip), &args->ip, sizeof(ip));
1536
ZSTD_memcpy(&op, &args->op, sizeof(op));
1537
1538
oend[0] = op[1];
1539
oend[1] = op[2];
1540
oend[2] = op[3];
1541
oend[3] = args->oend;
1542
1543
assert(MEM_isLittleEndian());
1544
assert(!MEM_32bits());
1545
1546
for (;;) {
1547
BYTE* olimit;
1548
int stream;
1549
1550
/* Assert loop preconditions */
1551
#ifndef NDEBUG
1552
for (stream = 0; stream < 4; ++stream) {
1553
assert(op[stream] <= oend[stream]);
1554
assert(ip[stream] >= ilowest);
1555
}
1556
#endif
1557
/* Compute olimit */
1558
{
1559
/* Each loop does 5 table lookups for each of the 4 streams.
1560
* Each table lookup consumes up to 11 bits of input, and produces
1561
* up to 2 bytes of output.
1562
*/
1563
/* We can consume up to 7 bytes of input per iteration per stream.
1564
* We also know that each input pointer is >= ip[0]. So we can run
1565
* iters loops before running out of input.
1566
*/
1567
size_t iters = (size_t)(ip[0] - ilowest) / 7;
1568
/* Each iteration can produce up to 10 bytes of output per stream.
1569
* Each output stream my advance at different rates. So take the
1570
* minimum number of safe iterations among all the output streams.
1571
*/
1572
for (stream = 0; stream < 4; ++stream) {
1573
size_t const oiters = (size_t)(oend[stream] - op[stream]) / 10;
1574
iters = MIN(iters, oiters);
1575
}
1576
1577
/* Each iteration produces at least 5 output symbols. So until
1578
* op[3] crosses olimit, we know we haven't executed iters
1579
* iterations yet. This saves us maintaining an iters counter,
1580
* at the expense of computing the remaining # of iterations
1581
* more frequently.
1582
*/
1583
olimit = op[3] + (iters * 5);
1584
1585
/* Exit the fast decoding loop once we reach the end. */
1586
if (op[3] == olimit)
1587
break;
1588
1589
/* Exit the decoding loop if any input pointer has crossed the
1590
* previous one. This indicates corruption, and a precondition
1591
* to our loop is that ip[i] >= ip[0].
1592
*/
1593
for (stream = 1; stream < 4; ++stream) {
1594
if (ip[stream] < ip[stream - 1])
1595
goto _out;
1596
}
1597
}
1598
1599
#ifndef NDEBUG
1600
for (stream = 1; stream < 4; ++stream) {
1601
assert(ip[stream] >= ip[stream - 1]);
1602
}
1603
#endif
1604
1605
#define HUF_4X2_DECODE_SYMBOL(_stream, _decode3) \
1606
do { \
1607
if ((_decode3) || (_stream) != 3) { \
1608
int const index = (int)(bits[(_stream)] >> 53); \
1609
HUF_DEltX2 const entry = dtable[index]; \
1610
MEM_write16(op[(_stream)], entry.sequence); \
1611
bits[(_stream)] <<= (entry.nbBits) & 0x3F; \
1612
op[(_stream)] += (entry.length); \
1613
} \
1614
} while (0)
1615
1616
#define HUF_4X2_RELOAD_STREAM(_stream) \
1617
do { \
1618
HUF_4X2_DECODE_SYMBOL(3, 1); \
1619
{ \
1620
int const ctz = ZSTD_countTrailingZeros64(bits[(_stream)]); \
1621
int const nbBits = ctz & 7; \
1622
int const nbBytes = ctz >> 3; \
1623
ip[(_stream)] -= nbBytes; \
1624
bits[(_stream)] = MEM_read64(ip[(_stream)]) | 1; \
1625
bits[(_stream)] <<= nbBits; \
1626
} \
1627
} while (0)
1628
1629
/* Manually unroll the loop because compilers don't consistently
1630
* unroll the inner loops, which destroys performance.
1631
*/
1632
do {
1633
/* Decode 5 symbols from each of the first 3 streams.
1634
* The final stream will be decoded during the reload phase
1635
* to reduce register pressure.
1636
*/
1637
HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
1638
HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
1639
HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
1640
HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
1641
HUF_4X_FOR_EACH_STREAM_WITH_VAR(HUF_4X2_DECODE_SYMBOL, 0);
1642
1643
/* Decode one symbol from the final stream */
1644
HUF_4X2_DECODE_SYMBOL(3, 1);
1645
1646
/* Decode 4 symbols from the final stream & reload bitstreams.
1647
* The final stream is reloaded last, meaning that all 5 symbols
1648
* are decoded from the final stream before it is reloaded.
1649
*/
1650
HUF_4X_FOR_EACH_STREAM(HUF_4X2_RELOAD_STREAM);
1651
} while (op[3] < olimit);
1652
}
1653
1654
#undef HUF_4X2_DECODE_SYMBOL
1655
#undef HUF_4X2_RELOAD_STREAM
1656
1657
_out:
1658
1659
/* Save the final values of each of the state variables back to args. */
1660
ZSTD_memcpy(&args->bits, &bits, sizeof(bits));
1661
ZSTD_memcpy((void*)(&args->ip), &ip, sizeof(ip));
1662
ZSTD_memcpy(&args->op, &op, sizeof(op));
1663
}
1664
1665
1666
static HUF_FAST_BMI2_ATTRS size_t
1667
HUF_decompress4X2_usingDTable_internal_fast(
1668
void* dst, size_t dstSize,
1669
const void* cSrc, size_t cSrcSize,
1670
const HUF_DTable* DTable,
1671
HUF_DecompressFastLoopFn loopFn) {
1672
void const* dt = DTable + 1;
1673
const BYTE* const ilowest = (const BYTE*)cSrc;
1674
BYTE* const oend = ZSTD_maybeNullPtrAdd((BYTE*)dst, dstSize);
1675
HUF_DecompressFastArgs args;
1676
{
1677
size_t const ret = HUF_DecompressFastArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
1678
FORWARD_IF_ERROR(ret, "Failed to init asm args");
1679
if (ret == 0)
1680
return 0;
1681
}
1682
1683
assert(args.ip[0] >= args.ilowest);
1684
loopFn(&args);
1685
1686
/* note : op4 already verified within main loop */
1687
assert(args.ip[0] >= ilowest);
1688
assert(args.ip[1] >= ilowest);
1689
assert(args.ip[2] >= ilowest);
1690
assert(args.ip[3] >= ilowest);
1691
assert(args.op[3] <= oend);
1692
1693
assert(ilowest == args.ilowest);
1694
assert(ilowest + 6 == args.iend[0]);
1695
(void)ilowest;
1696
1697
/* finish bitStreams one by one */
1698
{
1699
size_t const segmentSize = (dstSize+3) / 4;
1700
BYTE* segmentEnd = (BYTE*)dst;
1701
int i;
1702
for (i = 0; i < 4; ++i) {
1703
BIT_DStream_t bit;
1704
if (segmentSize <= (size_t)(oend - segmentEnd))
1705
segmentEnd += segmentSize;
1706
else
1707
segmentEnd = oend;
1708
FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
1709
args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG);
1710
if (args.op[i] != segmentEnd)
1711
return ERROR(corruption_detected);
1712
}
1713
}
1714
1715
/* decoded size */
1716
return dstSize;
1717
}
1718
1719
static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
1720
size_t cSrcSize, HUF_DTable const* DTable, int flags)
1721
{
1722
HUF_DecompressUsingDTableFn fallbackFn = HUF_decompress4X2_usingDTable_internal_default;
1723
HUF_DecompressFastLoopFn loopFn = HUF_decompress4X2_usingDTable_internal_fast_c_loop;
1724
1725
#if DYNAMIC_BMI2
1726
if (flags & HUF_flags_bmi2) {
1727
fallbackFn = HUF_decompress4X2_usingDTable_internal_bmi2;
1728
# if ZSTD_ENABLE_ASM_X86_64_BMI2
1729
if (!(flags & HUF_flags_disableAsm)) {
1730
loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop;
1731
}
1732
# endif
1733
} else {
1734
return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
1735
}
1736
#endif
1737
1738
#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
1739
if (!(flags & HUF_flags_disableAsm)) {
1740
loopFn = HUF_decompress4X2_usingDTable_internal_fast_asm_loop;
1741
}
1742
#endif
1743
1744
if (HUF_ENABLE_FAST_DECODE && !(flags & HUF_flags_disableFast)) {
1745
size_t const ret = HUF_decompress4X2_usingDTable_internal_fast(dst, dstSize, cSrc, cSrcSize, DTable, loopFn);
1746
if (ret != 0)
1747
return ret;
1748
}
1749
return fallbackFn(dst, dstSize, cSrc, cSrcSize, DTable);
1750
}
1751
1752
HUF_DGEN(HUF_decompress1X2_usingDTable_internal)
1753
1754
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
1755
const void* cSrc, size_t cSrcSize,
1756
void* workSpace, size_t wkspSize, int flags)
1757
{
1758
const BYTE* ip = (const BYTE*) cSrc;
1759
1760
size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize,
1761
workSpace, wkspSize, flags);
1762
if (HUF_isError(hSize)) return hSize;
1763
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
1764
ip += hSize; cSrcSize -= hSize;
1765
1766
return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, flags);
1767
}
1768
1769
static size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
1770
const void* cSrc, size_t cSrcSize,
1771
void* workSpace, size_t wkspSize, int flags)
1772
{
1773
const BYTE* ip = (const BYTE*) cSrc;
1774
1775
size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize,
1776
workSpace, wkspSize, flags);
1777
if (HUF_isError(hSize)) return hSize;
1778
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
1779
ip += hSize; cSrcSize -= hSize;
1780
1781
return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
1782
}
1783
1784
#endif /* HUF_FORCE_DECOMPRESS_X1 */
1785
1786
1787
/* ***********************************/
1788
/* Universal decompression selectors */
1789
/* ***********************************/
1790
1791
1792
#if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
1793
typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
1794
static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] =
1795
{
1796
/* single, double, quad */
1797
{{0,0}, {1,1}}, /* Q==0 : impossible */
1798
{{0,0}, {1,1}}, /* Q==1 : impossible */
1799
{{ 150,216}, { 381,119}}, /* Q == 2 : 12-18% */
1800
{{ 170,205}, { 514,112}}, /* Q == 3 : 18-25% */
1801
{{ 177,199}, { 539,110}}, /* Q == 4 : 25-32% */
1802
{{ 197,194}, { 644,107}}, /* Q == 5 : 32-38% */
1803
{{ 221,192}, { 735,107}}, /* Q == 6 : 38-44% */
1804
{{ 256,189}, { 881,106}}, /* Q == 7 : 44-50% */
1805
{{ 359,188}, {1167,109}}, /* Q == 8 : 50-56% */
1806
{{ 582,187}, {1570,114}}, /* Q == 9 : 56-62% */
1807
{{ 688,187}, {1712,122}}, /* Q ==10 : 62-69% */
1808
{{ 825,186}, {1965,136}}, /* Q ==11 : 69-75% */
1809
{{ 976,185}, {2131,150}}, /* Q ==12 : 75-81% */
1810
{{1180,186}, {2070,175}}, /* Q ==13 : 81-87% */
1811
{{1377,185}, {1731,202}}, /* Q ==14 : 87-93% */
1812
{{1412,185}, {1695,202}}, /* Q ==15 : 93-99% */
1813
};
1814
#endif
1815
1816
/** HUF_selectDecoder() :
1817
* Tells which decoder is likely to decode faster,
1818
* based on a set of pre-computed metrics.
1819
* @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
1820
* Assumption : 0 < dstSize <= 128 KB */
1821
U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
1822
{
1823
assert(dstSize > 0);
1824
assert(dstSize <= 128*1024);
1825
#if defined(HUF_FORCE_DECOMPRESS_X1)
1826
(void)dstSize;
1827
(void)cSrcSize;
1828
return 0;
1829
#elif defined(HUF_FORCE_DECOMPRESS_X2)
1830
(void)dstSize;
1831
(void)cSrcSize;
1832
return 1;
1833
#else
1834
/* decoder timing evaluation */
1835
{ U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */
1836
U32 const D256 = (U32)(dstSize >> 8);
1837
U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
1838
U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
1839
DTime1 += DTime1 >> 5; /* small advantage to algorithm using less memory, to reduce cache eviction */
1840
return DTime1 < DTime0;
1841
}
1842
#endif
1843
}
1844
1845
size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
1846
const void* cSrc, size_t cSrcSize,
1847
void* workSpace, size_t wkspSize, int flags)
1848
{
1849
/* validation checks */
1850
if (dstSize == 0) return ERROR(dstSize_tooSmall);
1851
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
1852
if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
1853
if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
1854
1855
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
1856
#if defined(HUF_FORCE_DECOMPRESS_X1)
1857
(void)algoNb;
1858
assert(algoNb == 0);
1859
return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
1860
cSrcSize, workSpace, wkspSize, flags);
1861
#elif defined(HUF_FORCE_DECOMPRESS_X2)
1862
(void)algoNb;
1863
assert(algoNb == 1);
1864
return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
1865
cSrcSize, workSpace, wkspSize, flags);
1866
#else
1867
return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
1868
cSrcSize, workSpace, wkspSize, flags):
1869
HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
1870
cSrcSize, workSpace, wkspSize, flags);
1871
#endif
1872
}
1873
}
1874
1875
1876
size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags)
1877
{
1878
DTableDesc const dtd = HUF_getDTableDesc(DTable);
1879
#if defined(HUF_FORCE_DECOMPRESS_X1)
1880
(void)dtd;
1881
assert(dtd.tableType == 0);
1882
return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1883
#elif defined(HUF_FORCE_DECOMPRESS_X2)
1884
(void)dtd;
1885
assert(dtd.tableType == 1);
1886
return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1887
#else
1888
return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) :
1889
HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1890
#endif
1891
}
1892
1893
#ifndef HUF_FORCE_DECOMPRESS_X2
1894
size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags)
1895
{
1896
const BYTE* ip = (const BYTE*) cSrc;
1897
1898
size_t const hSize = HUF_readDTableX1_wksp(dctx, cSrc, cSrcSize, workSpace, wkspSize, flags);
1899
if (HUF_isError(hSize)) return hSize;
1900
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
1901
ip += hSize; cSrcSize -= hSize;
1902
1903
return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, flags);
1904
}
1905
#endif
1906
1907
size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags)
1908
{
1909
DTableDesc const dtd = HUF_getDTableDesc(DTable);
1910
#if defined(HUF_FORCE_DECOMPRESS_X1)
1911
(void)dtd;
1912
assert(dtd.tableType == 0);
1913
return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1914
#elif defined(HUF_FORCE_DECOMPRESS_X2)
1915
(void)dtd;
1916
assert(dtd.tableType == 1);
1917
return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1918
#else
1919
return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags) :
1920
HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, flags);
1921
#endif
1922
}
1923
1924
size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags)
1925
{
1926
/* validation checks */
1927
if (dstSize == 0) return ERROR(dstSize_tooSmall);
1928
if (cSrcSize == 0) return ERROR(corruption_detected);
1929
1930
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
1931
#if defined(HUF_FORCE_DECOMPRESS_X1)
1932
(void)algoNb;
1933
assert(algoNb == 0);
1934
return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
1935
#elif defined(HUF_FORCE_DECOMPRESS_X2)
1936
(void)algoNb;
1937
assert(algoNb == 1);
1938
return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
1939
#else
1940
return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags) :
1941
HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, flags);
1942
#endif
1943
}
1944
}
1945
1946