Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmzstd/lib/decompress/zstd_decompress_block.c
5053 views
1
/*
2
* Copyright (c) Meta Platforms, Inc. and affiliates.
3
* All rights reserved.
4
*
5
* This source code is licensed under both the BSD-style license (found in the
6
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
7
* in the COPYING file in the root directory of this source tree).
8
* You may select, at your option, one of the above-listed licenses.
9
*/
10
11
/* zstd_decompress_block :
12
* this module takes care of decompressing _compressed_ block */
13
14
/*-*******************************************************
15
* Dependencies
16
*********************************************************/
17
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */
18
#include "../common/compiler.h" /* prefetch */
19
#include "../common/cpu.h" /* bmi2 */
20
#include "../common/mem.h" /* low level memory routines */
21
#define FSE_STATIC_LINKING_ONLY
22
#include "../common/fse.h"
23
#include "../common/huf.h"
24
#include "../common/zstd_internal.h"
25
#include "zstd_decompress_internal.h" /* ZSTD_DCtx */
26
#include "zstd_ddict.h" /* ZSTD_DDictDictContent */
27
#include "zstd_decompress_block.h"
28
#include "../common/bits.h" /* ZSTD_highbit32 */
29
30
/*_*******************************************************
31
* Macros
32
**********************************************************/
33
34
/* These two optional macros force the use one way or another of the two
35
* ZSTD_decompressSequences implementations. You can't force in both directions
36
* at the same time.
37
*/
38
#if defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
39
defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
40
#error "Cannot force the use of the short and the long ZSTD_decompressSequences variants!"
41
#endif
42
43
44
/*_*******************************************************
45
* Memory operations
46
**********************************************************/
47
static void ZSTD_copy4(void* dst, const void* src) { ZSTD_memcpy(dst, src, 4); }
48
49
50
/*-*************************************************************
51
* Block decoding
52
***************************************************************/
53
54
static size_t ZSTD_blockSizeMax(ZSTD_DCtx const* dctx)
55
{
56
size_t const blockSizeMax = dctx->isFrameDecompression ? dctx->fParams.blockSizeMax : ZSTD_BLOCKSIZE_MAX;
57
assert(blockSizeMax <= ZSTD_BLOCKSIZE_MAX);
58
return blockSizeMax;
59
}
60
61
/*! ZSTD_getcBlockSize() :
62
* Provides the size of compressed block from block header `src` */
63
size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
64
blockProperties_t* bpPtr)
65
{
66
RETURN_ERROR_IF(srcSize < ZSTD_blockHeaderSize, srcSize_wrong, "");
67
68
{ U32 const cBlockHeader = MEM_readLE24(src);
69
U32 const cSize = cBlockHeader >> 3;
70
bpPtr->lastBlock = cBlockHeader & 1;
71
bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3);
72
bpPtr->origSize = cSize; /* only useful for RLE */
73
if (bpPtr->blockType == bt_rle) return 1;
74
RETURN_ERROR_IF(bpPtr->blockType == bt_reserved, corruption_detected, "");
75
return cSize;
76
}
77
}
78
79
/* Allocate buffer for literals, either overlapping current dst, or split between dst and litExtraBuffer, or stored entirely within litExtraBuffer */
80
static void ZSTD_allocateLiteralsBuffer(ZSTD_DCtx* dctx, void* const dst, const size_t dstCapacity, const size_t litSize,
81
const streaming_operation streaming, const size_t expectedWriteSize, const unsigned splitImmediately)
82
{
83
size_t const blockSizeMax = ZSTD_blockSizeMax(dctx);
84
assert(litSize <= blockSizeMax);
85
assert(dctx->isFrameDecompression || streaming == not_streaming);
86
assert(expectedWriteSize <= blockSizeMax);
87
if (streaming == not_streaming && dstCapacity > blockSizeMax + WILDCOPY_OVERLENGTH + litSize + WILDCOPY_OVERLENGTH) {
88
/* If we aren't streaming, we can just put the literals after the output
89
* of the current block. We don't need to worry about overwriting the
90
* extDict of our window, because it doesn't exist.
91
* So if we have space after the end of the block, just put it there.
92
*/
93
dctx->litBuffer = (BYTE*)dst + blockSizeMax + WILDCOPY_OVERLENGTH;
94
dctx->litBufferEnd = dctx->litBuffer + litSize;
95
dctx->litBufferLocation = ZSTD_in_dst;
96
} else if (litSize <= ZSTD_LITBUFFEREXTRASIZE) {
97
/* Literals fit entirely within the extra buffer, put them there to avoid
98
* having to split the literals.
99
*/
100
dctx->litBuffer = dctx->litExtraBuffer;
101
dctx->litBufferEnd = dctx->litBuffer + litSize;
102
dctx->litBufferLocation = ZSTD_not_in_dst;
103
} else {
104
assert(blockSizeMax > ZSTD_LITBUFFEREXTRASIZE);
105
/* Literals must be split between the output block and the extra lit
106
* buffer. We fill the extra lit buffer with the tail of the literals,
107
* and put the rest of the literals at the end of the block, with
108
* WILDCOPY_OVERLENGTH of buffer room to allow for overreads.
109
* This MUST not write more than our maxBlockSize beyond dst, because in
110
* streaming mode, that could overwrite part of our extDict window.
111
*/
112
if (splitImmediately) {
113
/* won't fit in litExtraBuffer, so it will be split between end of dst and extra buffer */
114
dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH;
115
dctx->litBufferEnd = dctx->litBuffer + litSize - ZSTD_LITBUFFEREXTRASIZE;
116
} else {
117
/* initially this will be stored entirely in dst during huffman decoding, it will partially be shifted to litExtraBuffer after */
118
dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize;
119
dctx->litBufferEnd = (BYTE*)dst + expectedWriteSize;
120
}
121
dctx->litBufferLocation = ZSTD_split;
122
assert(dctx->litBufferEnd <= (BYTE*)dst + expectedWriteSize);
123
}
124
}
125
126
/*! ZSTD_decodeLiteralsBlock() :
127
* Where it is possible to do so without being stomped by the output during decompression, the literals block will be stored
128
* in the dstBuffer. If there is room to do so, it will be stored in full in the excess dst space after where the current
129
* block will be output. Otherwise it will be stored at the end of the current dst blockspace, with a small portion being
130
* stored in dctx->litExtraBuffer to help keep it "ahead" of the current output write.
131
*
132
* @return : nb of bytes read from src (< srcSize )
133
* note : symbol not declared but exposed for fullbench */
134
static size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
135
const void* src, size_t srcSize, /* note : srcSize < BLOCKSIZE */
136
void* dst, size_t dstCapacity, const streaming_operation streaming)
137
{
138
DEBUGLOG(5, "ZSTD_decodeLiteralsBlock");
139
RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected, "");
140
141
{ const BYTE* const istart = (const BYTE*) src;
142
SymbolEncodingType_e const litEncType = (SymbolEncodingType_e)(istart[0] & 3);
143
size_t const blockSizeMax = ZSTD_blockSizeMax(dctx);
144
145
switch(litEncType)
146
{
147
case set_repeat:
148
DEBUGLOG(5, "set_repeat flag : re-using stats from previous compressed literals block");
149
RETURN_ERROR_IF(dctx->litEntropy==0, dictionary_corrupted, "");
150
ZSTD_FALLTHROUGH;
151
152
case set_compressed:
153
RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need up to 5 for case 3");
154
{ size_t lhSize, litSize, litCSize;
155
U32 singleStream=0;
156
U32 const lhlCode = (istart[0] >> 2) & 3;
157
U32 const lhc = MEM_readLE32(istart);
158
size_t hufSuccess;
159
size_t expectedWriteSize = MIN(blockSizeMax, dstCapacity);
160
int const flags = 0
161
| (ZSTD_DCtx_get_bmi2(dctx) ? HUF_flags_bmi2 : 0)
162
| (dctx->disableHufAsm ? HUF_flags_disableAsm : 0);
163
switch(lhlCode)
164
{
165
case 0: case 1: default: /* note : default is impossible, since lhlCode into [0..3] */
166
/* 2 - 2 - 10 - 10 */
167
singleStream = !lhlCode;
168
lhSize = 3;
169
litSize = (lhc >> 4) & 0x3FF;
170
litCSize = (lhc >> 14) & 0x3FF;
171
break;
172
case 2:
173
/* 2 - 2 - 14 - 14 */
174
lhSize = 4;
175
litSize = (lhc >> 4) & 0x3FFF;
176
litCSize = lhc >> 18;
177
break;
178
case 3:
179
/* 2 - 2 - 18 - 18 */
180
lhSize = 5;
181
litSize = (lhc >> 4) & 0x3FFFF;
182
litCSize = (lhc >> 22) + ((size_t)istart[4] << 10);
183
break;
184
}
185
RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
186
RETURN_ERROR_IF(litSize > blockSizeMax, corruption_detected, "");
187
if (!singleStream)
188
RETURN_ERROR_IF(litSize < MIN_LITERALS_FOR_4_STREAMS, literals_headerWrong,
189
"Not enough literals (%zu) for the 4-streams mode (min %u)",
190
litSize, MIN_LITERALS_FOR_4_STREAMS);
191
RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected, "");
192
RETURN_ERROR_IF(expectedWriteSize < litSize , dstSize_tooSmall, "");
193
ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 0);
194
195
/* prefetch huffman table if cold */
196
if (dctx->ddictIsCold && (litSize > 768 /* heuristic */)) {
197
PREFETCH_AREA(dctx->HUFptr, sizeof(dctx->entropy.hufTable));
198
}
199
200
if (litEncType==set_repeat) {
201
if (singleStream) {
202
hufSuccess = HUF_decompress1X_usingDTable(
203
dctx->litBuffer, litSize, istart+lhSize, litCSize,
204
dctx->HUFptr, flags);
205
} else {
206
assert(litSize >= MIN_LITERALS_FOR_4_STREAMS);
207
hufSuccess = HUF_decompress4X_usingDTable(
208
dctx->litBuffer, litSize, istart+lhSize, litCSize,
209
dctx->HUFptr, flags);
210
}
211
} else {
212
if (singleStream) {
213
#if defined(HUF_FORCE_DECOMPRESS_X2)
214
hufSuccess = HUF_decompress1X_DCtx_wksp(
215
dctx->entropy.hufTable, dctx->litBuffer, litSize,
216
istart+lhSize, litCSize, dctx->workspace,
217
sizeof(dctx->workspace), flags);
218
#else
219
hufSuccess = HUF_decompress1X1_DCtx_wksp(
220
dctx->entropy.hufTable, dctx->litBuffer, litSize,
221
istart+lhSize, litCSize, dctx->workspace,
222
sizeof(dctx->workspace), flags);
223
#endif
224
} else {
225
hufSuccess = HUF_decompress4X_hufOnly_wksp(
226
dctx->entropy.hufTable, dctx->litBuffer, litSize,
227
istart+lhSize, litCSize, dctx->workspace,
228
sizeof(dctx->workspace), flags);
229
}
230
}
231
if (dctx->litBufferLocation == ZSTD_split)
232
{
233
assert(litSize > ZSTD_LITBUFFEREXTRASIZE);
234
ZSTD_memcpy(dctx->litExtraBuffer, dctx->litBufferEnd - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE);
235
ZSTD_memmove(dctx->litBuffer + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH, dctx->litBuffer, litSize - ZSTD_LITBUFFEREXTRASIZE);
236
dctx->litBuffer += ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH;
237
dctx->litBufferEnd -= WILDCOPY_OVERLENGTH;
238
assert(dctx->litBufferEnd <= (BYTE*)dst + blockSizeMax);
239
}
240
241
RETURN_ERROR_IF(HUF_isError(hufSuccess), corruption_detected, "");
242
243
dctx->litPtr = dctx->litBuffer;
244
dctx->litSize = litSize;
245
dctx->litEntropy = 1;
246
if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable;
247
return litCSize + lhSize;
248
}
249
250
case set_basic:
251
{ size_t litSize, lhSize;
252
U32 const lhlCode = ((istart[0]) >> 2) & 3;
253
size_t expectedWriteSize = MIN(blockSizeMax, dstCapacity);
254
switch(lhlCode)
255
{
256
case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */
257
lhSize = 1;
258
litSize = istart[0] >> 3;
259
break;
260
case 1:
261
lhSize = 2;
262
litSize = MEM_readLE16(istart) >> 4;
263
break;
264
case 3:
265
lhSize = 3;
266
RETURN_ERROR_IF(srcSize<3, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize = 3");
267
litSize = MEM_readLE24(istart) >> 4;
268
break;
269
}
270
271
RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
272
RETURN_ERROR_IF(litSize > blockSizeMax, corruption_detected, "");
273
RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, "");
274
ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1);
275
if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */
276
RETURN_ERROR_IF(litSize+lhSize > srcSize, corruption_detected, "");
277
if (dctx->litBufferLocation == ZSTD_split)
278
{
279
ZSTD_memcpy(dctx->litBuffer, istart + lhSize, litSize - ZSTD_LITBUFFEREXTRASIZE);
280
ZSTD_memcpy(dctx->litExtraBuffer, istart + lhSize + litSize - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE);
281
}
282
else
283
{
284
ZSTD_memcpy(dctx->litBuffer, istart + lhSize, litSize);
285
}
286
dctx->litPtr = dctx->litBuffer;
287
dctx->litSize = litSize;
288
return lhSize+litSize;
289
}
290
/* direct reference into compressed stream */
291
dctx->litPtr = istart+lhSize;
292
dctx->litSize = litSize;
293
dctx->litBufferEnd = dctx->litPtr + litSize;
294
dctx->litBufferLocation = ZSTD_not_in_dst;
295
return lhSize+litSize;
296
}
297
298
case set_rle:
299
{ U32 const lhlCode = ((istart[0]) >> 2) & 3;
300
size_t litSize, lhSize;
301
size_t expectedWriteSize = MIN(blockSizeMax, dstCapacity);
302
switch(lhlCode)
303
{
304
case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */
305
lhSize = 1;
306
litSize = istart[0] >> 3;
307
break;
308
case 1:
309
lhSize = 2;
310
RETURN_ERROR_IF(srcSize<3, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize+1 = 3");
311
litSize = MEM_readLE16(istart) >> 4;
312
break;
313
case 3:
314
lhSize = 3;
315
RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize+1 = 4");
316
litSize = MEM_readLE24(istart) >> 4;
317
break;
318
}
319
RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
320
RETURN_ERROR_IF(litSize > blockSizeMax, corruption_detected, "");
321
RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, "");
322
ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1);
323
if (dctx->litBufferLocation == ZSTD_split)
324
{
325
ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize - ZSTD_LITBUFFEREXTRASIZE);
326
ZSTD_memset(dctx->litExtraBuffer, istart[lhSize], ZSTD_LITBUFFEREXTRASIZE);
327
}
328
else
329
{
330
ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize);
331
}
332
dctx->litPtr = dctx->litBuffer;
333
dctx->litSize = litSize;
334
return lhSize+1;
335
}
336
default:
337
RETURN_ERROR(corruption_detected, "impossible");
338
}
339
}
340
}
341
342
/* Hidden declaration for fullbench */
343
size_t ZSTD_decodeLiteralsBlock_wrapper(ZSTD_DCtx* dctx,
344
const void* src, size_t srcSize,
345
void* dst, size_t dstCapacity);
346
size_t ZSTD_decodeLiteralsBlock_wrapper(ZSTD_DCtx* dctx,
347
const void* src, size_t srcSize,
348
void* dst, size_t dstCapacity)
349
{
350
dctx->isFrameDecompression = 0;
351
return ZSTD_decodeLiteralsBlock(dctx, src, srcSize, dst, dstCapacity, not_streaming);
352
}
353
354
/* Default FSE distribution tables.
355
* These are pre-calculated FSE decoding tables using default distributions as defined in specification :
356
* https://github.com/facebook/zstd/blob/release/doc/zstd_compression_format.md#default-distributions
357
* They were generated programmatically with following method :
358
* - start from default distributions, present in /lib/common/zstd_internal.h
359
* - generate tables normally, using ZSTD_buildFSETable()
360
* - printout the content of tables
361
* - prettify output, report below, test with fuzzer to ensure it's correct */
362
363
/* Default FSE distribution table for Literal Lengths */
364
static const ZSTD_seqSymbol LL_defaultDTable[(1<<LL_DEFAULTNORMLOG)+1] = {
365
{ 1, 1, 1, LL_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
366
/* nextState, nbAddBits, nbBits, baseVal */
367
{ 0, 0, 4, 0}, { 16, 0, 4, 0},
368
{ 32, 0, 5, 1}, { 0, 0, 5, 3},
369
{ 0, 0, 5, 4}, { 0, 0, 5, 6},
370
{ 0, 0, 5, 7}, { 0, 0, 5, 9},
371
{ 0, 0, 5, 10}, { 0, 0, 5, 12},
372
{ 0, 0, 6, 14}, { 0, 1, 5, 16},
373
{ 0, 1, 5, 20}, { 0, 1, 5, 22},
374
{ 0, 2, 5, 28}, { 0, 3, 5, 32},
375
{ 0, 4, 5, 48}, { 32, 6, 5, 64},
376
{ 0, 7, 5, 128}, { 0, 8, 6, 256},
377
{ 0, 10, 6, 1024}, { 0, 12, 6, 4096},
378
{ 32, 0, 4, 0}, { 0, 0, 4, 1},
379
{ 0, 0, 5, 2}, { 32, 0, 5, 4},
380
{ 0, 0, 5, 5}, { 32, 0, 5, 7},
381
{ 0, 0, 5, 8}, { 32, 0, 5, 10},
382
{ 0, 0, 5, 11}, { 0, 0, 6, 13},
383
{ 32, 1, 5, 16}, { 0, 1, 5, 18},
384
{ 32, 1, 5, 22}, { 0, 2, 5, 24},
385
{ 32, 3, 5, 32}, { 0, 3, 5, 40},
386
{ 0, 6, 4, 64}, { 16, 6, 4, 64},
387
{ 32, 7, 5, 128}, { 0, 9, 6, 512},
388
{ 0, 11, 6, 2048}, { 48, 0, 4, 0},
389
{ 16, 0, 4, 1}, { 32, 0, 5, 2},
390
{ 32, 0, 5, 3}, { 32, 0, 5, 5},
391
{ 32, 0, 5, 6}, { 32, 0, 5, 8},
392
{ 32, 0, 5, 9}, { 32, 0, 5, 11},
393
{ 32, 0, 5, 12}, { 0, 0, 6, 15},
394
{ 32, 1, 5, 18}, { 32, 1, 5, 20},
395
{ 32, 2, 5, 24}, { 32, 2, 5, 28},
396
{ 32, 3, 5, 40}, { 32, 4, 5, 48},
397
{ 0, 16, 6,65536}, { 0, 15, 6,32768},
398
{ 0, 14, 6,16384}, { 0, 13, 6, 8192},
399
}; /* LL_defaultDTable */
400
401
/* Default FSE distribution table for Offset Codes */
402
static const ZSTD_seqSymbol OF_defaultDTable[(1<<OF_DEFAULTNORMLOG)+1] = {
403
{ 1, 1, 1, OF_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
404
/* nextState, nbAddBits, nbBits, baseVal */
405
{ 0, 0, 5, 0}, { 0, 6, 4, 61},
406
{ 0, 9, 5, 509}, { 0, 15, 5,32765},
407
{ 0, 21, 5,2097149}, { 0, 3, 5, 5},
408
{ 0, 7, 4, 125}, { 0, 12, 5, 4093},
409
{ 0, 18, 5,262141}, { 0, 23, 5,8388605},
410
{ 0, 5, 5, 29}, { 0, 8, 4, 253},
411
{ 0, 14, 5,16381}, { 0, 20, 5,1048573},
412
{ 0, 2, 5, 1}, { 16, 7, 4, 125},
413
{ 0, 11, 5, 2045}, { 0, 17, 5,131069},
414
{ 0, 22, 5,4194301}, { 0, 4, 5, 13},
415
{ 16, 8, 4, 253}, { 0, 13, 5, 8189},
416
{ 0, 19, 5,524285}, { 0, 1, 5, 1},
417
{ 16, 6, 4, 61}, { 0, 10, 5, 1021},
418
{ 0, 16, 5,65533}, { 0, 28, 5,268435453},
419
{ 0, 27, 5,134217725}, { 0, 26, 5,67108861},
420
{ 0, 25, 5,33554429}, { 0, 24, 5,16777213},
421
}; /* OF_defaultDTable */
422
423
424
/* Default FSE distribution table for Match Lengths */
425
static const ZSTD_seqSymbol ML_defaultDTable[(1<<ML_DEFAULTNORMLOG)+1] = {
426
{ 1, 1, 1, ML_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
427
/* nextState, nbAddBits, nbBits, baseVal */
428
{ 0, 0, 6, 3}, { 0, 0, 4, 4},
429
{ 32, 0, 5, 5}, { 0, 0, 5, 6},
430
{ 0, 0, 5, 8}, { 0, 0, 5, 9},
431
{ 0, 0, 5, 11}, { 0, 0, 6, 13},
432
{ 0, 0, 6, 16}, { 0, 0, 6, 19},
433
{ 0, 0, 6, 22}, { 0, 0, 6, 25},
434
{ 0, 0, 6, 28}, { 0, 0, 6, 31},
435
{ 0, 0, 6, 34}, { 0, 1, 6, 37},
436
{ 0, 1, 6, 41}, { 0, 2, 6, 47},
437
{ 0, 3, 6, 59}, { 0, 4, 6, 83},
438
{ 0, 7, 6, 131}, { 0, 9, 6, 515},
439
{ 16, 0, 4, 4}, { 0, 0, 4, 5},
440
{ 32, 0, 5, 6}, { 0, 0, 5, 7},
441
{ 32, 0, 5, 9}, { 0, 0, 5, 10},
442
{ 0, 0, 6, 12}, { 0, 0, 6, 15},
443
{ 0, 0, 6, 18}, { 0, 0, 6, 21},
444
{ 0, 0, 6, 24}, { 0, 0, 6, 27},
445
{ 0, 0, 6, 30}, { 0, 0, 6, 33},
446
{ 0, 1, 6, 35}, { 0, 1, 6, 39},
447
{ 0, 2, 6, 43}, { 0, 3, 6, 51},
448
{ 0, 4, 6, 67}, { 0, 5, 6, 99},
449
{ 0, 8, 6, 259}, { 32, 0, 4, 4},
450
{ 48, 0, 4, 4}, { 16, 0, 4, 5},
451
{ 32, 0, 5, 7}, { 32, 0, 5, 8},
452
{ 32, 0, 5, 10}, { 32, 0, 5, 11},
453
{ 0, 0, 6, 14}, { 0, 0, 6, 17},
454
{ 0, 0, 6, 20}, { 0, 0, 6, 23},
455
{ 0, 0, 6, 26}, { 0, 0, 6, 29},
456
{ 0, 0, 6, 32}, { 0, 16, 6,65539},
457
{ 0, 15, 6,32771}, { 0, 14, 6,16387},
458
{ 0, 13, 6, 8195}, { 0, 12, 6, 4099},
459
{ 0, 11, 6, 2051}, { 0, 10, 6, 1027},
460
}; /* ML_defaultDTable */
461
462
463
static void ZSTD_buildSeqTable_rle(ZSTD_seqSymbol* dt, U32 baseValue, U8 nbAddBits)
464
{
465
void* ptr = dt;
466
ZSTD_seqSymbol_header* const DTableH = (ZSTD_seqSymbol_header*)ptr;
467
ZSTD_seqSymbol* const cell = dt + 1;
468
469
DTableH->tableLog = 0;
470
DTableH->fastMode = 0;
471
472
cell->nbBits = 0;
473
cell->nextState = 0;
474
assert(nbAddBits < 255);
475
cell->nbAdditionalBits = nbAddBits;
476
cell->baseValue = baseValue;
477
}
478
479
480
/* ZSTD_buildFSETable() :
481
* generate FSE decoding table for one symbol (ll, ml or off)
482
* cannot fail if input is valid =>
483
* all inputs are presumed validated at this stage */
484
FORCE_INLINE_TEMPLATE
485
void ZSTD_buildFSETable_body(ZSTD_seqSymbol* dt,
486
const short* normalizedCounter, unsigned maxSymbolValue,
487
const U32* baseValue, const U8* nbAdditionalBits,
488
unsigned tableLog, void* wksp, size_t wkspSize)
489
{
490
ZSTD_seqSymbol* const tableDecode = dt+1;
491
U32 const maxSV1 = maxSymbolValue + 1;
492
U32 const tableSize = 1 << tableLog;
493
494
U16* symbolNext = (U16*)wksp;
495
BYTE* spread = (BYTE*)(symbolNext + MaxSeq + 1);
496
U32 highThreshold = tableSize - 1;
497
498
499
/* Sanity Checks */
500
assert(maxSymbolValue <= MaxSeq);
501
assert(tableLog <= MaxFSELog);
502
assert(wkspSize >= ZSTD_BUILD_FSE_TABLE_WKSP_SIZE);
503
(void)wkspSize;
504
/* Init, lay down lowprob symbols */
505
{ ZSTD_seqSymbol_header DTableH;
506
DTableH.tableLog = tableLog;
507
DTableH.fastMode = 1;
508
{ S16 const largeLimit= (S16)(1 << (tableLog-1));
509
U32 s;
510
for (s=0; s<maxSV1; s++) {
511
if (normalizedCounter[s]==-1) {
512
tableDecode[highThreshold--].baseValue = s;
513
symbolNext[s] = 1;
514
} else {
515
if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
516
assert(normalizedCounter[s]>=0);
517
symbolNext[s] = (U16)normalizedCounter[s];
518
} } }
519
ZSTD_memcpy(dt, &DTableH, sizeof(DTableH));
520
}
521
522
/* Spread symbols */
523
assert(tableSize <= 512);
524
/* Specialized symbol spreading for the case when there are
525
* no low probability (-1 count) symbols. When compressing
526
* small blocks we avoid low probability symbols to hit this
527
* case, since header decoding speed matters more.
528
*/
529
if (highThreshold == tableSize - 1) {
530
size_t const tableMask = tableSize-1;
531
size_t const step = FSE_TABLESTEP(tableSize);
532
/* First lay down the symbols in order.
533
* We use a uint64_t to lay down 8 bytes at a time. This reduces branch
534
* misses since small blocks generally have small table logs, so nearly
535
* all symbols have counts <= 8. We ensure we have 8 bytes at the end of
536
* our buffer to handle the over-write.
537
*/
538
{
539
U64 const add = 0x0101010101010101ull;
540
size_t pos = 0;
541
U64 sv = 0;
542
U32 s;
543
for (s=0; s<maxSV1; ++s, sv += add) {
544
int i;
545
int const n = normalizedCounter[s];
546
MEM_write64(spread + pos, sv);
547
for (i = 8; i < n; i += 8) {
548
MEM_write64(spread + pos + i, sv);
549
}
550
assert(n>=0);
551
pos += (size_t)n;
552
}
553
}
554
/* Now we spread those positions across the table.
555
* The benefit of doing it in two stages is that we avoid the
556
* variable size inner loop, which caused lots of branch misses.
557
* Now we can run through all the positions without any branch misses.
558
* We unroll the loop twice, since that is what empirically worked best.
559
*/
560
{
561
size_t position = 0;
562
size_t s;
563
size_t const unroll = 2;
564
assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */
565
for (s = 0; s < (size_t)tableSize; s += unroll) {
566
size_t u;
567
for (u = 0; u < unroll; ++u) {
568
size_t const uPosition = (position + (u * step)) & tableMask;
569
tableDecode[uPosition].baseValue = spread[s + u];
570
}
571
position = (position + (unroll * step)) & tableMask;
572
}
573
assert(position == 0);
574
}
575
} else {
576
U32 const tableMask = tableSize-1;
577
U32 const step = FSE_TABLESTEP(tableSize);
578
U32 s, position = 0;
579
for (s=0; s<maxSV1; s++) {
580
int i;
581
int const n = normalizedCounter[s];
582
for (i=0; i<n; i++) {
583
tableDecode[position].baseValue = s;
584
position = (position + step) & tableMask;
585
while (UNLIKELY(position > highThreshold)) position = (position + step) & tableMask; /* lowprob area */
586
} }
587
assert(position == 0); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
588
}
589
590
/* Build Decoding table */
591
{
592
U32 u;
593
for (u=0; u<tableSize; u++) {
594
U32 const symbol = tableDecode[u].baseValue;
595
U32 const nextState = symbolNext[symbol]++;
596
tableDecode[u].nbBits = (BYTE) (tableLog - ZSTD_highbit32(nextState) );
597
tableDecode[u].nextState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
598
assert(nbAdditionalBits[symbol] < 255);
599
tableDecode[u].nbAdditionalBits = nbAdditionalBits[symbol];
600
tableDecode[u].baseValue = baseValue[symbol];
601
}
602
}
603
}
604
605
/* Avoids the FORCE_INLINE of the _body() function. */
606
static void ZSTD_buildFSETable_body_default(ZSTD_seqSymbol* dt,
607
const short* normalizedCounter, unsigned maxSymbolValue,
608
const U32* baseValue, const U8* nbAdditionalBits,
609
unsigned tableLog, void* wksp, size_t wkspSize)
610
{
611
ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue,
612
baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
613
}
614
615
#if DYNAMIC_BMI2
616
BMI2_TARGET_ATTRIBUTE static void ZSTD_buildFSETable_body_bmi2(ZSTD_seqSymbol* dt,
617
const short* normalizedCounter, unsigned maxSymbolValue,
618
const U32* baseValue, const U8* nbAdditionalBits,
619
unsigned tableLog, void* wksp, size_t wkspSize)
620
{
621
ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue,
622
baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
623
}
624
#endif
625
626
void ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
627
const short* normalizedCounter, unsigned maxSymbolValue,
628
const U32* baseValue, const U8* nbAdditionalBits,
629
unsigned tableLog, void* wksp, size_t wkspSize, int bmi2)
630
{
631
#if DYNAMIC_BMI2
632
if (bmi2) {
633
ZSTD_buildFSETable_body_bmi2(dt, normalizedCounter, maxSymbolValue,
634
baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
635
return;
636
}
637
#endif
638
(void)bmi2;
639
ZSTD_buildFSETable_body_default(dt, normalizedCounter, maxSymbolValue,
640
baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
641
}
642
643
644
/*! ZSTD_buildSeqTable() :
645
* @return : nb bytes read from src,
646
* or an error code if it fails */
647
static size_t ZSTD_buildSeqTable(ZSTD_seqSymbol* DTableSpace, const ZSTD_seqSymbol** DTablePtr,
648
SymbolEncodingType_e type, unsigned max, U32 maxLog,
649
const void* src, size_t srcSize,
650
const U32* baseValue, const U8* nbAdditionalBits,
651
const ZSTD_seqSymbol* defaultTable, U32 flagRepeatTable,
652
int ddictIsCold, int nbSeq, U32* wksp, size_t wkspSize,
653
int bmi2)
654
{
655
switch(type)
656
{
657
case set_rle :
658
RETURN_ERROR_IF(!srcSize, srcSize_wrong, "");
659
RETURN_ERROR_IF((*(const BYTE*)src) > max, corruption_detected, "");
660
{ U32 const symbol = *(const BYTE*)src;
661
U32 const baseline = baseValue[symbol];
662
U8 const nbBits = nbAdditionalBits[symbol];
663
ZSTD_buildSeqTable_rle(DTableSpace, baseline, nbBits);
664
}
665
*DTablePtr = DTableSpace;
666
return 1;
667
case set_basic :
668
*DTablePtr = defaultTable;
669
return 0;
670
case set_repeat:
671
RETURN_ERROR_IF(!flagRepeatTable, corruption_detected, "");
672
/* prefetch FSE table if used */
673
if (ddictIsCold && (nbSeq > 24 /* heuristic */)) {
674
const void* const pStart = *DTablePtr;
675
size_t const pSize = sizeof(ZSTD_seqSymbol) * (SEQSYMBOL_TABLE_SIZE(maxLog));
676
PREFETCH_AREA(pStart, pSize);
677
}
678
return 0;
679
case set_compressed :
680
{ unsigned tableLog;
681
S16 norm[MaxSeq+1];
682
size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize);
683
RETURN_ERROR_IF(FSE_isError(headerSize), corruption_detected, "");
684
RETURN_ERROR_IF(tableLog > maxLog, corruption_detected, "");
685
ZSTD_buildFSETable(DTableSpace, norm, max, baseValue, nbAdditionalBits, tableLog, wksp, wkspSize, bmi2);
686
*DTablePtr = DTableSpace;
687
return headerSize;
688
}
689
default :
690
assert(0);
691
RETURN_ERROR(GENERIC, "impossible");
692
}
693
}
694
695
size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
696
const void* src, size_t srcSize)
697
{
698
const BYTE* const istart = (const BYTE*)src;
699
const BYTE* const iend = istart + srcSize;
700
const BYTE* ip = istart;
701
int nbSeq;
702
DEBUGLOG(5, "ZSTD_decodeSeqHeaders");
703
704
/* check */
705
RETURN_ERROR_IF(srcSize < MIN_SEQUENCES_SIZE, srcSize_wrong, "");
706
707
/* SeqHead */
708
nbSeq = *ip++;
709
if (nbSeq > 0x7F) {
710
if (nbSeq == 0xFF) {
711
RETURN_ERROR_IF(ip+2 > iend, srcSize_wrong, "");
712
nbSeq = MEM_readLE16(ip) + LONGNBSEQ;
713
ip+=2;
714
} else {
715
RETURN_ERROR_IF(ip >= iend, srcSize_wrong, "");
716
nbSeq = ((nbSeq-0x80)<<8) + *ip++;
717
}
718
}
719
*nbSeqPtr = nbSeq;
720
721
if (nbSeq == 0) {
722
/* No sequence : section ends immediately */
723
RETURN_ERROR_IF(ip != iend, corruption_detected,
724
"extraneous data present in the Sequences section");
725
return (size_t)(ip - istart);
726
}
727
728
/* FSE table descriptors */
729
RETURN_ERROR_IF(ip+1 > iend, srcSize_wrong, ""); /* minimum possible size: 1 byte for symbol encoding types */
730
RETURN_ERROR_IF(*ip & 3, corruption_detected, ""); /* The last field, Reserved, must be all-zeroes. */
731
{ SymbolEncodingType_e const LLtype = (SymbolEncodingType_e)(*ip >> 6);
732
SymbolEncodingType_e const OFtype = (SymbolEncodingType_e)((*ip >> 4) & 3);
733
SymbolEncodingType_e const MLtype = (SymbolEncodingType_e)((*ip >> 2) & 3);
734
ip++;
735
736
/* Build DTables */
737
{ size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr,
738
LLtype, MaxLL, LLFSELog,
739
ip, iend-ip,
740
LL_base, LL_bits,
741
LL_defaultDTable, dctx->fseEntropy,
742
dctx->ddictIsCold, nbSeq,
743
dctx->workspace, sizeof(dctx->workspace),
744
ZSTD_DCtx_get_bmi2(dctx));
745
RETURN_ERROR_IF(ZSTD_isError(llhSize), corruption_detected, "ZSTD_buildSeqTable failed");
746
ip += llhSize;
747
}
748
749
{ size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr,
750
OFtype, MaxOff, OffFSELog,
751
ip, iend-ip,
752
OF_base, OF_bits,
753
OF_defaultDTable, dctx->fseEntropy,
754
dctx->ddictIsCold, nbSeq,
755
dctx->workspace, sizeof(dctx->workspace),
756
ZSTD_DCtx_get_bmi2(dctx));
757
RETURN_ERROR_IF(ZSTD_isError(ofhSize), corruption_detected, "ZSTD_buildSeqTable failed");
758
ip += ofhSize;
759
}
760
761
{ size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr,
762
MLtype, MaxML, MLFSELog,
763
ip, iend-ip,
764
ML_base, ML_bits,
765
ML_defaultDTable, dctx->fseEntropy,
766
dctx->ddictIsCold, nbSeq,
767
dctx->workspace, sizeof(dctx->workspace),
768
ZSTD_DCtx_get_bmi2(dctx));
769
RETURN_ERROR_IF(ZSTD_isError(mlhSize), corruption_detected, "ZSTD_buildSeqTable failed");
770
ip += mlhSize;
771
}
772
}
773
774
return ip-istart;
775
}
776
777
778
typedef struct {
779
size_t litLength;
780
size_t matchLength;
781
size_t offset;
782
} seq_t;
783
784
typedef struct {
785
size_t state;
786
const ZSTD_seqSymbol* table;
787
} ZSTD_fseState;
788
789
typedef struct {
790
BIT_DStream_t DStream;
791
ZSTD_fseState stateLL;
792
ZSTD_fseState stateOffb;
793
ZSTD_fseState stateML;
794
size_t prevOffset[ZSTD_REP_NUM];
795
} seqState_t;
796
797
/*! ZSTD_overlapCopy8() :
798
* Copies 8 bytes from ip to op and updates op and ip where ip <= op.
799
* If the offset is < 8 then the offset is spread to at least 8 bytes.
800
*
801
* Precondition: *ip <= *op
802
* Postcondition: *op - *op >= 8
803
*/
804
HINT_INLINE void ZSTD_overlapCopy8(BYTE** op, BYTE const** ip, size_t offset) {
805
assert(*ip <= *op);
806
if (offset < 8) {
807
/* close range match, overlap */
808
static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
809
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
810
int const sub2 = dec64table[offset];
811
(*op)[0] = (*ip)[0];
812
(*op)[1] = (*ip)[1];
813
(*op)[2] = (*ip)[2];
814
(*op)[3] = (*ip)[3];
815
*ip += dec32table[offset];
816
ZSTD_copy4(*op+4, *ip);
817
*ip -= sub2;
818
} else {
819
ZSTD_copy8(*op, *ip);
820
}
821
*ip += 8;
822
*op += 8;
823
assert(*op - *ip >= 8);
824
}
825
826
/*! ZSTD_safecopy() :
827
* Specialized version of memcpy() that is allowed to READ up to WILDCOPY_OVERLENGTH past the input buffer
828
* and write up to 16 bytes past oend_w (op >= oend_w is allowed).
829
* This function is only called in the uncommon case where the sequence is near the end of the block. It
830
* should be fast for a single long sequence, but can be slow for several short sequences.
831
*
832
* @param ovtype controls the overlap detection
833
* - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart.
834
* - ZSTD_overlap_src_before_dst: The src and dst may overlap and may be any distance apart.
835
* The src buffer must be before the dst buffer.
836
*/
837
static void ZSTD_safecopy(BYTE* op, const BYTE* const oend_w, BYTE const* ip, ptrdiff_t length, ZSTD_overlap_e ovtype) {
838
ptrdiff_t const diff = op - ip;
839
BYTE* const oend = op + length;
840
841
assert((ovtype == ZSTD_no_overlap && (diff <= -8 || diff >= 8 || op >= oend_w)) ||
842
(ovtype == ZSTD_overlap_src_before_dst && diff >= 0));
843
844
if (length < 8) {
845
/* Handle short lengths. */
846
while (op < oend) *op++ = *ip++;
847
return;
848
}
849
if (ovtype == ZSTD_overlap_src_before_dst) {
850
/* Copy 8 bytes and ensure the offset >= 8 when there can be overlap. */
851
assert(length >= 8);
852
ZSTD_overlapCopy8(&op, &ip, diff);
853
length -= 8;
854
assert(op - ip >= 8);
855
assert(op <= oend);
856
}
857
858
if (oend <= oend_w) {
859
/* No risk of overwrite. */
860
ZSTD_wildcopy(op, ip, length, ovtype);
861
return;
862
}
863
if (op <= oend_w) {
864
/* Wildcopy until we get close to the end. */
865
assert(oend > oend_w);
866
ZSTD_wildcopy(op, ip, oend_w - op, ovtype);
867
ip += oend_w - op;
868
op += oend_w - op;
869
}
870
/* Handle the leftovers. */
871
while (op < oend) *op++ = *ip++;
872
}
873
874
/* ZSTD_safecopyDstBeforeSrc():
875
* This version allows overlap with dst before src, or handles the non-overlap case with dst after src
876
* Kept separate from more common ZSTD_safecopy case to avoid performance impact to the safecopy common case */
877
static void ZSTD_safecopyDstBeforeSrc(BYTE* op, const BYTE* ip, ptrdiff_t length) {
878
ptrdiff_t const diff = op - ip;
879
BYTE* const oend = op + length;
880
881
if (length < 8 || diff > -8) {
882
/* Handle short lengths, close overlaps, and dst not before src. */
883
while (op < oend) *op++ = *ip++;
884
return;
885
}
886
887
if (op <= oend - WILDCOPY_OVERLENGTH && diff < -WILDCOPY_VECLEN) {
888
ZSTD_wildcopy(op, ip, oend - WILDCOPY_OVERLENGTH - op, ZSTD_no_overlap);
889
ip += oend - WILDCOPY_OVERLENGTH - op;
890
op += oend - WILDCOPY_OVERLENGTH - op;
891
}
892
893
/* Handle the leftovers. */
894
while (op < oend) *op++ = *ip++;
895
}
896
897
/* ZSTD_execSequenceEnd():
898
* This version handles cases that are near the end of the output buffer. It requires
899
* more careful checks to make sure there is no overflow. By separating out these hard
900
* and unlikely cases, we can speed up the common cases.
901
*
902
* NOTE: This function needs to be fast for a single long sequence, but doesn't need
903
* to be optimized for many small sequences, since those fall into ZSTD_execSequence().
904
*/
905
FORCE_NOINLINE
906
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
907
size_t ZSTD_execSequenceEnd(BYTE* op,
908
BYTE* const oend, seq_t sequence,
909
const BYTE** litPtr, const BYTE* const litLimit,
910
const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
911
{
912
BYTE* const oLitEnd = op + sequence.litLength;
913
size_t const sequenceLength = sequence.litLength + sequence.matchLength;
914
const BYTE* const iLitEnd = *litPtr + sequence.litLength;
915
const BYTE* match = oLitEnd - sequence.offset;
916
BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
917
918
/* bounds checks : careful of address space overflow in 32-bit mode */
919
RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer");
920
RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer");
921
assert(op < op + sequenceLength);
922
assert(oLitEnd < op + sequenceLength);
923
924
/* copy literals */
925
ZSTD_safecopy(op, oend_w, *litPtr, sequence.litLength, ZSTD_no_overlap);
926
op = oLitEnd;
927
*litPtr = iLitEnd;
928
929
/* copy Match */
930
if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
931
/* offset beyond prefix */
932
RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, "");
933
match = dictEnd - (prefixStart - match);
934
if (match + sequence.matchLength <= dictEnd) {
935
ZSTD_memmove(oLitEnd, match, sequence.matchLength);
936
return sequenceLength;
937
}
938
/* span extDict & currentPrefixSegment */
939
{ size_t const length1 = dictEnd - match;
940
ZSTD_memmove(oLitEnd, match, length1);
941
op = oLitEnd + length1;
942
sequence.matchLength -= length1;
943
match = prefixStart;
944
}
945
}
946
ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
947
return sequenceLength;
948
}
949
950
/* ZSTD_execSequenceEndSplitLitBuffer():
951
* This version is intended to be used during instances where the litBuffer is still split. It is kept separate to avoid performance impact for the good case.
952
*/
953
FORCE_NOINLINE
954
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
955
size_t ZSTD_execSequenceEndSplitLitBuffer(BYTE* op,
956
BYTE* const oend, const BYTE* const oend_w, seq_t sequence,
957
const BYTE** litPtr, const BYTE* const litLimit,
958
const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
959
{
960
BYTE* const oLitEnd = op + sequence.litLength;
961
size_t const sequenceLength = sequence.litLength + sequence.matchLength;
962
const BYTE* const iLitEnd = *litPtr + sequence.litLength;
963
const BYTE* match = oLitEnd - sequence.offset;
964
965
966
/* bounds checks : careful of address space overflow in 32-bit mode */
967
RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer");
968
RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer");
969
assert(op < op + sequenceLength);
970
assert(oLitEnd < op + sequenceLength);
971
972
/* copy literals */
973
RETURN_ERROR_IF(op > *litPtr && op < *litPtr + sequence.litLength, dstSize_tooSmall, "output should not catch up to and overwrite literal buffer");
974
ZSTD_safecopyDstBeforeSrc(op, *litPtr, sequence.litLength);
975
op = oLitEnd;
976
*litPtr = iLitEnd;
977
978
/* copy Match */
979
if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
980
/* offset beyond prefix */
981
RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, "");
982
match = dictEnd - (prefixStart - match);
983
if (match + sequence.matchLength <= dictEnd) {
984
ZSTD_memmove(oLitEnd, match, sequence.matchLength);
985
return sequenceLength;
986
}
987
/* span extDict & currentPrefixSegment */
988
{ size_t const length1 = dictEnd - match;
989
ZSTD_memmove(oLitEnd, match, length1);
990
op = oLitEnd + length1;
991
sequence.matchLength -= length1;
992
match = prefixStart;
993
}
994
}
995
ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
996
return sequenceLength;
997
}
998
999
HINT_INLINE
1000
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
1001
size_t ZSTD_execSequence(BYTE* op,
1002
BYTE* const oend, seq_t sequence,
1003
const BYTE** litPtr, const BYTE* const litLimit,
1004
const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
1005
{
1006
BYTE* const oLitEnd = op + sequence.litLength;
1007
size_t const sequenceLength = sequence.litLength + sequence.matchLength;
1008
BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
1009
BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH; /* risk : address space underflow on oend=NULL */
1010
const BYTE* const iLitEnd = *litPtr + sequence.litLength;
1011
const BYTE* match = oLitEnd - sequence.offset;
1012
1013
assert(op != NULL /* Precondition */);
1014
assert(oend_w < oend /* No underflow */);
1015
1016
#if defined(__aarch64__)
1017
/* prefetch sequence starting from match that will be used for copy later */
1018
PREFETCH_L1(match);
1019
#endif
1020
/* Handle edge cases in a slow path:
1021
* - Read beyond end of literals
1022
* - Match end is within WILDCOPY_OVERLIMIT of oend
1023
* - 32-bit mode and the match length overflows
1024
*/
1025
if (UNLIKELY(
1026
iLitEnd > litLimit ||
1027
oMatchEnd > oend_w ||
1028
(MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH)))
1029
return ZSTD_execSequenceEnd(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
1030
1031
/* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
1032
assert(op <= oLitEnd /* No overflow */);
1033
assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */);
1034
assert(oMatchEnd <= oend /* No underflow */);
1035
assert(iLitEnd <= litLimit /* Literal length is in bounds */);
1036
assert(oLitEnd <= oend_w /* Can wildcopy literals */);
1037
assert(oMatchEnd <= oend_w /* Can wildcopy matches */);
1038
1039
/* Copy Literals:
1040
* Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
1041
* We likely don't need the full 32-byte wildcopy.
1042
*/
1043
assert(WILDCOPY_OVERLENGTH >= 16);
1044
ZSTD_copy16(op, (*litPtr));
1045
if (UNLIKELY(sequence.litLength > 16)) {
1046
ZSTD_wildcopy(op + 16, (*litPtr) + 16, sequence.litLength - 16, ZSTD_no_overlap);
1047
}
1048
op = oLitEnd;
1049
*litPtr = iLitEnd; /* update for next sequence */
1050
1051
/* Copy Match */
1052
if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
1053
/* offset beyond prefix -> go into extDict */
1054
RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, "");
1055
match = dictEnd + (match - prefixStart);
1056
if (match + sequence.matchLength <= dictEnd) {
1057
ZSTD_memmove(oLitEnd, match, sequence.matchLength);
1058
return sequenceLength;
1059
}
1060
/* span extDict & currentPrefixSegment */
1061
{ size_t const length1 = dictEnd - match;
1062
ZSTD_memmove(oLitEnd, match, length1);
1063
op = oLitEnd + length1;
1064
sequence.matchLength -= length1;
1065
match = prefixStart;
1066
}
1067
}
1068
/* Match within prefix of 1 or more bytes */
1069
assert(op <= oMatchEnd);
1070
assert(oMatchEnd <= oend_w);
1071
assert(match >= prefixStart);
1072
assert(sequence.matchLength >= 1);
1073
1074
/* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
1075
* without overlap checking.
1076
*/
1077
if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) {
1078
/* We bet on a full wildcopy for matches, since we expect matches to be
1079
* longer than literals (in general). In silesia, ~10% of matches are longer
1080
* than 16 bytes.
1081
*/
1082
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap);
1083
return sequenceLength;
1084
}
1085
assert(sequence.offset < WILDCOPY_VECLEN);
1086
1087
/* Copy 8 bytes and spread the offset to be >= 8. */
1088
ZSTD_overlapCopy8(&op, &match, sequence.offset);
1089
1090
/* If the match length is > 8 bytes, then continue with the wildcopy. */
1091
if (sequence.matchLength > 8) {
1092
assert(op < oMatchEnd);
1093
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength - 8, ZSTD_overlap_src_before_dst);
1094
}
1095
return sequenceLength;
1096
}
1097
1098
HINT_INLINE
1099
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
1100
size_t ZSTD_execSequenceSplitLitBuffer(BYTE* op,
1101
BYTE* const oend, const BYTE* const oend_w, seq_t sequence,
1102
const BYTE** litPtr, const BYTE* const litLimit,
1103
const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
1104
{
1105
BYTE* const oLitEnd = op + sequence.litLength;
1106
size_t const sequenceLength = sequence.litLength + sequence.matchLength;
1107
BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
1108
const BYTE* const iLitEnd = *litPtr + sequence.litLength;
1109
const BYTE* match = oLitEnd - sequence.offset;
1110
1111
assert(op != NULL /* Precondition */);
1112
assert(oend_w < oend /* No underflow */);
1113
/* Handle edge cases in a slow path:
1114
* - Read beyond end of literals
1115
* - Match end is within WILDCOPY_OVERLIMIT of oend
1116
* - 32-bit mode and the match length overflows
1117
*/
1118
if (UNLIKELY(
1119
iLitEnd > litLimit ||
1120
oMatchEnd > oend_w ||
1121
(MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH)))
1122
return ZSTD_execSequenceEndSplitLitBuffer(op, oend, oend_w, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
1123
1124
/* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
1125
assert(op <= oLitEnd /* No overflow */);
1126
assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */);
1127
assert(oMatchEnd <= oend /* No underflow */);
1128
assert(iLitEnd <= litLimit /* Literal length is in bounds */);
1129
assert(oLitEnd <= oend_w /* Can wildcopy literals */);
1130
assert(oMatchEnd <= oend_w /* Can wildcopy matches */);
1131
1132
/* Copy Literals:
1133
* Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
1134
* We likely don't need the full 32-byte wildcopy.
1135
*/
1136
assert(WILDCOPY_OVERLENGTH >= 16);
1137
ZSTD_copy16(op, (*litPtr));
1138
if (UNLIKELY(sequence.litLength > 16)) {
1139
ZSTD_wildcopy(op+16, (*litPtr)+16, sequence.litLength-16, ZSTD_no_overlap);
1140
}
1141
op = oLitEnd;
1142
*litPtr = iLitEnd; /* update for next sequence */
1143
1144
/* Copy Match */
1145
if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
1146
/* offset beyond prefix -> go into extDict */
1147
RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, "");
1148
match = dictEnd + (match - prefixStart);
1149
if (match + sequence.matchLength <= dictEnd) {
1150
ZSTD_memmove(oLitEnd, match, sequence.matchLength);
1151
return sequenceLength;
1152
}
1153
/* span extDict & currentPrefixSegment */
1154
{ size_t const length1 = dictEnd - match;
1155
ZSTD_memmove(oLitEnd, match, length1);
1156
op = oLitEnd + length1;
1157
sequence.matchLength -= length1;
1158
match = prefixStart;
1159
} }
1160
/* Match within prefix of 1 or more bytes */
1161
assert(op <= oMatchEnd);
1162
assert(oMatchEnd <= oend_w);
1163
assert(match >= prefixStart);
1164
assert(sequence.matchLength >= 1);
1165
1166
/* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
1167
* without overlap checking.
1168
*/
1169
if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) {
1170
/* We bet on a full wildcopy for matches, since we expect matches to be
1171
* longer than literals (in general). In silesia, ~10% of matches are longer
1172
* than 16 bytes.
1173
*/
1174
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap);
1175
return sequenceLength;
1176
}
1177
assert(sequence.offset < WILDCOPY_VECLEN);
1178
1179
/* Copy 8 bytes and spread the offset to be >= 8. */
1180
ZSTD_overlapCopy8(&op, &match, sequence.offset);
1181
1182
/* If the match length is > 8 bytes, then continue with the wildcopy. */
1183
if (sequence.matchLength > 8) {
1184
assert(op < oMatchEnd);
1185
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8, ZSTD_overlap_src_before_dst);
1186
}
1187
return sequenceLength;
1188
}
1189
1190
1191
static void
1192
ZSTD_initFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, const ZSTD_seqSymbol* dt)
1193
{
1194
const void* ptr = dt;
1195
const ZSTD_seqSymbol_header* const DTableH = (const ZSTD_seqSymbol_header*)ptr;
1196
DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
1197
DEBUGLOG(6, "ZSTD_initFseState : val=%u using %u bits",
1198
(U32)DStatePtr->state, DTableH->tableLog);
1199
BIT_reloadDStream(bitD);
1200
DStatePtr->table = dt + 1;
1201
}
1202
1203
FORCE_INLINE_TEMPLATE void
1204
ZSTD_updateFseStateWithDInfo(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, U16 nextState, U32 nbBits)
1205
{
1206
size_t const lowBits = BIT_readBits(bitD, nbBits);
1207
DStatePtr->state = nextState + lowBits;
1208
}
1209
1210
/* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum
1211
* offset bits. But we can only read at most STREAM_ACCUMULATOR_MIN_32
1212
* bits before reloading. This value is the maximum number of bytes we read
1213
* after reloading when we are decoding long offsets.
1214
*/
1215
#define LONG_OFFSETS_MAX_EXTRA_BITS_32 \
1216
(ZSTD_WINDOWLOG_MAX_32 > STREAM_ACCUMULATOR_MIN_32 \
1217
? ZSTD_WINDOWLOG_MAX_32 - STREAM_ACCUMULATOR_MIN_32 \
1218
: 0)
1219
1220
typedef enum { ZSTD_lo_isRegularOffset, ZSTD_lo_isLongOffset=1 } ZSTD_longOffset_e;
1221
1222
/**
1223
* ZSTD_decodeSequence():
1224
* @p longOffsets : tells the decoder to reload more bit while decoding large offsets
1225
* only used in 32-bit mode
1226
* @return : Sequence (litL + matchL + offset)
1227
*/
1228
FORCE_INLINE_TEMPLATE seq_t
1229
ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets, const int isLastSeq)
1230
{
1231
seq_t seq;
1232
/*
1233
* ZSTD_seqSymbol is a 64 bits wide structure.
1234
* It can be loaded in one operation
1235
* and its fields extracted by simply shifting or bit-extracting on aarch64.
1236
* GCC doesn't recognize this and generates more unnecessary ldr/ldrb/ldrh
1237
* operations that cause performance drop. This can be avoided by using this
1238
* ZSTD_memcpy hack.
1239
*/
1240
#if defined(__aarch64__) && (defined(__GNUC__) && !defined(__clang__))
1241
ZSTD_seqSymbol llDInfoS, mlDInfoS, ofDInfoS;
1242
ZSTD_seqSymbol* const llDInfo = &llDInfoS;
1243
ZSTD_seqSymbol* const mlDInfo = &mlDInfoS;
1244
ZSTD_seqSymbol* const ofDInfo = &ofDInfoS;
1245
ZSTD_memcpy(llDInfo, seqState->stateLL.table + seqState->stateLL.state, sizeof(ZSTD_seqSymbol));
1246
ZSTD_memcpy(mlDInfo, seqState->stateML.table + seqState->stateML.state, sizeof(ZSTD_seqSymbol));
1247
ZSTD_memcpy(ofDInfo, seqState->stateOffb.table + seqState->stateOffb.state, sizeof(ZSTD_seqSymbol));
1248
#else
1249
const ZSTD_seqSymbol* const llDInfo = seqState->stateLL.table + seqState->stateLL.state;
1250
const ZSTD_seqSymbol* const mlDInfo = seqState->stateML.table + seqState->stateML.state;
1251
const ZSTD_seqSymbol* const ofDInfo = seqState->stateOffb.table + seqState->stateOffb.state;
1252
#endif
1253
seq.matchLength = mlDInfo->baseValue;
1254
seq.litLength = llDInfo->baseValue;
1255
{ U32 const ofBase = ofDInfo->baseValue;
1256
BYTE const llBits = llDInfo->nbAdditionalBits;
1257
BYTE const mlBits = mlDInfo->nbAdditionalBits;
1258
BYTE const ofBits = ofDInfo->nbAdditionalBits;
1259
BYTE const totalBits = llBits+mlBits+ofBits;
1260
1261
U16 const llNext = llDInfo->nextState;
1262
U16 const mlNext = mlDInfo->nextState;
1263
U16 const ofNext = ofDInfo->nextState;
1264
U32 const llnbBits = llDInfo->nbBits;
1265
U32 const mlnbBits = mlDInfo->nbBits;
1266
U32 const ofnbBits = ofDInfo->nbBits;
1267
1268
assert(llBits <= MaxLLBits);
1269
assert(mlBits <= MaxMLBits);
1270
assert(ofBits <= MaxOff);
1271
/*
1272
* As gcc has better branch and block analyzers, sometimes it is only
1273
* valuable to mark likeliness for clang, it gives around 3-4% of
1274
* performance.
1275
*/
1276
1277
/* sequence */
1278
{ size_t offset;
1279
if (ofBits > 1) {
1280
ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
1281
ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
1282
ZSTD_STATIC_ASSERT(STREAM_ACCUMULATOR_MIN_32 > LONG_OFFSETS_MAX_EXTRA_BITS_32);
1283
ZSTD_STATIC_ASSERT(STREAM_ACCUMULATOR_MIN_32 - LONG_OFFSETS_MAX_EXTRA_BITS_32 >= MaxMLBits);
1284
if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) {
1285
/* Always read extra bits, this keeps the logic simple,
1286
* avoids branches, and avoids accidentally reading 0 bits.
1287
*/
1288
U32 const extraBits = LONG_OFFSETS_MAX_EXTRA_BITS_32;
1289
offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
1290
BIT_reloadDStream(&seqState->DStream);
1291
offset += BIT_readBitsFast(&seqState->DStream, extraBits);
1292
} else {
1293
offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */
1294
if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
1295
}
1296
seqState->prevOffset[2] = seqState->prevOffset[1];
1297
seqState->prevOffset[1] = seqState->prevOffset[0];
1298
seqState->prevOffset[0] = offset;
1299
} else {
1300
U32 const ll0 = (llDInfo->baseValue == 0);
1301
if (LIKELY((ofBits == 0))) {
1302
offset = seqState->prevOffset[ll0];
1303
seqState->prevOffset[1] = seqState->prevOffset[!ll0];
1304
seqState->prevOffset[0] = offset;
1305
} else {
1306
offset = ofBase + ll0 + BIT_readBitsFast(&seqState->DStream, 1);
1307
{ size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
1308
temp -= !temp; /* 0 is not valid: input corrupted => force offset to -1 => corruption detected at execSequence */
1309
if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
1310
seqState->prevOffset[1] = seqState->prevOffset[0];
1311
seqState->prevOffset[0] = offset = temp;
1312
} } }
1313
seq.offset = offset;
1314
}
1315
1316
if (mlBits > 0)
1317
seq.matchLength += BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/);
1318
1319
if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32))
1320
BIT_reloadDStream(&seqState->DStream);
1321
if (MEM_64bits() && UNLIKELY(totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog)))
1322
BIT_reloadDStream(&seqState->DStream);
1323
/* Ensure there are enough bits to read the rest of data in 64-bit mode. */
1324
ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);
1325
1326
if (llBits > 0)
1327
seq.litLength += BIT_readBitsFast(&seqState->DStream, llBits/*>0*/);
1328
1329
if (MEM_32bits())
1330
BIT_reloadDStream(&seqState->DStream);
1331
1332
DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u",
1333
(U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
1334
1335
if (!isLastSeq) {
1336
/* don't update FSE state for last Sequence */
1337
ZSTD_updateFseStateWithDInfo(&seqState->stateLL, &seqState->DStream, llNext, llnbBits); /* <= 9 bits */
1338
ZSTD_updateFseStateWithDInfo(&seqState->stateML, &seqState->DStream, mlNext, mlnbBits); /* <= 9 bits */
1339
if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */
1340
ZSTD_updateFseStateWithDInfo(&seqState->stateOffb, &seqState->DStream, ofNext, ofnbBits); /* <= 8 bits */
1341
BIT_reloadDStream(&seqState->DStream);
1342
}
1343
}
1344
1345
return seq;
1346
}
1347
1348
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1349
#if DEBUGLEVEL >= 1
1350
static int ZSTD_dictionaryIsActive(ZSTD_DCtx const* dctx, BYTE const* prefixStart, BYTE const* oLitEnd)
1351
{
1352
size_t const windowSize = dctx->fParams.windowSize;
1353
/* No dictionary used. */
1354
if (dctx->dictContentEndForFuzzing == NULL) return 0;
1355
/* Dictionary is our prefix. */
1356
if (prefixStart == dctx->dictContentBeginForFuzzing) return 1;
1357
/* Dictionary is not our ext-dict. */
1358
if (dctx->dictEnd != dctx->dictContentEndForFuzzing) return 0;
1359
/* Dictionary is not within our window size. */
1360
if ((size_t)(oLitEnd - prefixStart) >= windowSize) return 0;
1361
/* Dictionary is active. */
1362
return 1;
1363
}
1364
#endif
1365
1366
static void ZSTD_assertValidSequence(
1367
ZSTD_DCtx const* dctx,
1368
BYTE const* op, BYTE const* oend,
1369
seq_t const seq,
1370
BYTE const* prefixStart, BYTE const* virtualStart)
1371
{
1372
#if DEBUGLEVEL >= 1
1373
if (dctx->isFrameDecompression) {
1374
size_t const windowSize = dctx->fParams.windowSize;
1375
size_t const sequenceSize = seq.litLength + seq.matchLength;
1376
BYTE const* const oLitEnd = op + seq.litLength;
1377
DEBUGLOG(6, "Checking sequence: litL=%u matchL=%u offset=%u",
1378
(U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
1379
assert(op <= oend);
1380
assert((size_t)(oend - op) >= sequenceSize);
1381
assert(sequenceSize <= ZSTD_blockSizeMax(dctx));
1382
if (ZSTD_dictionaryIsActive(dctx, prefixStart, oLitEnd)) {
1383
size_t const dictSize = (size_t)((char const*)dctx->dictContentEndForFuzzing - (char const*)dctx->dictContentBeginForFuzzing);
1384
/* Offset must be within the dictionary. */
1385
assert(seq.offset <= (size_t)(oLitEnd - virtualStart));
1386
assert(seq.offset <= windowSize + dictSize);
1387
} else {
1388
/* Offset must be within our window. */
1389
assert(seq.offset <= windowSize);
1390
}
1391
}
1392
#else
1393
(void)dctx, (void)op, (void)oend, (void)seq, (void)prefixStart, (void)virtualStart;
1394
#endif
1395
}
1396
#endif
1397
1398
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1399
1400
1401
FORCE_INLINE_TEMPLATE size_t
1402
DONT_VECTORIZE
1403
ZSTD_decompressSequences_bodySplitLitBuffer( ZSTD_DCtx* dctx,
1404
void* dst, size_t maxDstSize,
1405
const void* seqStart, size_t seqSize, int nbSeq,
1406
const ZSTD_longOffset_e isLongOffset)
1407
{
1408
const BYTE* ip = (const BYTE*)seqStart;
1409
const BYTE* const iend = ip + seqSize;
1410
BYTE* const ostart = (BYTE*)dst;
1411
BYTE* const oend = ZSTD_maybeNullPtrAdd(ostart, maxDstSize);
1412
BYTE* op = ostart;
1413
const BYTE* litPtr = dctx->litPtr;
1414
const BYTE* litBufferEnd = dctx->litBufferEnd;
1415
const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
1416
const BYTE* const vBase = (const BYTE*) (dctx->virtualStart);
1417
const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
1418
DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer (%i seqs)", nbSeq);
1419
1420
/* Literals are split between internal buffer & output buffer */
1421
if (nbSeq) {
1422
seqState_t seqState;
1423
dctx->fseEntropy = 1;
1424
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
1425
RETURN_ERROR_IF(
1426
ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
1427
corruption_detected, "");
1428
ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
1429
ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
1430
ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
1431
assert(dst != NULL);
1432
1433
ZSTD_STATIC_ASSERT(
1434
BIT_DStream_unfinished < BIT_DStream_completed &&
1435
BIT_DStream_endOfBuffer < BIT_DStream_completed &&
1436
BIT_DStream_completed < BIT_DStream_overflow);
1437
1438
/* decompress without overrunning litPtr begins */
1439
{ seq_t sequence = {0,0,0}; /* some static analyzer believe that @sequence is not initialized (it necessarily is, since for(;;) loop as at least one iteration) */
1440
/* Align the decompression loop to 32 + 16 bytes.
1441
*
1442
* zstd compiled with gcc-9 on an Intel i9-9900k shows 10% decompression
1443
* speed swings based on the alignment of the decompression loop. This
1444
* performance swing is caused by parts of the decompression loop falling
1445
* out of the DSB. The entire decompression loop should fit in the DSB,
1446
* when it can't we get much worse performance. You can measure if you've
1447
* hit the good case or the bad case with this perf command for some
1448
* compressed file test.zst:
1449
*
1450
* perf stat -e cycles -e instructions -e idq.all_dsb_cycles_any_uops \
1451
* -e idq.all_mite_cycles_any_uops -- ./zstd -tq test.zst
1452
*
1453
* If you see most cycles served out of the MITE you've hit the bad case.
1454
* If you see most cycles served out of the DSB you've hit the good case.
1455
* If it is pretty even then you may be in an okay case.
1456
*
1457
* This issue has been reproduced on the following CPUs:
1458
* - Kabylake: Macbook Pro (15-inch, 2019) 2.4 GHz Intel Core i9
1459
* Use Instruments->Counters to get DSB/MITE cycles.
1460
* I never got performance swings, but I was able to
1461
* go from the good case of mostly DSB to half of the
1462
* cycles served from MITE.
1463
* - Coffeelake: Intel i9-9900k
1464
* - Coffeelake: Intel i7-9700k
1465
*
1466
* I haven't been able to reproduce the instability or DSB misses on any
1467
* of the following CPUS:
1468
* - Haswell
1469
* - Broadwell: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GH
1470
* - Skylake
1471
*
1472
* Alignment is done for each of the three major decompression loops:
1473
* - ZSTD_decompressSequences_bodySplitLitBuffer - presplit section of the literal buffer
1474
* - ZSTD_decompressSequences_bodySplitLitBuffer - postsplit section of the literal buffer
1475
* - ZSTD_decompressSequences_body
1476
* Alignment choices are made to minimize large swings on bad cases and influence on performance
1477
* from changes external to this code, rather than to overoptimize on the current commit.
1478
*
1479
* If you are seeing performance stability this script can help test.
1480
* It tests on 4 commits in zstd where I saw performance change.
1481
*
1482
* https://gist.github.com/terrelln/9889fc06a423fd5ca6e99351564473f4
1483
*/
1484
#if defined(__GNUC__) && defined(__x86_64__)
1485
__asm__(".p2align 6");
1486
# if __GNUC__ >= 7
1487
/* good for gcc-7, gcc-9, and gcc-11 */
1488
__asm__("nop");
1489
__asm__(".p2align 5");
1490
__asm__("nop");
1491
__asm__(".p2align 4");
1492
# if __GNUC__ == 8 || __GNUC__ == 10
1493
/* good for gcc-8 and gcc-10 */
1494
__asm__("nop");
1495
__asm__(".p2align 3");
1496
# endif
1497
# endif
1498
#endif
1499
1500
/* Handle the initial state where litBuffer is currently split between dst and litExtraBuffer */
1501
for ( ; nbSeq; nbSeq--) {
1502
sequence = ZSTD_decodeSequence(&seqState, isLongOffset, nbSeq==1);
1503
if (litPtr + sequence.litLength > dctx->litBufferEnd) break;
1504
{ size_t const oneSeqSize = ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence.litLength - WILDCOPY_OVERLENGTH, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
1505
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1506
assert(!ZSTD_isError(oneSeqSize));
1507
ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1508
#endif
1509
if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1510
return oneSeqSize;
1511
DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1512
op += oneSeqSize;
1513
} }
1514
DEBUGLOG(6, "reached: (litPtr + sequence.litLength > dctx->litBufferEnd)");
1515
1516
/* If there are more sequences, they will need to read literals from litExtraBuffer; copy over the remainder from dst and update litPtr and litEnd */
1517
if (nbSeq > 0) {
1518
const size_t leftoverLit = dctx->litBufferEnd - litPtr;
1519
DEBUGLOG(6, "There are %i sequences left, and %zu/%zu literals left in buffer", nbSeq, leftoverLit, sequence.litLength);
1520
if (leftoverLit) {
1521
RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
1522
ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
1523
sequence.litLength -= leftoverLit;
1524
op += leftoverLit;
1525
}
1526
litPtr = dctx->litExtraBuffer;
1527
litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1528
dctx->litBufferLocation = ZSTD_not_in_dst;
1529
{ size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
1530
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1531
assert(!ZSTD_isError(oneSeqSize));
1532
ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1533
#endif
1534
if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1535
return oneSeqSize;
1536
DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1537
op += oneSeqSize;
1538
}
1539
nbSeq--;
1540
}
1541
}
1542
1543
if (nbSeq > 0) {
1544
/* there is remaining lit from extra buffer */
1545
1546
#if defined(__GNUC__) && defined(__x86_64__)
1547
__asm__(".p2align 6");
1548
__asm__("nop");
1549
# if __GNUC__ != 7
1550
/* worse for gcc-7 better for gcc-8, gcc-9, and gcc-10 and clang */
1551
__asm__(".p2align 4");
1552
__asm__("nop");
1553
__asm__(".p2align 3");
1554
# elif __GNUC__ >= 11
1555
__asm__(".p2align 3");
1556
# else
1557
__asm__(".p2align 5");
1558
__asm__("nop");
1559
__asm__(".p2align 3");
1560
# endif
1561
#endif
1562
1563
for ( ; nbSeq ; nbSeq--) {
1564
seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, nbSeq==1);
1565
size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
1566
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1567
assert(!ZSTD_isError(oneSeqSize));
1568
ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1569
#endif
1570
if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1571
return oneSeqSize;
1572
DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1573
op += oneSeqSize;
1574
}
1575
}
1576
1577
/* check if reached exact end */
1578
DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer: after decode loop, remaining nbSeq : %i", nbSeq);
1579
RETURN_ERROR_IF(nbSeq, corruption_detected, "");
1580
DEBUGLOG(5, "bitStream : start=%p, ptr=%p, bitsConsumed=%u", seqState.DStream.start, seqState.DStream.ptr, seqState.DStream.bitsConsumed);
1581
RETURN_ERROR_IF(!BIT_endOfDStream(&seqState.DStream), corruption_detected, "");
1582
/* save reps for next block */
1583
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
1584
}
1585
1586
/* last literal segment */
1587
if (dctx->litBufferLocation == ZSTD_split) {
1588
/* split hasn't been reached yet, first get dst then copy litExtraBuffer */
1589
size_t const lastLLSize = (size_t)(litBufferEnd - litPtr);
1590
DEBUGLOG(6, "copy last literals from segment : %u", (U32)lastLLSize);
1591
RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, "");
1592
if (op != NULL) {
1593
ZSTD_memmove(op, litPtr, lastLLSize);
1594
op += lastLLSize;
1595
}
1596
litPtr = dctx->litExtraBuffer;
1597
litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1598
dctx->litBufferLocation = ZSTD_not_in_dst;
1599
}
1600
/* copy last literals from internal buffer */
1601
{ size_t const lastLLSize = (size_t)(litBufferEnd - litPtr);
1602
DEBUGLOG(6, "copy last literals from internal buffer : %u", (U32)lastLLSize);
1603
RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
1604
if (op != NULL) {
1605
ZSTD_memcpy(op, litPtr, lastLLSize);
1606
op += lastLLSize;
1607
} }
1608
1609
DEBUGLOG(6, "decoded block of size %u bytes", (U32)(op - ostart));
1610
return (size_t)(op - ostart);
1611
}
1612
1613
FORCE_INLINE_TEMPLATE size_t
1614
DONT_VECTORIZE
1615
ZSTD_decompressSequences_body(ZSTD_DCtx* dctx,
1616
void* dst, size_t maxDstSize,
1617
const void* seqStart, size_t seqSize, int nbSeq,
1618
const ZSTD_longOffset_e isLongOffset)
1619
{
1620
const BYTE* ip = (const BYTE*)seqStart;
1621
const BYTE* const iend = ip + seqSize;
1622
BYTE* const ostart = (BYTE*)dst;
1623
BYTE* const oend = dctx->litBufferLocation == ZSTD_not_in_dst ? ZSTD_maybeNullPtrAdd(ostart, maxDstSize) : dctx->litBuffer;
1624
BYTE* op = ostart;
1625
const BYTE* litPtr = dctx->litPtr;
1626
const BYTE* const litEnd = litPtr + dctx->litSize;
1627
const BYTE* const prefixStart = (const BYTE*)(dctx->prefixStart);
1628
const BYTE* const vBase = (const BYTE*)(dctx->virtualStart);
1629
const BYTE* const dictEnd = (const BYTE*)(dctx->dictEnd);
1630
DEBUGLOG(5, "ZSTD_decompressSequences_body: nbSeq = %d", nbSeq);
1631
1632
/* Regen sequences */
1633
if (nbSeq) {
1634
seqState_t seqState;
1635
dctx->fseEntropy = 1;
1636
{ U32 i; for (i = 0; i < ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
1637
RETURN_ERROR_IF(
1638
ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend - ip)),
1639
corruption_detected, "");
1640
ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
1641
ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
1642
ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
1643
assert(dst != NULL);
1644
1645
#if defined(__GNUC__) && defined(__x86_64__)
1646
__asm__(".p2align 6");
1647
__asm__("nop");
1648
# if __GNUC__ >= 7
1649
__asm__(".p2align 5");
1650
__asm__("nop");
1651
__asm__(".p2align 3");
1652
# else
1653
__asm__(".p2align 4");
1654
__asm__("nop");
1655
__asm__(".p2align 3");
1656
# endif
1657
#endif
1658
1659
for ( ; nbSeq ; nbSeq--) {
1660
seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, nbSeq==1);
1661
size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, prefixStart, vBase, dictEnd);
1662
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1663
assert(!ZSTD_isError(oneSeqSize));
1664
ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1665
#endif
1666
if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1667
return oneSeqSize;
1668
DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1669
op += oneSeqSize;
1670
}
1671
1672
/* check if reached exact end */
1673
assert(nbSeq == 0);
1674
RETURN_ERROR_IF(!BIT_endOfDStream(&seqState.DStream), corruption_detected, "");
1675
/* save reps for next block */
1676
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
1677
}
1678
1679
/* last literal segment */
1680
{ size_t const lastLLSize = (size_t)(litEnd - litPtr);
1681
DEBUGLOG(6, "copy last literals : %u", (U32)lastLLSize);
1682
RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
1683
if (op != NULL) {
1684
ZSTD_memcpy(op, litPtr, lastLLSize);
1685
op += lastLLSize;
1686
} }
1687
1688
DEBUGLOG(6, "decoded block of size %u bytes", (U32)(op - ostart));
1689
return (size_t)(op - ostart);
1690
}
1691
1692
static size_t
1693
ZSTD_decompressSequences_default(ZSTD_DCtx* dctx,
1694
void* dst, size_t maxDstSize,
1695
const void* seqStart, size_t seqSize, int nbSeq,
1696
const ZSTD_longOffset_e isLongOffset)
1697
{
1698
return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1699
}
1700
1701
static size_t
1702
ZSTD_decompressSequencesSplitLitBuffer_default(ZSTD_DCtx* dctx,
1703
void* dst, size_t maxDstSize,
1704
const void* seqStart, size_t seqSize, int nbSeq,
1705
const ZSTD_longOffset_e isLongOffset)
1706
{
1707
return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1708
}
1709
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
1710
1711
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1712
1713
FORCE_INLINE_TEMPLATE
1714
1715
size_t ZSTD_prefetchMatch(size_t prefetchPos, seq_t const sequence,
1716
const BYTE* const prefixStart, const BYTE* const dictEnd)
1717
{
1718
prefetchPos += sequence.litLength;
1719
{ const BYTE* const matchBase = (sequence.offset > prefetchPos) ? dictEnd : prefixStart;
1720
/* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted.
1721
* No consequence though : memory address is only used for prefetching, not for dereferencing */
1722
const BYTE* const match = ZSTD_wrappedPtrSub(ZSTD_wrappedPtrAdd(matchBase, prefetchPos), sequence.offset);
1723
PREFETCH_L1(match); PREFETCH_L1(match+CACHELINE_SIZE); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
1724
}
1725
return prefetchPos + sequence.matchLength;
1726
}
1727
1728
/* This decoding function employs prefetching
1729
* to reduce latency impact of cache misses.
1730
* It's generally employed when block contains a significant portion of long-distance matches
1731
* or when coupled with a "cold" dictionary */
1732
FORCE_INLINE_TEMPLATE size_t
1733
ZSTD_decompressSequencesLong_body(
1734
ZSTD_DCtx* dctx,
1735
void* dst, size_t maxDstSize,
1736
const void* seqStart, size_t seqSize, int nbSeq,
1737
const ZSTD_longOffset_e isLongOffset)
1738
{
1739
const BYTE* ip = (const BYTE*)seqStart;
1740
const BYTE* const iend = ip + seqSize;
1741
BYTE* const ostart = (BYTE*)dst;
1742
BYTE* const oend = dctx->litBufferLocation == ZSTD_in_dst ? dctx->litBuffer : ZSTD_maybeNullPtrAdd(ostart, maxDstSize);
1743
BYTE* op = ostart;
1744
const BYTE* litPtr = dctx->litPtr;
1745
const BYTE* litBufferEnd = dctx->litBufferEnd;
1746
const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
1747
const BYTE* const dictStart = (const BYTE*) (dctx->virtualStart);
1748
const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
1749
1750
/* Regen sequences */
1751
if (nbSeq) {
1752
#define STORED_SEQS 8
1753
#define STORED_SEQS_MASK (STORED_SEQS-1)
1754
#define ADVANCED_SEQS STORED_SEQS
1755
seq_t sequences[STORED_SEQS];
1756
int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS);
1757
seqState_t seqState;
1758
int seqNb;
1759
size_t prefetchPos = (size_t)(op-prefixStart); /* track position relative to prefixStart */
1760
1761
dctx->fseEntropy = 1;
1762
{ int i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
1763
assert(dst != NULL);
1764
assert(iend >= ip);
1765
RETURN_ERROR_IF(
1766
ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
1767
corruption_detected, "");
1768
ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
1769
ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
1770
ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
1771
1772
/* prepare in advance */
1773
for (seqNb=0; seqNb<seqAdvance; seqNb++) {
1774
seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, seqNb == nbSeq-1);
1775
prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
1776
sequences[seqNb] = sequence;
1777
}
1778
1779
/* decompress without stomping litBuffer */
1780
for (; seqNb < nbSeq; seqNb++) {
1781
seq_t sequence = ZSTD_decodeSequence(&seqState, isLongOffset, seqNb == nbSeq-1);
1782
1783
if (dctx->litBufferLocation == ZSTD_split && litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength > dctx->litBufferEnd) {
1784
/* lit buffer is reaching split point, empty out the first buffer and transition to litExtraBuffer */
1785
const size_t leftoverLit = dctx->litBufferEnd - litPtr;
1786
if (leftoverLit)
1787
{
1788
RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
1789
ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
1790
sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength -= leftoverLit;
1791
op += leftoverLit;
1792
}
1793
litPtr = dctx->litExtraBuffer;
1794
litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1795
dctx->litBufferLocation = ZSTD_not_in_dst;
1796
{ size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1797
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1798
assert(!ZSTD_isError(oneSeqSize));
1799
ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
1800
#endif
1801
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1802
1803
prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
1804
sequences[seqNb & STORED_SEQS_MASK] = sequence;
1805
op += oneSeqSize;
1806
} }
1807
else
1808
{
1809
/* lit buffer is either wholly contained in first or second split, or not split at all*/
1810
size_t const oneSeqSize = dctx->litBufferLocation == ZSTD_split ?
1811
ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength - WILDCOPY_OVERLENGTH, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) :
1812
ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1813
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1814
assert(!ZSTD_isError(oneSeqSize));
1815
ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
1816
#endif
1817
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1818
1819
prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
1820
sequences[seqNb & STORED_SEQS_MASK] = sequence;
1821
op += oneSeqSize;
1822
}
1823
}
1824
RETURN_ERROR_IF(!BIT_endOfDStream(&seqState.DStream), corruption_detected, "");
1825
1826
/* finish queue */
1827
seqNb -= seqAdvance;
1828
for ( ; seqNb<nbSeq ; seqNb++) {
1829
seq_t *sequence = &(sequences[seqNb&STORED_SEQS_MASK]);
1830
if (dctx->litBufferLocation == ZSTD_split && litPtr + sequence->litLength > dctx->litBufferEnd) {
1831
const size_t leftoverLit = dctx->litBufferEnd - litPtr;
1832
if (leftoverLit) {
1833
RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
1834
ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
1835
sequence->litLength -= leftoverLit;
1836
op += leftoverLit;
1837
}
1838
litPtr = dctx->litExtraBuffer;
1839
litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1840
dctx->litBufferLocation = ZSTD_not_in_dst;
1841
{ size_t const oneSeqSize = ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1842
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1843
assert(!ZSTD_isError(oneSeqSize));
1844
ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
1845
#endif
1846
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1847
op += oneSeqSize;
1848
}
1849
}
1850
else
1851
{
1852
size_t const oneSeqSize = dctx->litBufferLocation == ZSTD_split ?
1853
ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence->litLength - WILDCOPY_OVERLENGTH, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) :
1854
ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1855
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1856
assert(!ZSTD_isError(oneSeqSize));
1857
ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
1858
#endif
1859
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1860
op += oneSeqSize;
1861
}
1862
}
1863
1864
/* save reps for next block */
1865
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
1866
}
1867
1868
/* last literal segment */
1869
if (dctx->litBufferLocation == ZSTD_split) { /* first deplete literal buffer in dst, then copy litExtraBuffer */
1870
size_t const lastLLSize = litBufferEnd - litPtr;
1871
RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, "");
1872
if (op != NULL) {
1873
ZSTD_memmove(op, litPtr, lastLLSize);
1874
op += lastLLSize;
1875
}
1876
litPtr = dctx->litExtraBuffer;
1877
litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1878
}
1879
{ size_t const lastLLSize = litBufferEnd - litPtr;
1880
RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
1881
if (op != NULL) {
1882
ZSTD_memmove(op, litPtr, lastLLSize);
1883
op += lastLLSize;
1884
}
1885
}
1886
1887
return (size_t)(op - ostart);
1888
}
1889
1890
static size_t
1891
ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx,
1892
void* dst, size_t maxDstSize,
1893
const void* seqStart, size_t seqSize, int nbSeq,
1894
const ZSTD_longOffset_e isLongOffset)
1895
{
1896
return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1897
}
1898
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1899
1900
1901
1902
#if DYNAMIC_BMI2
1903
1904
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1905
static BMI2_TARGET_ATTRIBUTE size_t
1906
DONT_VECTORIZE
1907
ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx,
1908
void* dst, size_t maxDstSize,
1909
const void* seqStart, size_t seqSize, int nbSeq,
1910
const ZSTD_longOffset_e isLongOffset)
1911
{
1912
return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1913
}
1914
static BMI2_TARGET_ATTRIBUTE size_t
1915
DONT_VECTORIZE
1916
ZSTD_decompressSequencesSplitLitBuffer_bmi2(ZSTD_DCtx* dctx,
1917
void* dst, size_t maxDstSize,
1918
const void* seqStart, size_t seqSize, int nbSeq,
1919
const ZSTD_longOffset_e isLongOffset)
1920
{
1921
return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1922
}
1923
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
1924
1925
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1926
static BMI2_TARGET_ATTRIBUTE size_t
1927
ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx* dctx,
1928
void* dst, size_t maxDstSize,
1929
const void* seqStart, size_t seqSize, int nbSeq,
1930
const ZSTD_longOffset_e isLongOffset)
1931
{
1932
return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1933
}
1934
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1935
1936
#endif /* DYNAMIC_BMI2 */
1937
1938
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1939
static size_t
1940
ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
1941
const void* seqStart, size_t seqSize, int nbSeq,
1942
const ZSTD_longOffset_e isLongOffset)
1943
{
1944
DEBUGLOG(5, "ZSTD_decompressSequences");
1945
#if DYNAMIC_BMI2
1946
if (ZSTD_DCtx_get_bmi2(dctx)) {
1947
return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1948
}
1949
#endif
1950
return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1951
}
1952
static size_t
1953
ZSTD_decompressSequencesSplitLitBuffer(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
1954
const void* seqStart, size_t seqSize, int nbSeq,
1955
const ZSTD_longOffset_e isLongOffset)
1956
{
1957
DEBUGLOG(5, "ZSTD_decompressSequencesSplitLitBuffer");
1958
#if DYNAMIC_BMI2
1959
if (ZSTD_DCtx_get_bmi2(dctx)) {
1960
return ZSTD_decompressSequencesSplitLitBuffer_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1961
}
1962
#endif
1963
return ZSTD_decompressSequencesSplitLitBuffer_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1964
}
1965
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
1966
1967
1968
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1969
/* ZSTD_decompressSequencesLong() :
1970
* decompression function triggered when a minimum share of offsets is considered "long",
1971
* aka out of cache.
1972
* note : "long" definition seems overloaded here, sometimes meaning "wider than bitstream register", and sometimes meaning "farther than memory cache distance".
1973
* This function will try to mitigate main memory latency through the use of prefetching */
1974
static size_t
1975
ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx,
1976
void* dst, size_t maxDstSize,
1977
const void* seqStart, size_t seqSize, int nbSeq,
1978
const ZSTD_longOffset_e isLongOffset)
1979
{
1980
DEBUGLOG(5, "ZSTD_decompressSequencesLong");
1981
#if DYNAMIC_BMI2
1982
if (ZSTD_DCtx_get_bmi2(dctx)) {
1983
return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1984
}
1985
#endif
1986
return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
1987
}
1988
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1989
1990
1991
/**
1992
* @returns The total size of the history referenceable by zstd, including
1993
* both the prefix and the extDict. At @p op any offset larger than this
1994
* is invalid.
1995
*/
1996
static size_t ZSTD_totalHistorySize(BYTE* op, BYTE const* virtualStart)
1997
{
1998
return (size_t)(op - virtualStart);
1999
}
2000
2001
typedef struct {
2002
unsigned longOffsetShare;
2003
unsigned maxNbAdditionalBits;
2004
} ZSTD_OffsetInfo;
2005
2006
/* ZSTD_getOffsetInfo() :
2007
* condition : offTable must be valid
2008
* @return : "share" of long offsets (arbitrarily defined as > (1<<23))
2009
* compared to maximum possible of (1<<OffFSELog),
2010
* as well as the maximum number additional bits required.
2011
*/
2012
static ZSTD_OffsetInfo
2013
ZSTD_getOffsetInfo(const ZSTD_seqSymbol* offTable, int nbSeq)
2014
{
2015
ZSTD_OffsetInfo info = {0, 0};
2016
/* If nbSeq == 0, then the offTable is uninitialized, but we have
2017
* no sequences, so both values should be 0.
2018
*/
2019
if (nbSeq != 0) {
2020
const void* ptr = offTable;
2021
U32 const tableLog = ((const ZSTD_seqSymbol_header*)ptr)[0].tableLog;
2022
const ZSTD_seqSymbol* table = offTable + 1;
2023
U32 const max = 1 << tableLog;
2024
U32 u;
2025
DEBUGLOG(5, "ZSTD_getLongOffsetsShare: (tableLog=%u)", tableLog);
2026
2027
assert(max <= (1 << OffFSELog)); /* max not too large */
2028
for (u=0; u<max; u++) {
2029
info.maxNbAdditionalBits = MAX(info.maxNbAdditionalBits, table[u].nbAdditionalBits);
2030
if (table[u].nbAdditionalBits > 22) info.longOffsetShare += 1;
2031
}
2032
2033
assert(tableLog <= OffFSELog);
2034
info.longOffsetShare <<= (OffFSELog - tableLog); /* scale to OffFSELog */
2035
}
2036
2037
return info;
2038
}
2039
2040
/**
2041
* @returns The maximum offset we can decode in one read of our bitstream, without
2042
* reloading more bits in the middle of the offset bits read. Any offsets larger
2043
* than this must use the long offset decoder.
2044
*/
2045
static size_t ZSTD_maxShortOffset(void)
2046
{
2047
if (MEM_64bits()) {
2048
/* We can decode any offset without reloading bits.
2049
* This might change if the max window size grows.
2050
*/
2051
ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31);
2052
return (size_t)-1;
2053
} else {
2054
/* The maximum offBase is (1 << (STREAM_ACCUMULATOR_MIN + 1)) - 1.
2055
* This offBase would require STREAM_ACCUMULATOR_MIN extra bits.
2056
* Then we have to subtract ZSTD_REP_NUM to get the maximum possible offset.
2057
*/
2058
size_t const maxOffbase = ((size_t)1 << (STREAM_ACCUMULATOR_MIN + 1)) - 1;
2059
size_t const maxOffset = maxOffbase - ZSTD_REP_NUM;
2060
assert(ZSTD_highbit32((U32)maxOffbase) == STREAM_ACCUMULATOR_MIN);
2061
return maxOffset;
2062
}
2063
}
2064
2065
size_t
2066
ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
2067
void* dst, size_t dstCapacity,
2068
const void* src, size_t srcSize, const streaming_operation streaming)
2069
{ /* blockType == blockCompressed */
2070
const BYTE* ip = (const BYTE*)src;
2071
DEBUGLOG(5, "ZSTD_decompressBlock_internal (cSize : %u)", (unsigned)srcSize);
2072
2073
/* Note : the wording of the specification
2074
* allows compressed block to be sized exactly ZSTD_blockSizeMax(dctx).
2075
* This generally does not happen, as it makes little sense,
2076
* since an uncompressed block would feature same size and have no decompression cost.
2077
* Also, note that decoder from reference libzstd before < v1.5.4
2078
* would consider this edge case as an error.
2079
* As a consequence, avoid generating compressed blocks of size ZSTD_blockSizeMax(dctx)
2080
* for broader compatibility with the deployed ecosystem of zstd decoders */
2081
RETURN_ERROR_IF(srcSize > ZSTD_blockSizeMax(dctx), srcSize_wrong, "");
2082
2083
/* Decode literals section */
2084
{ size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize, dst, dstCapacity, streaming);
2085
DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : cSize=%u, nbLiterals=%zu", (U32)litCSize, dctx->litSize);
2086
if (ZSTD_isError(litCSize)) return litCSize;
2087
ip += litCSize;
2088
srcSize -= litCSize;
2089
}
2090
2091
/* Build Decoding Tables */
2092
{
2093
/* Compute the maximum block size, which must also work when !frame and fParams are unset.
2094
* Additionally, take the min with dstCapacity to ensure that the totalHistorySize fits in a size_t.
2095
*/
2096
size_t const blockSizeMax = MIN(dstCapacity, ZSTD_blockSizeMax(dctx));
2097
size_t const totalHistorySize = ZSTD_totalHistorySize(ZSTD_maybeNullPtrAdd((BYTE*)dst, blockSizeMax), (BYTE const*)dctx->virtualStart);
2098
/* isLongOffset must be true if there are long offsets.
2099
* Offsets are long if they are larger than ZSTD_maxShortOffset().
2100
* We don't expect that to be the case in 64-bit mode.
2101
*
2102
* We check here to see if our history is large enough to allow long offsets.
2103
* If it isn't, then we can't possible have (valid) long offsets. If the offset
2104
* is invalid, then it is okay to read it incorrectly.
2105
*
2106
* If isLongOffsets is true, then we will later check our decoding table to see
2107
* if it is even possible to generate long offsets.
2108
*/
2109
ZSTD_longOffset_e isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (totalHistorySize > ZSTD_maxShortOffset()));
2110
/* These macros control at build-time which decompressor implementation
2111
* we use. If neither is defined, we do some inspection and dispatch at
2112
* runtime.
2113
*/
2114
#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
2115
!defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
2116
int usePrefetchDecoder = dctx->ddictIsCold;
2117
#else
2118
/* Set to 1 to avoid computing offset info if we don't need to.
2119
* Otherwise this value is ignored.
2120
*/
2121
int usePrefetchDecoder = 1;
2122
#endif
2123
int nbSeq;
2124
size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, srcSize);
2125
if (ZSTD_isError(seqHSize)) return seqHSize;
2126
ip += seqHSize;
2127
srcSize -= seqHSize;
2128
2129
RETURN_ERROR_IF((dst == NULL || dstCapacity == 0) && nbSeq > 0, dstSize_tooSmall, "NULL not handled");
2130
RETURN_ERROR_IF(MEM_64bits() && sizeof(size_t) == sizeof(void*) && (size_t)(-1) - (size_t)dst < (size_t)(1 << 20), dstSize_tooSmall,
2131
"invalid dst");
2132
2133
/* If we could potentially have long offsets, or we might want to use the prefetch decoder,
2134
* compute information about the share of long offsets, and the maximum nbAdditionalBits.
2135
* NOTE: could probably use a larger nbSeq limit
2136
*/
2137
if (isLongOffset || (!usePrefetchDecoder && (totalHistorySize > (1u << 24)) && (nbSeq > 8))) {
2138
ZSTD_OffsetInfo const info = ZSTD_getOffsetInfo(dctx->OFTptr, nbSeq);
2139
if (isLongOffset && info.maxNbAdditionalBits <= STREAM_ACCUMULATOR_MIN) {
2140
/* If isLongOffset, but the maximum number of additional bits that we see in our table is small
2141
* enough, then we know it is impossible to have too long an offset in this block, so we can
2142
* use the regular offset decoder.
2143
*/
2144
isLongOffset = ZSTD_lo_isRegularOffset;
2145
}
2146
if (!usePrefetchDecoder) {
2147
U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */
2148
usePrefetchDecoder = (info.longOffsetShare >= minShare);
2149
}
2150
}
2151
2152
dctx->ddictIsCold = 0;
2153
2154
#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
2155
!defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
2156
if (usePrefetchDecoder) {
2157
#else
2158
(void)usePrefetchDecoder;
2159
{
2160
#endif
2161
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
2162
return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
2163
#endif
2164
}
2165
2166
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
2167
/* else */
2168
if (dctx->litBufferLocation == ZSTD_split)
2169
return ZSTD_decompressSequencesSplitLitBuffer(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
2170
else
2171
return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
2172
#endif
2173
}
2174
}
2175
2176
2177
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
2178
void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize)
2179
{
2180
if (dst != dctx->previousDstEnd && dstSize > 0) { /* not contiguous */
2181
dctx->dictEnd = dctx->previousDstEnd;
2182
dctx->virtualStart = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart));
2183
dctx->prefixStart = dst;
2184
dctx->previousDstEnd = dst;
2185
}
2186
}
2187
2188
2189
size_t ZSTD_decompressBlock_deprecated(ZSTD_DCtx* dctx,
2190
void* dst, size_t dstCapacity,
2191
const void* src, size_t srcSize)
2192
{
2193
size_t dSize;
2194
dctx->isFrameDecompression = 0;
2195
ZSTD_checkContinuity(dctx, dst, dstCapacity);
2196
dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, not_streaming);
2197
FORWARD_IF_ERROR(dSize, "");
2198
dctx->previousDstEnd = (char*)dst + dSize;
2199
return dSize;
2200
}
2201
2202
2203
/* NOTE: Must just wrap ZSTD_decompressBlock_deprecated() */
2204
size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx,
2205
void* dst, size_t dstCapacity,
2206
const void* src, size_t srcSize)
2207
{
2208
return ZSTD_decompressBlock_deprecated(dctx, dst, dstCapacity, src, srcSize);
2209
}
2210
2211