Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmzstd/lib/decompress/zstd_decompress_block.c
3158 views
1
/*
2
* Copyright (c) Meta Platforms, Inc. and affiliates.
3
* All rights reserved.
4
*
5
* This source code is licensed under both the BSD-style license (found in the
6
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
7
* in the COPYING file in the root directory of this source tree).
8
* You may select, at your option, one of the above-listed licenses.
9
*/
10
11
/* zstd_decompress_block :
12
* this module takes care of decompressing _compressed_ block */
13
14
/*-*******************************************************
15
* Dependencies
16
*********************************************************/
17
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */
18
#include "../common/compiler.h" /* prefetch */
19
#include "../common/cpu.h" /* bmi2 */
20
#include "../common/mem.h" /* low level memory routines */
21
#define FSE_STATIC_LINKING_ONLY
22
#include "../common/fse.h"
23
#include "../common/huf.h"
24
#include "../common/zstd_internal.h"
25
#include "zstd_decompress_internal.h" /* ZSTD_DCtx */
26
#include "zstd_ddict.h" /* ZSTD_DDictDictContent */
27
#include "zstd_decompress_block.h"
28
#include "../common/bits.h" /* ZSTD_highbit32 */
29
30
/*_*******************************************************
31
* Macros
32
**********************************************************/
33
34
/* These two optional macros force the use one way or another of the two
35
* ZSTD_decompressSequences implementations. You can't force in both directions
36
* at the same time.
37
*/
38
#if defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
39
defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
40
#error "Cannot force the use of the short and the long ZSTD_decompressSequences variants!"
41
#endif
42
43
44
/*_*******************************************************
45
* Memory operations
46
**********************************************************/
47
static void ZSTD_copy4(void* dst, const void* src) { ZSTD_memcpy(dst, src, 4); }
48
49
50
/*-*************************************************************
51
* Block decoding
52
***************************************************************/
53
54
/*! ZSTD_getcBlockSize() :
55
* Provides the size of compressed block from block header `src` */
56
size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
57
blockProperties_t* bpPtr)
58
{
59
RETURN_ERROR_IF(srcSize < ZSTD_blockHeaderSize, srcSize_wrong, "");
60
61
{ U32 const cBlockHeader = MEM_readLE24(src);
62
U32 const cSize = cBlockHeader >> 3;
63
bpPtr->lastBlock = cBlockHeader & 1;
64
bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3);
65
bpPtr->origSize = cSize; /* only useful for RLE */
66
if (bpPtr->blockType == bt_rle) return 1;
67
RETURN_ERROR_IF(bpPtr->blockType == bt_reserved, corruption_detected, "");
68
return cSize;
69
}
70
}
71
72
/* Allocate buffer for literals, either overlapping current dst, or split between dst and litExtraBuffer, or stored entirely within litExtraBuffer */
73
static void ZSTD_allocateLiteralsBuffer(ZSTD_DCtx* dctx, void* const dst, const size_t dstCapacity, const size_t litSize,
74
const streaming_operation streaming, const size_t expectedWriteSize, const unsigned splitImmediately)
75
{
76
if (streaming == not_streaming && dstCapacity > ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH + litSize + WILDCOPY_OVERLENGTH)
77
{
78
/* room for litbuffer to fit without read faulting */
79
dctx->litBuffer = (BYTE*)dst + ZSTD_BLOCKSIZE_MAX + WILDCOPY_OVERLENGTH;
80
dctx->litBufferEnd = dctx->litBuffer + litSize;
81
dctx->litBufferLocation = ZSTD_in_dst;
82
}
83
else if (litSize > ZSTD_LITBUFFEREXTRASIZE)
84
{
85
/* won't fit in litExtraBuffer, so it will be split between end of dst and extra buffer */
86
if (splitImmediately) {
87
/* won't fit in litExtraBuffer, so it will be split between end of dst and extra buffer */
88
dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH;
89
dctx->litBufferEnd = dctx->litBuffer + litSize - ZSTD_LITBUFFEREXTRASIZE;
90
}
91
else {
92
/* initially this will be stored entirely in dst during huffman decoding, it will partially be shifted to litExtraBuffer after */
93
dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize;
94
dctx->litBufferEnd = (BYTE*)dst + expectedWriteSize;
95
}
96
dctx->litBufferLocation = ZSTD_split;
97
}
98
else
99
{
100
/* fits entirely within litExtraBuffer, so no split is necessary */
101
dctx->litBuffer = dctx->litExtraBuffer;
102
dctx->litBufferEnd = dctx->litBuffer + litSize;
103
dctx->litBufferLocation = ZSTD_not_in_dst;
104
}
105
}
106
107
/* Hidden declaration for fullbench */
108
size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
109
const void* src, size_t srcSize,
110
void* dst, size_t dstCapacity, const streaming_operation streaming);
111
/*! ZSTD_decodeLiteralsBlock() :
112
* Where it is possible to do so without being stomped by the output during decompression, the literals block will be stored
113
* in the dstBuffer. If there is room to do so, it will be stored in full in the excess dst space after where the current
114
* block will be output. Otherwise it will be stored at the end of the current dst blockspace, with a small portion being
115
* stored in dctx->litExtraBuffer to help keep it "ahead" of the current output write.
116
*
117
* @return : nb of bytes read from src (< srcSize )
118
* note : symbol not declared but exposed for fullbench */
119
size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
120
const void* src, size_t srcSize, /* note : srcSize < BLOCKSIZE */
121
void* dst, size_t dstCapacity, const streaming_operation streaming)
122
{
123
DEBUGLOG(5, "ZSTD_decodeLiteralsBlock");
124
RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected, "");
125
126
{ const BYTE* const istart = (const BYTE*) src;
127
symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3);
128
129
switch(litEncType)
130
{
131
case set_repeat:
132
DEBUGLOG(5, "set_repeat flag : re-using stats from previous compressed literals block");
133
RETURN_ERROR_IF(dctx->litEntropy==0, dictionary_corrupted, "");
134
ZSTD_FALLTHROUGH;
135
136
case set_compressed:
137
RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need up to 5 for case 3");
138
{ size_t lhSize, litSize, litCSize;
139
U32 singleStream=0;
140
U32 const lhlCode = (istart[0] >> 2) & 3;
141
U32 const lhc = MEM_readLE32(istart);
142
size_t hufSuccess;
143
size_t expectedWriteSize = MIN(ZSTD_BLOCKSIZE_MAX, dstCapacity);
144
int const flags = 0
145
| (ZSTD_DCtx_get_bmi2(dctx) ? HUF_flags_bmi2 : 0)
146
| (dctx->disableHufAsm ? HUF_flags_disableAsm : 0);
147
switch(lhlCode)
148
{
149
case 0: case 1: default: /* note : default is impossible, since lhlCode into [0..3] */
150
/* 2 - 2 - 10 - 10 */
151
singleStream = !lhlCode;
152
lhSize = 3;
153
litSize = (lhc >> 4) & 0x3FF;
154
litCSize = (lhc >> 14) & 0x3FF;
155
break;
156
case 2:
157
/* 2 - 2 - 14 - 14 */
158
lhSize = 4;
159
litSize = (lhc >> 4) & 0x3FFF;
160
litCSize = lhc >> 18;
161
break;
162
case 3:
163
/* 2 - 2 - 18 - 18 */
164
lhSize = 5;
165
litSize = (lhc >> 4) & 0x3FFFF;
166
litCSize = (lhc >> 22) + ((size_t)istart[4] << 10);
167
break;
168
}
169
RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
170
RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
171
if (!singleStream)
172
RETURN_ERROR_IF(litSize < MIN_LITERALS_FOR_4_STREAMS, literals_headerWrong,
173
"Not enough literals (%zu) for the 4-streams mode (min %u)",
174
litSize, MIN_LITERALS_FOR_4_STREAMS);
175
RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected, "");
176
RETURN_ERROR_IF(expectedWriteSize < litSize , dstSize_tooSmall, "");
177
ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 0);
178
179
/* prefetch huffman table if cold */
180
if (dctx->ddictIsCold && (litSize > 768 /* heuristic */)) {
181
PREFETCH_AREA(dctx->HUFptr, sizeof(dctx->entropy.hufTable));
182
}
183
184
if (litEncType==set_repeat) {
185
if (singleStream) {
186
hufSuccess = HUF_decompress1X_usingDTable(
187
dctx->litBuffer, litSize, istart+lhSize, litCSize,
188
dctx->HUFptr, flags);
189
} else {
190
assert(litSize >= MIN_LITERALS_FOR_4_STREAMS);
191
hufSuccess = HUF_decompress4X_usingDTable(
192
dctx->litBuffer, litSize, istart+lhSize, litCSize,
193
dctx->HUFptr, flags);
194
}
195
} else {
196
if (singleStream) {
197
#if defined(HUF_FORCE_DECOMPRESS_X2)
198
hufSuccess = HUF_decompress1X_DCtx_wksp(
199
dctx->entropy.hufTable, dctx->litBuffer, litSize,
200
istart+lhSize, litCSize, dctx->workspace,
201
sizeof(dctx->workspace), flags);
202
#else
203
hufSuccess = HUF_decompress1X1_DCtx_wksp(
204
dctx->entropy.hufTable, dctx->litBuffer, litSize,
205
istart+lhSize, litCSize, dctx->workspace,
206
sizeof(dctx->workspace), flags);
207
#endif
208
} else {
209
hufSuccess = HUF_decompress4X_hufOnly_wksp(
210
dctx->entropy.hufTable, dctx->litBuffer, litSize,
211
istart+lhSize, litCSize, dctx->workspace,
212
sizeof(dctx->workspace), flags);
213
}
214
}
215
if (dctx->litBufferLocation == ZSTD_split)
216
{
217
ZSTD_memcpy(dctx->litExtraBuffer, dctx->litBufferEnd - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE);
218
ZSTD_memmove(dctx->litBuffer + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH, dctx->litBuffer, litSize - ZSTD_LITBUFFEREXTRASIZE);
219
dctx->litBuffer += ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH;
220
dctx->litBufferEnd -= WILDCOPY_OVERLENGTH;
221
}
222
223
RETURN_ERROR_IF(HUF_isError(hufSuccess), corruption_detected, "");
224
225
dctx->litPtr = dctx->litBuffer;
226
dctx->litSize = litSize;
227
dctx->litEntropy = 1;
228
if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable;
229
return litCSize + lhSize;
230
}
231
232
case set_basic:
233
{ size_t litSize, lhSize;
234
U32 const lhlCode = ((istart[0]) >> 2) & 3;
235
size_t expectedWriteSize = MIN(ZSTD_BLOCKSIZE_MAX, dstCapacity);
236
switch(lhlCode)
237
{
238
case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */
239
lhSize = 1;
240
litSize = istart[0] >> 3;
241
break;
242
case 1:
243
lhSize = 2;
244
litSize = MEM_readLE16(istart) >> 4;
245
break;
246
case 3:
247
lhSize = 3;
248
RETURN_ERROR_IF(srcSize<3, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize = 3");
249
litSize = MEM_readLE24(istart) >> 4;
250
break;
251
}
252
253
RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
254
RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, "");
255
ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1);
256
if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */
257
RETURN_ERROR_IF(litSize+lhSize > srcSize, corruption_detected, "");
258
if (dctx->litBufferLocation == ZSTD_split)
259
{
260
ZSTD_memcpy(dctx->litBuffer, istart + lhSize, litSize - ZSTD_LITBUFFEREXTRASIZE);
261
ZSTD_memcpy(dctx->litExtraBuffer, istart + lhSize + litSize - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE);
262
}
263
else
264
{
265
ZSTD_memcpy(dctx->litBuffer, istart + lhSize, litSize);
266
}
267
dctx->litPtr = dctx->litBuffer;
268
dctx->litSize = litSize;
269
return lhSize+litSize;
270
}
271
/* direct reference into compressed stream */
272
dctx->litPtr = istart+lhSize;
273
dctx->litSize = litSize;
274
dctx->litBufferEnd = dctx->litPtr + litSize;
275
dctx->litBufferLocation = ZSTD_not_in_dst;
276
return lhSize+litSize;
277
}
278
279
case set_rle:
280
{ U32 const lhlCode = ((istart[0]) >> 2) & 3;
281
size_t litSize, lhSize;
282
size_t expectedWriteSize = MIN(ZSTD_BLOCKSIZE_MAX, dstCapacity);
283
switch(lhlCode)
284
{
285
case 0: case 2: default: /* note : default is impossible, since lhlCode into [0..3] */
286
lhSize = 1;
287
litSize = istart[0] >> 3;
288
break;
289
case 1:
290
lhSize = 2;
291
RETURN_ERROR_IF(srcSize<3, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize+1 = 3");
292
litSize = MEM_readLE16(istart) >> 4;
293
break;
294
case 3:
295
lhSize = 3;
296
RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize+1 = 4");
297
litSize = MEM_readLE24(istart) >> 4;
298
break;
299
}
300
RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
301
RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
302
RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, "");
303
ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1);
304
if (dctx->litBufferLocation == ZSTD_split)
305
{
306
ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize - ZSTD_LITBUFFEREXTRASIZE);
307
ZSTD_memset(dctx->litExtraBuffer, istart[lhSize], ZSTD_LITBUFFEREXTRASIZE);
308
}
309
else
310
{
311
ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize);
312
}
313
dctx->litPtr = dctx->litBuffer;
314
dctx->litSize = litSize;
315
return lhSize+1;
316
}
317
default:
318
RETURN_ERROR(corruption_detected, "impossible");
319
}
320
}
321
}
322
323
/* Default FSE distribution tables.
324
* These are pre-calculated FSE decoding tables using default distributions as defined in specification :
325
* https://github.com/facebook/zstd/blob/release/doc/zstd_compression_format.md#default-distributions
326
* They were generated programmatically with following method :
327
* - start from default distributions, present in /lib/common/zstd_internal.h
328
* - generate tables normally, using ZSTD_buildFSETable()
329
* - printout the content of tables
330
* - pretify output, report below, test with fuzzer to ensure it's correct */
331
332
/* Default FSE distribution table for Literal Lengths */
333
static const ZSTD_seqSymbol LL_defaultDTable[(1<<LL_DEFAULTNORMLOG)+1] = {
334
{ 1, 1, 1, LL_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
335
/* nextState, nbAddBits, nbBits, baseVal */
336
{ 0, 0, 4, 0}, { 16, 0, 4, 0},
337
{ 32, 0, 5, 1}, { 0, 0, 5, 3},
338
{ 0, 0, 5, 4}, { 0, 0, 5, 6},
339
{ 0, 0, 5, 7}, { 0, 0, 5, 9},
340
{ 0, 0, 5, 10}, { 0, 0, 5, 12},
341
{ 0, 0, 6, 14}, { 0, 1, 5, 16},
342
{ 0, 1, 5, 20}, { 0, 1, 5, 22},
343
{ 0, 2, 5, 28}, { 0, 3, 5, 32},
344
{ 0, 4, 5, 48}, { 32, 6, 5, 64},
345
{ 0, 7, 5, 128}, { 0, 8, 6, 256},
346
{ 0, 10, 6, 1024}, { 0, 12, 6, 4096},
347
{ 32, 0, 4, 0}, { 0, 0, 4, 1},
348
{ 0, 0, 5, 2}, { 32, 0, 5, 4},
349
{ 0, 0, 5, 5}, { 32, 0, 5, 7},
350
{ 0, 0, 5, 8}, { 32, 0, 5, 10},
351
{ 0, 0, 5, 11}, { 0, 0, 6, 13},
352
{ 32, 1, 5, 16}, { 0, 1, 5, 18},
353
{ 32, 1, 5, 22}, { 0, 2, 5, 24},
354
{ 32, 3, 5, 32}, { 0, 3, 5, 40},
355
{ 0, 6, 4, 64}, { 16, 6, 4, 64},
356
{ 32, 7, 5, 128}, { 0, 9, 6, 512},
357
{ 0, 11, 6, 2048}, { 48, 0, 4, 0},
358
{ 16, 0, 4, 1}, { 32, 0, 5, 2},
359
{ 32, 0, 5, 3}, { 32, 0, 5, 5},
360
{ 32, 0, 5, 6}, { 32, 0, 5, 8},
361
{ 32, 0, 5, 9}, { 32, 0, 5, 11},
362
{ 32, 0, 5, 12}, { 0, 0, 6, 15},
363
{ 32, 1, 5, 18}, { 32, 1, 5, 20},
364
{ 32, 2, 5, 24}, { 32, 2, 5, 28},
365
{ 32, 3, 5, 40}, { 32, 4, 5, 48},
366
{ 0, 16, 6,65536}, { 0, 15, 6,32768},
367
{ 0, 14, 6,16384}, { 0, 13, 6, 8192},
368
}; /* LL_defaultDTable */
369
370
/* Default FSE distribution table for Offset Codes */
371
static const ZSTD_seqSymbol OF_defaultDTable[(1<<OF_DEFAULTNORMLOG)+1] = {
372
{ 1, 1, 1, OF_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
373
/* nextState, nbAddBits, nbBits, baseVal */
374
{ 0, 0, 5, 0}, { 0, 6, 4, 61},
375
{ 0, 9, 5, 509}, { 0, 15, 5,32765},
376
{ 0, 21, 5,2097149}, { 0, 3, 5, 5},
377
{ 0, 7, 4, 125}, { 0, 12, 5, 4093},
378
{ 0, 18, 5,262141}, { 0, 23, 5,8388605},
379
{ 0, 5, 5, 29}, { 0, 8, 4, 253},
380
{ 0, 14, 5,16381}, { 0, 20, 5,1048573},
381
{ 0, 2, 5, 1}, { 16, 7, 4, 125},
382
{ 0, 11, 5, 2045}, { 0, 17, 5,131069},
383
{ 0, 22, 5,4194301}, { 0, 4, 5, 13},
384
{ 16, 8, 4, 253}, { 0, 13, 5, 8189},
385
{ 0, 19, 5,524285}, { 0, 1, 5, 1},
386
{ 16, 6, 4, 61}, { 0, 10, 5, 1021},
387
{ 0, 16, 5,65533}, { 0, 28, 5,268435453},
388
{ 0, 27, 5,134217725}, { 0, 26, 5,67108861},
389
{ 0, 25, 5,33554429}, { 0, 24, 5,16777213},
390
}; /* OF_defaultDTable */
391
392
393
/* Default FSE distribution table for Match Lengths */
394
static const ZSTD_seqSymbol ML_defaultDTable[(1<<ML_DEFAULTNORMLOG)+1] = {
395
{ 1, 1, 1, ML_DEFAULTNORMLOG}, /* header : fastMode, tableLog */
396
/* nextState, nbAddBits, nbBits, baseVal */
397
{ 0, 0, 6, 3}, { 0, 0, 4, 4},
398
{ 32, 0, 5, 5}, { 0, 0, 5, 6},
399
{ 0, 0, 5, 8}, { 0, 0, 5, 9},
400
{ 0, 0, 5, 11}, { 0, 0, 6, 13},
401
{ 0, 0, 6, 16}, { 0, 0, 6, 19},
402
{ 0, 0, 6, 22}, { 0, 0, 6, 25},
403
{ 0, 0, 6, 28}, { 0, 0, 6, 31},
404
{ 0, 0, 6, 34}, { 0, 1, 6, 37},
405
{ 0, 1, 6, 41}, { 0, 2, 6, 47},
406
{ 0, 3, 6, 59}, { 0, 4, 6, 83},
407
{ 0, 7, 6, 131}, { 0, 9, 6, 515},
408
{ 16, 0, 4, 4}, { 0, 0, 4, 5},
409
{ 32, 0, 5, 6}, { 0, 0, 5, 7},
410
{ 32, 0, 5, 9}, { 0, 0, 5, 10},
411
{ 0, 0, 6, 12}, { 0, 0, 6, 15},
412
{ 0, 0, 6, 18}, { 0, 0, 6, 21},
413
{ 0, 0, 6, 24}, { 0, 0, 6, 27},
414
{ 0, 0, 6, 30}, { 0, 0, 6, 33},
415
{ 0, 1, 6, 35}, { 0, 1, 6, 39},
416
{ 0, 2, 6, 43}, { 0, 3, 6, 51},
417
{ 0, 4, 6, 67}, { 0, 5, 6, 99},
418
{ 0, 8, 6, 259}, { 32, 0, 4, 4},
419
{ 48, 0, 4, 4}, { 16, 0, 4, 5},
420
{ 32, 0, 5, 7}, { 32, 0, 5, 8},
421
{ 32, 0, 5, 10}, { 32, 0, 5, 11},
422
{ 0, 0, 6, 14}, { 0, 0, 6, 17},
423
{ 0, 0, 6, 20}, { 0, 0, 6, 23},
424
{ 0, 0, 6, 26}, { 0, 0, 6, 29},
425
{ 0, 0, 6, 32}, { 0, 16, 6,65539},
426
{ 0, 15, 6,32771}, { 0, 14, 6,16387},
427
{ 0, 13, 6, 8195}, { 0, 12, 6, 4099},
428
{ 0, 11, 6, 2051}, { 0, 10, 6, 1027},
429
}; /* ML_defaultDTable */
430
431
432
static void ZSTD_buildSeqTable_rle(ZSTD_seqSymbol* dt, U32 baseValue, U8 nbAddBits)
433
{
434
void* ptr = dt;
435
ZSTD_seqSymbol_header* const DTableH = (ZSTD_seqSymbol_header*)ptr;
436
ZSTD_seqSymbol* const cell = dt + 1;
437
438
DTableH->tableLog = 0;
439
DTableH->fastMode = 0;
440
441
cell->nbBits = 0;
442
cell->nextState = 0;
443
assert(nbAddBits < 255);
444
cell->nbAdditionalBits = nbAddBits;
445
cell->baseValue = baseValue;
446
}
447
448
449
/* ZSTD_buildFSETable() :
450
* generate FSE decoding table for one symbol (ll, ml or off)
451
* cannot fail if input is valid =>
452
* all inputs are presumed validated at this stage */
453
FORCE_INLINE_TEMPLATE
454
void ZSTD_buildFSETable_body(ZSTD_seqSymbol* dt,
455
const short* normalizedCounter, unsigned maxSymbolValue,
456
const U32* baseValue, const U8* nbAdditionalBits,
457
unsigned tableLog, void* wksp, size_t wkspSize)
458
{
459
ZSTD_seqSymbol* const tableDecode = dt+1;
460
U32 const maxSV1 = maxSymbolValue + 1;
461
U32 const tableSize = 1 << tableLog;
462
463
U16* symbolNext = (U16*)wksp;
464
BYTE* spread = (BYTE*)(symbolNext + MaxSeq + 1);
465
U32 highThreshold = tableSize - 1;
466
467
468
/* Sanity Checks */
469
assert(maxSymbolValue <= MaxSeq);
470
assert(tableLog <= MaxFSELog);
471
assert(wkspSize >= ZSTD_BUILD_FSE_TABLE_WKSP_SIZE);
472
(void)wkspSize;
473
/* Init, lay down lowprob symbols */
474
{ ZSTD_seqSymbol_header DTableH;
475
DTableH.tableLog = tableLog;
476
DTableH.fastMode = 1;
477
{ S16 const largeLimit= (S16)(1 << (tableLog-1));
478
U32 s;
479
for (s=0; s<maxSV1; s++) {
480
if (normalizedCounter[s]==-1) {
481
tableDecode[highThreshold--].baseValue = s;
482
symbolNext[s] = 1;
483
} else {
484
if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
485
assert(normalizedCounter[s]>=0);
486
symbolNext[s] = (U16)normalizedCounter[s];
487
} } }
488
ZSTD_memcpy(dt, &DTableH, sizeof(DTableH));
489
}
490
491
/* Spread symbols */
492
assert(tableSize <= 512);
493
/* Specialized symbol spreading for the case when there are
494
* no low probability (-1 count) symbols. When compressing
495
* small blocks we avoid low probability symbols to hit this
496
* case, since header decoding speed matters more.
497
*/
498
if (highThreshold == tableSize - 1) {
499
size_t const tableMask = tableSize-1;
500
size_t const step = FSE_TABLESTEP(tableSize);
501
/* First lay down the symbols in order.
502
* We use a uint64_t to lay down 8 bytes at a time. This reduces branch
503
* misses since small blocks generally have small table logs, so nearly
504
* all symbols have counts <= 8. We ensure we have 8 bytes at the end of
505
* our buffer to handle the over-write.
506
*/
507
{
508
U64 const add = 0x0101010101010101ull;
509
size_t pos = 0;
510
U64 sv = 0;
511
U32 s;
512
for (s=0; s<maxSV1; ++s, sv += add) {
513
int i;
514
int const n = normalizedCounter[s];
515
MEM_write64(spread + pos, sv);
516
for (i = 8; i < n; i += 8) {
517
MEM_write64(spread + pos + i, sv);
518
}
519
assert(n>=0);
520
pos += (size_t)n;
521
}
522
}
523
/* Now we spread those positions across the table.
524
* The benefit of doing it in two stages is that we avoid the
525
* variable size inner loop, which caused lots of branch misses.
526
* Now we can run through all the positions without any branch misses.
527
* We unroll the loop twice, since that is what empirically worked best.
528
*/
529
{
530
size_t position = 0;
531
size_t s;
532
size_t const unroll = 2;
533
assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */
534
for (s = 0; s < (size_t)tableSize; s += unroll) {
535
size_t u;
536
for (u = 0; u < unroll; ++u) {
537
size_t const uPosition = (position + (u * step)) & tableMask;
538
tableDecode[uPosition].baseValue = spread[s + u];
539
}
540
position = (position + (unroll * step)) & tableMask;
541
}
542
assert(position == 0);
543
}
544
} else {
545
U32 const tableMask = tableSize-1;
546
U32 const step = FSE_TABLESTEP(tableSize);
547
U32 s, position = 0;
548
for (s=0; s<maxSV1; s++) {
549
int i;
550
int const n = normalizedCounter[s];
551
for (i=0; i<n; i++) {
552
tableDecode[position].baseValue = s;
553
position = (position + step) & tableMask;
554
while (UNLIKELY(position > highThreshold)) position = (position + step) & tableMask; /* lowprob area */
555
} }
556
assert(position == 0); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
557
}
558
559
/* Build Decoding table */
560
{
561
U32 u;
562
for (u=0; u<tableSize; u++) {
563
U32 const symbol = tableDecode[u].baseValue;
564
U32 const nextState = symbolNext[symbol]++;
565
tableDecode[u].nbBits = (BYTE) (tableLog - ZSTD_highbit32(nextState) );
566
tableDecode[u].nextState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
567
assert(nbAdditionalBits[symbol] < 255);
568
tableDecode[u].nbAdditionalBits = nbAdditionalBits[symbol];
569
tableDecode[u].baseValue = baseValue[symbol];
570
}
571
}
572
}
573
574
/* Avoids the FORCE_INLINE of the _body() function. */
575
static void ZSTD_buildFSETable_body_default(ZSTD_seqSymbol* dt,
576
const short* normalizedCounter, unsigned maxSymbolValue,
577
const U32* baseValue, const U8* nbAdditionalBits,
578
unsigned tableLog, void* wksp, size_t wkspSize)
579
{
580
ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue,
581
baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
582
}
583
584
#if DYNAMIC_BMI2
585
BMI2_TARGET_ATTRIBUTE static void ZSTD_buildFSETable_body_bmi2(ZSTD_seqSymbol* dt,
586
const short* normalizedCounter, unsigned maxSymbolValue,
587
const U32* baseValue, const U8* nbAdditionalBits,
588
unsigned tableLog, void* wksp, size_t wkspSize)
589
{
590
ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue,
591
baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
592
}
593
#endif
594
595
void ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
596
const short* normalizedCounter, unsigned maxSymbolValue,
597
const U32* baseValue, const U8* nbAdditionalBits,
598
unsigned tableLog, void* wksp, size_t wkspSize, int bmi2)
599
{
600
#if DYNAMIC_BMI2
601
if (bmi2) {
602
ZSTD_buildFSETable_body_bmi2(dt, normalizedCounter, maxSymbolValue,
603
baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
604
return;
605
}
606
#endif
607
(void)bmi2;
608
ZSTD_buildFSETable_body_default(dt, normalizedCounter, maxSymbolValue,
609
baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
610
}
611
612
613
/*! ZSTD_buildSeqTable() :
614
* @return : nb bytes read from src,
615
* or an error code if it fails */
616
static size_t ZSTD_buildSeqTable(ZSTD_seqSymbol* DTableSpace, const ZSTD_seqSymbol** DTablePtr,
617
symbolEncodingType_e type, unsigned max, U32 maxLog,
618
const void* src, size_t srcSize,
619
const U32* baseValue, const U8* nbAdditionalBits,
620
const ZSTD_seqSymbol* defaultTable, U32 flagRepeatTable,
621
int ddictIsCold, int nbSeq, U32* wksp, size_t wkspSize,
622
int bmi2)
623
{
624
switch(type)
625
{
626
case set_rle :
627
RETURN_ERROR_IF(!srcSize, srcSize_wrong, "");
628
RETURN_ERROR_IF((*(const BYTE*)src) > max, corruption_detected, "");
629
{ U32 const symbol = *(const BYTE*)src;
630
U32 const baseline = baseValue[symbol];
631
U8 const nbBits = nbAdditionalBits[symbol];
632
ZSTD_buildSeqTable_rle(DTableSpace, baseline, nbBits);
633
}
634
*DTablePtr = DTableSpace;
635
return 1;
636
case set_basic :
637
*DTablePtr = defaultTable;
638
return 0;
639
case set_repeat:
640
RETURN_ERROR_IF(!flagRepeatTable, corruption_detected, "");
641
/* prefetch FSE table if used */
642
if (ddictIsCold && (nbSeq > 24 /* heuristic */)) {
643
const void* const pStart = *DTablePtr;
644
size_t const pSize = sizeof(ZSTD_seqSymbol) * (SEQSYMBOL_TABLE_SIZE(maxLog));
645
PREFETCH_AREA(pStart, pSize);
646
}
647
return 0;
648
case set_compressed :
649
{ unsigned tableLog;
650
S16 norm[MaxSeq+1];
651
size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize);
652
RETURN_ERROR_IF(FSE_isError(headerSize), corruption_detected, "");
653
RETURN_ERROR_IF(tableLog > maxLog, corruption_detected, "");
654
ZSTD_buildFSETable(DTableSpace, norm, max, baseValue, nbAdditionalBits, tableLog, wksp, wkspSize, bmi2);
655
*DTablePtr = DTableSpace;
656
return headerSize;
657
}
658
default :
659
assert(0);
660
RETURN_ERROR(GENERIC, "impossible");
661
}
662
}
663
664
size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
665
const void* src, size_t srcSize)
666
{
667
const BYTE* const istart = (const BYTE*)src;
668
const BYTE* const iend = istart + srcSize;
669
const BYTE* ip = istart;
670
int nbSeq;
671
DEBUGLOG(5, "ZSTD_decodeSeqHeaders");
672
673
/* check */
674
RETURN_ERROR_IF(srcSize < MIN_SEQUENCES_SIZE, srcSize_wrong, "");
675
676
/* SeqHead */
677
nbSeq = *ip++;
678
if (!nbSeq) {
679
*nbSeqPtr=0;
680
RETURN_ERROR_IF(srcSize != 1, srcSize_wrong, "");
681
return 1;
682
}
683
if (nbSeq > 0x7F) {
684
if (nbSeq == 0xFF) {
685
RETURN_ERROR_IF(ip+2 > iend, srcSize_wrong, "");
686
nbSeq = MEM_readLE16(ip) + LONGNBSEQ;
687
ip+=2;
688
} else {
689
RETURN_ERROR_IF(ip >= iend, srcSize_wrong, "");
690
nbSeq = ((nbSeq-0x80)<<8) + *ip++;
691
}
692
}
693
*nbSeqPtr = nbSeq;
694
695
/* FSE table descriptors */
696
RETURN_ERROR_IF(ip+1 > iend, srcSize_wrong, ""); /* minimum possible size: 1 byte for symbol encoding types */
697
{ symbolEncodingType_e const LLtype = (symbolEncodingType_e)(*ip >> 6);
698
symbolEncodingType_e const OFtype = (symbolEncodingType_e)((*ip >> 4) & 3);
699
symbolEncodingType_e const MLtype = (symbolEncodingType_e)((*ip >> 2) & 3);
700
ip++;
701
702
/* Build DTables */
703
{ size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr,
704
LLtype, MaxLL, LLFSELog,
705
ip, iend-ip,
706
LL_base, LL_bits,
707
LL_defaultDTable, dctx->fseEntropy,
708
dctx->ddictIsCold, nbSeq,
709
dctx->workspace, sizeof(dctx->workspace),
710
ZSTD_DCtx_get_bmi2(dctx));
711
RETURN_ERROR_IF(ZSTD_isError(llhSize), corruption_detected, "ZSTD_buildSeqTable failed");
712
ip += llhSize;
713
}
714
715
{ size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr,
716
OFtype, MaxOff, OffFSELog,
717
ip, iend-ip,
718
OF_base, OF_bits,
719
OF_defaultDTable, dctx->fseEntropy,
720
dctx->ddictIsCold, nbSeq,
721
dctx->workspace, sizeof(dctx->workspace),
722
ZSTD_DCtx_get_bmi2(dctx));
723
RETURN_ERROR_IF(ZSTD_isError(ofhSize), corruption_detected, "ZSTD_buildSeqTable failed");
724
ip += ofhSize;
725
}
726
727
{ size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr,
728
MLtype, MaxML, MLFSELog,
729
ip, iend-ip,
730
ML_base, ML_bits,
731
ML_defaultDTable, dctx->fseEntropy,
732
dctx->ddictIsCold, nbSeq,
733
dctx->workspace, sizeof(dctx->workspace),
734
ZSTD_DCtx_get_bmi2(dctx));
735
RETURN_ERROR_IF(ZSTD_isError(mlhSize), corruption_detected, "ZSTD_buildSeqTable failed");
736
ip += mlhSize;
737
}
738
}
739
740
return ip-istart;
741
}
742
743
744
typedef struct {
745
size_t litLength;
746
size_t matchLength;
747
size_t offset;
748
} seq_t;
749
750
typedef struct {
751
size_t state;
752
const ZSTD_seqSymbol* table;
753
} ZSTD_fseState;
754
755
typedef struct {
756
BIT_DStream_t DStream;
757
ZSTD_fseState stateLL;
758
ZSTD_fseState stateOffb;
759
ZSTD_fseState stateML;
760
size_t prevOffset[ZSTD_REP_NUM];
761
} seqState_t;
762
763
/*! ZSTD_overlapCopy8() :
764
* Copies 8 bytes from ip to op and updates op and ip where ip <= op.
765
* If the offset is < 8 then the offset is spread to at least 8 bytes.
766
*
767
* Precondition: *ip <= *op
768
* Postcondition: *op - *op >= 8
769
*/
770
HINT_INLINE void ZSTD_overlapCopy8(BYTE** op, BYTE const** ip, size_t offset) {
771
assert(*ip <= *op);
772
if (offset < 8) {
773
/* close range match, overlap */
774
static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */
775
static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* subtracted */
776
int const sub2 = dec64table[offset];
777
(*op)[0] = (*ip)[0];
778
(*op)[1] = (*ip)[1];
779
(*op)[2] = (*ip)[2];
780
(*op)[3] = (*ip)[3];
781
*ip += dec32table[offset];
782
ZSTD_copy4(*op+4, *ip);
783
*ip -= sub2;
784
} else {
785
ZSTD_copy8(*op, *ip);
786
}
787
*ip += 8;
788
*op += 8;
789
assert(*op - *ip >= 8);
790
}
791
792
/*! ZSTD_safecopy() :
793
* Specialized version of memcpy() that is allowed to READ up to WILDCOPY_OVERLENGTH past the input buffer
794
* and write up to 16 bytes past oend_w (op >= oend_w is allowed).
795
* This function is only called in the uncommon case where the sequence is near the end of the block. It
796
* should be fast for a single long sequence, but can be slow for several short sequences.
797
*
798
* @param ovtype controls the overlap detection
799
* - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart.
800
* - ZSTD_overlap_src_before_dst: The src and dst may overlap and may be any distance apart.
801
* The src buffer must be before the dst buffer.
802
*/
803
static void ZSTD_safecopy(BYTE* op, const BYTE* const oend_w, BYTE const* ip, ptrdiff_t length, ZSTD_overlap_e ovtype) {
804
ptrdiff_t const diff = op - ip;
805
BYTE* const oend = op + length;
806
807
assert((ovtype == ZSTD_no_overlap && (diff <= -8 || diff >= 8 || op >= oend_w)) ||
808
(ovtype == ZSTD_overlap_src_before_dst && diff >= 0));
809
810
if (length < 8) {
811
/* Handle short lengths. */
812
while (op < oend) *op++ = *ip++;
813
return;
814
}
815
if (ovtype == ZSTD_overlap_src_before_dst) {
816
/* Copy 8 bytes and ensure the offset >= 8 when there can be overlap. */
817
assert(length >= 8);
818
ZSTD_overlapCopy8(&op, &ip, diff);
819
length -= 8;
820
assert(op - ip >= 8);
821
assert(op <= oend);
822
}
823
824
if (oend <= oend_w) {
825
/* No risk of overwrite. */
826
ZSTD_wildcopy(op, ip, length, ovtype);
827
return;
828
}
829
if (op <= oend_w) {
830
/* Wildcopy until we get close to the end. */
831
assert(oend > oend_w);
832
ZSTD_wildcopy(op, ip, oend_w - op, ovtype);
833
ip += oend_w - op;
834
op += oend_w - op;
835
}
836
/* Handle the leftovers. */
837
while (op < oend) *op++ = *ip++;
838
}
839
840
/* ZSTD_safecopyDstBeforeSrc():
841
* This version allows overlap with dst before src, or handles the non-overlap case with dst after src
842
* Kept separate from more common ZSTD_safecopy case to avoid performance impact to the safecopy common case */
843
static void ZSTD_safecopyDstBeforeSrc(BYTE* op, BYTE const* ip, ptrdiff_t length) {
844
ptrdiff_t const diff = op - ip;
845
BYTE* const oend = op + length;
846
847
if (length < 8 || diff > -8) {
848
/* Handle short lengths, close overlaps, and dst not before src. */
849
while (op < oend) *op++ = *ip++;
850
return;
851
}
852
853
if (op <= oend - WILDCOPY_OVERLENGTH && diff < -WILDCOPY_VECLEN) {
854
ZSTD_wildcopy(op, ip, oend - WILDCOPY_OVERLENGTH - op, ZSTD_no_overlap);
855
ip += oend - WILDCOPY_OVERLENGTH - op;
856
op += oend - WILDCOPY_OVERLENGTH - op;
857
}
858
859
/* Handle the leftovers. */
860
while (op < oend) *op++ = *ip++;
861
}
862
863
/* ZSTD_execSequenceEnd():
864
* This version handles cases that are near the end of the output buffer. It requires
865
* more careful checks to make sure there is no overflow. By separating out these hard
866
* and unlikely cases, we can speed up the common cases.
867
*
868
* NOTE: This function needs to be fast for a single long sequence, but doesn't need
869
* to be optimized for many small sequences, since those fall into ZSTD_execSequence().
870
*/
871
FORCE_NOINLINE
872
size_t ZSTD_execSequenceEnd(BYTE* op,
873
BYTE* const oend, seq_t sequence,
874
const BYTE** litPtr, const BYTE* const litLimit,
875
const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
876
{
877
BYTE* const oLitEnd = op + sequence.litLength;
878
size_t const sequenceLength = sequence.litLength + sequence.matchLength;
879
const BYTE* const iLitEnd = *litPtr + sequence.litLength;
880
const BYTE* match = oLitEnd - sequence.offset;
881
BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
882
883
/* bounds checks : careful of address space overflow in 32-bit mode */
884
RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer");
885
RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer");
886
assert(op < op + sequenceLength);
887
assert(oLitEnd < op + sequenceLength);
888
889
/* copy literals */
890
ZSTD_safecopy(op, oend_w, *litPtr, sequence.litLength, ZSTD_no_overlap);
891
op = oLitEnd;
892
*litPtr = iLitEnd;
893
894
/* copy Match */
895
if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
896
/* offset beyond prefix */
897
RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, "");
898
match = dictEnd - (prefixStart - match);
899
if (match + sequence.matchLength <= dictEnd) {
900
ZSTD_memmove(oLitEnd, match, sequence.matchLength);
901
return sequenceLength;
902
}
903
/* span extDict & currentPrefixSegment */
904
{ size_t const length1 = dictEnd - match;
905
ZSTD_memmove(oLitEnd, match, length1);
906
op = oLitEnd + length1;
907
sequence.matchLength -= length1;
908
match = prefixStart;
909
}
910
}
911
ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
912
return sequenceLength;
913
}
914
915
/* ZSTD_execSequenceEndSplitLitBuffer():
916
* This version is intended to be used during instances where the litBuffer is still split. It is kept separate to avoid performance impact for the good case.
917
*/
918
FORCE_NOINLINE
919
size_t ZSTD_execSequenceEndSplitLitBuffer(BYTE* op,
920
BYTE* const oend, const BYTE* const oend_w, seq_t sequence,
921
const BYTE** litPtr, const BYTE* const litLimit,
922
const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
923
{
924
BYTE* const oLitEnd = op + sequence.litLength;
925
size_t const sequenceLength = sequence.litLength + sequence.matchLength;
926
const BYTE* const iLitEnd = *litPtr + sequence.litLength;
927
const BYTE* match = oLitEnd - sequence.offset;
928
929
930
/* bounds checks : careful of address space overflow in 32-bit mode */
931
RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer");
932
RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer");
933
assert(op < op + sequenceLength);
934
assert(oLitEnd < op + sequenceLength);
935
936
/* copy literals */
937
RETURN_ERROR_IF(op > *litPtr && op < *litPtr + sequence.litLength, dstSize_tooSmall, "output should not catch up to and overwrite literal buffer");
938
ZSTD_safecopyDstBeforeSrc(op, *litPtr, sequence.litLength);
939
op = oLitEnd;
940
*litPtr = iLitEnd;
941
942
/* copy Match */
943
if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
944
/* offset beyond prefix */
945
RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, "");
946
match = dictEnd - (prefixStart - match);
947
if (match + sequence.matchLength <= dictEnd) {
948
ZSTD_memmove(oLitEnd, match, sequence.matchLength);
949
return sequenceLength;
950
}
951
/* span extDict & currentPrefixSegment */
952
{ size_t const length1 = dictEnd - match;
953
ZSTD_memmove(oLitEnd, match, length1);
954
op = oLitEnd + length1;
955
sequence.matchLength -= length1;
956
match = prefixStart;
957
}
958
}
959
ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
960
return sequenceLength;
961
}
962
963
HINT_INLINE
964
size_t ZSTD_execSequence(BYTE* op,
965
BYTE* const oend, seq_t sequence,
966
const BYTE** litPtr, const BYTE* const litLimit,
967
const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
968
{
969
BYTE* const oLitEnd = op + sequence.litLength;
970
size_t const sequenceLength = sequence.litLength + sequence.matchLength;
971
BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
972
BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH; /* risk : address space underflow on oend=NULL */
973
const BYTE* const iLitEnd = *litPtr + sequence.litLength;
974
const BYTE* match = oLitEnd - sequence.offset;
975
976
assert(op != NULL /* Precondition */);
977
assert(oend_w < oend /* No underflow */);
978
979
#if defined(__aarch64__)
980
/* prefetch sequence starting from match that will be used for copy later */
981
PREFETCH_L1(match);
982
#endif
983
/* Handle edge cases in a slow path:
984
* - Read beyond end of literals
985
* - Match end is within WILDCOPY_OVERLIMIT of oend
986
* - 32-bit mode and the match length overflows
987
*/
988
if (UNLIKELY(
989
iLitEnd > litLimit ||
990
oMatchEnd > oend_w ||
991
(MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH)))
992
return ZSTD_execSequenceEnd(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
993
994
/* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
995
assert(op <= oLitEnd /* No overflow */);
996
assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */);
997
assert(oMatchEnd <= oend /* No underflow */);
998
assert(iLitEnd <= litLimit /* Literal length is in bounds */);
999
assert(oLitEnd <= oend_w /* Can wildcopy literals */);
1000
assert(oMatchEnd <= oend_w /* Can wildcopy matches */);
1001
1002
/* Copy Literals:
1003
* Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
1004
* We likely don't need the full 32-byte wildcopy.
1005
*/
1006
assert(WILDCOPY_OVERLENGTH >= 16);
1007
ZSTD_copy16(op, (*litPtr));
1008
if (UNLIKELY(sequence.litLength > 16)) {
1009
ZSTD_wildcopy(op + 16, (*litPtr) + 16, sequence.litLength - 16, ZSTD_no_overlap);
1010
}
1011
op = oLitEnd;
1012
*litPtr = iLitEnd; /* update for next sequence */
1013
1014
/* Copy Match */
1015
if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
1016
/* offset beyond prefix -> go into extDict */
1017
RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, "");
1018
match = dictEnd + (match - prefixStart);
1019
if (match + sequence.matchLength <= dictEnd) {
1020
ZSTD_memmove(oLitEnd, match, sequence.matchLength);
1021
return sequenceLength;
1022
}
1023
/* span extDict & currentPrefixSegment */
1024
{ size_t const length1 = dictEnd - match;
1025
ZSTD_memmove(oLitEnd, match, length1);
1026
op = oLitEnd + length1;
1027
sequence.matchLength -= length1;
1028
match = prefixStart;
1029
}
1030
}
1031
/* Match within prefix of 1 or more bytes */
1032
assert(op <= oMatchEnd);
1033
assert(oMatchEnd <= oend_w);
1034
assert(match >= prefixStart);
1035
assert(sequence.matchLength >= 1);
1036
1037
/* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
1038
* without overlap checking.
1039
*/
1040
if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) {
1041
/* We bet on a full wildcopy for matches, since we expect matches to be
1042
* longer than literals (in general). In silesia, ~10% of matches are longer
1043
* than 16 bytes.
1044
*/
1045
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap);
1046
return sequenceLength;
1047
}
1048
assert(sequence.offset < WILDCOPY_VECLEN);
1049
1050
/* Copy 8 bytes and spread the offset to be >= 8. */
1051
ZSTD_overlapCopy8(&op, &match, sequence.offset);
1052
1053
/* If the match length is > 8 bytes, then continue with the wildcopy. */
1054
if (sequence.matchLength > 8) {
1055
assert(op < oMatchEnd);
1056
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength - 8, ZSTD_overlap_src_before_dst);
1057
}
1058
return sequenceLength;
1059
}
1060
1061
HINT_INLINE
1062
size_t ZSTD_execSequenceSplitLitBuffer(BYTE* op,
1063
BYTE* const oend, const BYTE* const oend_w, seq_t sequence,
1064
const BYTE** litPtr, const BYTE* const litLimit,
1065
const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
1066
{
1067
BYTE* const oLitEnd = op + sequence.litLength;
1068
size_t const sequenceLength = sequence.litLength + sequence.matchLength;
1069
BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */
1070
const BYTE* const iLitEnd = *litPtr + sequence.litLength;
1071
const BYTE* match = oLitEnd - sequence.offset;
1072
1073
assert(op != NULL /* Precondition */);
1074
assert(oend_w < oend /* No underflow */);
1075
/* Handle edge cases in a slow path:
1076
* - Read beyond end of literals
1077
* - Match end is within WILDCOPY_OVERLIMIT of oend
1078
* - 32-bit mode and the match length overflows
1079
*/
1080
if (UNLIKELY(
1081
iLitEnd > litLimit ||
1082
oMatchEnd > oend_w ||
1083
(MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH)))
1084
return ZSTD_execSequenceEndSplitLitBuffer(op, oend, oend_w, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
1085
1086
/* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
1087
assert(op <= oLitEnd /* No overflow */);
1088
assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */);
1089
assert(oMatchEnd <= oend /* No underflow */);
1090
assert(iLitEnd <= litLimit /* Literal length is in bounds */);
1091
assert(oLitEnd <= oend_w /* Can wildcopy literals */);
1092
assert(oMatchEnd <= oend_w /* Can wildcopy matches */);
1093
1094
/* Copy Literals:
1095
* Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
1096
* We likely don't need the full 32-byte wildcopy.
1097
*/
1098
assert(WILDCOPY_OVERLENGTH >= 16);
1099
ZSTD_copy16(op, (*litPtr));
1100
if (UNLIKELY(sequence.litLength > 16)) {
1101
ZSTD_wildcopy(op+16, (*litPtr)+16, sequence.litLength-16, ZSTD_no_overlap);
1102
}
1103
op = oLitEnd;
1104
*litPtr = iLitEnd; /* update for next sequence */
1105
1106
/* Copy Match */
1107
if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
1108
/* offset beyond prefix -> go into extDict */
1109
RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, "");
1110
match = dictEnd + (match - prefixStart);
1111
if (match + sequence.matchLength <= dictEnd) {
1112
ZSTD_memmove(oLitEnd, match, sequence.matchLength);
1113
return sequenceLength;
1114
}
1115
/* span extDict & currentPrefixSegment */
1116
{ size_t const length1 = dictEnd - match;
1117
ZSTD_memmove(oLitEnd, match, length1);
1118
op = oLitEnd + length1;
1119
sequence.matchLength -= length1;
1120
match = prefixStart;
1121
} }
1122
/* Match within prefix of 1 or more bytes */
1123
assert(op <= oMatchEnd);
1124
assert(oMatchEnd <= oend_w);
1125
assert(match >= prefixStart);
1126
assert(sequence.matchLength >= 1);
1127
1128
/* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
1129
* without overlap checking.
1130
*/
1131
if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) {
1132
/* We bet on a full wildcopy for matches, since we expect matches to be
1133
* longer than literals (in general). In silesia, ~10% of matches are longer
1134
* than 16 bytes.
1135
*/
1136
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength, ZSTD_no_overlap);
1137
return sequenceLength;
1138
}
1139
assert(sequence.offset < WILDCOPY_VECLEN);
1140
1141
/* Copy 8 bytes and spread the offset to be >= 8. */
1142
ZSTD_overlapCopy8(&op, &match, sequence.offset);
1143
1144
/* If the match length is > 8 bytes, then continue with the wildcopy. */
1145
if (sequence.matchLength > 8) {
1146
assert(op < oMatchEnd);
1147
ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8, ZSTD_overlap_src_before_dst);
1148
}
1149
return sequenceLength;
1150
}
1151
1152
1153
static void
1154
ZSTD_initFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, const ZSTD_seqSymbol* dt)
1155
{
1156
const void* ptr = dt;
1157
const ZSTD_seqSymbol_header* const DTableH = (const ZSTD_seqSymbol_header*)ptr;
1158
DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
1159
DEBUGLOG(6, "ZSTD_initFseState : val=%u using %u bits",
1160
(U32)DStatePtr->state, DTableH->tableLog);
1161
BIT_reloadDStream(bitD);
1162
DStatePtr->table = dt + 1;
1163
}
1164
1165
FORCE_INLINE_TEMPLATE void
1166
ZSTD_updateFseStateWithDInfo(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, U16 nextState, U32 nbBits)
1167
{
1168
size_t const lowBits = BIT_readBits(bitD, nbBits);
1169
DStatePtr->state = nextState + lowBits;
1170
}
1171
1172
/* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum
1173
* offset bits. But we can only read at most STREAM_ACCUMULATOR_MIN_32
1174
* bits before reloading. This value is the maximum number of bytes we read
1175
* after reloading when we are decoding long offsets.
1176
*/
1177
#define LONG_OFFSETS_MAX_EXTRA_BITS_32 \
1178
(ZSTD_WINDOWLOG_MAX_32 > STREAM_ACCUMULATOR_MIN_32 \
1179
? ZSTD_WINDOWLOG_MAX_32 - STREAM_ACCUMULATOR_MIN_32 \
1180
: 0)
1181
1182
typedef enum { ZSTD_lo_isRegularOffset, ZSTD_lo_isLongOffset=1 } ZSTD_longOffset_e;
1183
1184
FORCE_INLINE_TEMPLATE seq_t
1185
ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets)
1186
{
1187
seq_t seq;
1188
/*
1189
* ZSTD_seqSymbol is a structure with a total of 64 bits wide. So it can be
1190
* loaded in one operation and extracted its fields by simply shifting or
1191
* bit-extracting on aarch64.
1192
* GCC doesn't recognize this and generates more unnecessary ldr/ldrb/ldrh
1193
* operations that cause performance drop. This can be avoided by using this
1194
* ZSTD_memcpy hack.
1195
*/
1196
#if defined(__aarch64__) && (defined(__GNUC__) && !defined(__clang__))
1197
ZSTD_seqSymbol llDInfoS, mlDInfoS, ofDInfoS;
1198
ZSTD_seqSymbol* const llDInfo = &llDInfoS;
1199
ZSTD_seqSymbol* const mlDInfo = &mlDInfoS;
1200
ZSTD_seqSymbol* const ofDInfo = &ofDInfoS;
1201
ZSTD_memcpy(llDInfo, seqState->stateLL.table + seqState->stateLL.state, sizeof(ZSTD_seqSymbol));
1202
ZSTD_memcpy(mlDInfo, seqState->stateML.table + seqState->stateML.state, sizeof(ZSTD_seqSymbol));
1203
ZSTD_memcpy(ofDInfo, seqState->stateOffb.table + seqState->stateOffb.state, sizeof(ZSTD_seqSymbol));
1204
#else
1205
const ZSTD_seqSymbol* const llDInfo = seqState->stateLL.table + seqState->stateLL.state;
1206
const ZSTD_seqSymbol* const mlDInfo = seqState->stateML.table + seqState->stateML.state;
1207
const ZSTD_seqSymbol* const ofDInfo = seqState->stateOffb.table + seqState->stateOffb.state;
1208
#endif
1209
seq.matchLength = mlDInfo->baseValue;
1210
seq.litLength = llDInfo->baseValue;
1211
{ U32 const ofBase = ofDInfo->baseValue;
1212
BYTE const llBits = llDInfo->nbAdditionalBits;
1213
BYTE const mlBits = mlDInfo->nbAdditionalBits;
1214
BYTE const ofBits = ofDInfo->nbAdditionalBits;
1215
BYTE const totalBits = llBits+mlBits+ofBits;
1216
1217
U16 const llNext = llDInfo->nextState;
1218
U16 const mlNext = mlDInfo->nextState;
1219
U16 const ofNext = ofDInfo->nextState;
1220
U32 const llnbBits = llDInfo->nbBits;
1221
U32 const mlnbBits = mlDInfo->nbBits;
1222
U32 const ofnbBits = ofDInfo->nbBits;
1223
1224
assert(llBits <= MaxLLBits);
1225
assert(mlBits <= MaxMLBits);
1226
assert(ofBits <= MaxOff);
1227
/*
1228
* As gcc has better branch and block analyzers, sometimes it is only
1229
* valuable to mark likeliness for clang, it gives around 3-4% of
1230
* performance.
1231
*/
1232
1233
/* sequence */
1234
{ size_t offset;
1235
if (ofBits > 1) {
1236
ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
1237
ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
1238
ZSTD_STATIC_ASSERT(STREAM_ACCUMULATOR_MIN_32 > LONG_OFFSETS_MAX_EXTRA_BITS_32);
1239
ZSTD_STATIC_ASSERT(STREAM_ACCUMULATOR_MIN_32 - LONG_OFFSETS_MAX_EXTRA_BITS_32 >= MaxMLBits);
1240
if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) {
1241
/* Always read extra bits, this keeps the logic simple,
1242
* avoids branches, and avoids accidentally reading 0 bits.
1243
*/
1244
U32 const extraBits = LONG_OFFSETS_MAX_EXTRA_BITS_32;
1245
offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
1246
BIT_reloadDStream(&seqState->DStream);
1247
offset += BIT_readBitsFast(&seqState->DStream, extraBits);
1248
} else {
1249
offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/); /* <= (ZSTD_WINDOWLOG_MAX-1) bits */
1250
if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
1251
}
1252
seqState->prevOffset[2] = seqState->prevOffset[1];
1253
seqState->prevOffset[1] = seqState->prevOffset[0];
1254
seqState->prevOffset[0] = offset;
1255
} else {
1256
U32 const ll0 = (llDInfo->baseValue == 0);
1257
if (LIKELY((ofBits == 0))) {
1258
offset = seqState->prevOffset[ll0];
1259
seqState->prevOffset[1] = seqState->prevOffset[!ll0];
1260
seqState->prevOffset[0] = offset;
1261
} else {
1262
offset = ofBase + ll0 + BIT_readBitsFast(&seqState->DStream, 1);
1263
{ size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
1264
temp += !temp; /* 0 is not valid; input is corrupted; force offset to 1 */
1265
if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
1266
seqState->prevOffset[1] = seqState->prevOffset[0];
1267
seqState->prevOffset[0] = offset = temp;
1268
} } }
1269
seq.offset = offset;
1270
}
1271
1272
if (mlBits > 0)
1273
seq.matchLength += BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/);
1274
1275
if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32))
1276
BIT_reloadDStream(&seqState->DStream);
1277
if (MEM_64bits() && UNLIKELY(totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog)))
1278
BIT_reloadDStream(&seqState->DStream);
1279
/* Ensure there are enough bits to read the rest of data in 64-bit mode. */
1280
ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);
1281
1282
if (llBits > 0)
1283
seq.litLength += BIT_readBitsFast(&seqState->DStream, llBits/*>0*/);
1284
1285
if (MEM_32bits())
1286
BIT_reloadDStream(&seqState->DStream);
1287
1288
DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u",
1289
(U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
1290
1291
ZSTD_updateFseStateWithDInfo(&seqState->stateLL, &seqState->DStream, llNext, llnbBits); /* <= 9 bits */
1292
ZSTD_updateFseStateWithDInfo(&seqState->stateML, &seqState->DStream, mlNext, mlnbBits); /* <= 9 bits */
1293
if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream); /* <= 18 bits */
1294
ZSTD_updateFseStateWithDInfo(&seqState->stateOffb, &seqState->DStream, ofNext, ofnbBits); /* <= 8 bits */
1295
}
1296
1297
return seq;
1298
}
1299
1300
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
1301
MEM_STATIC int ZSTD_dictionaryIsActive(ZSTD_DCtx const* dctx, BYTE const* prefixStart, BYTE const* oLitEnd)
1302
{
1303
size_t const windowSize = dctx->fParams.windowSize;
1304
/* No dictionary used. */
1305
if (dctx->dictContentEndForFuzzing == NULL) return 0;
1306
/* Dictionary is our prefix. */
1307
if (prefixStart == dctx->dictContentBeginForFuzzing) return 1;
1308
/* Dictionary is not our ext-dict. */
1309
if (dctx->dictEnd != dctx->dictContentEndForFuzzing) return 0;
1310
/* Dictionary is not within our window size. */
1311
if ((size_t)(oLitEnd - prefixStart) >= windowSize) return 0;
1312
/* Dictionary is active. */
1313
return 1;
1314
}
1315
1316
MEM_STATIC void ZSTD_assertValidSequence(
1317
ZSTD_DCtx const* dctx,
1318
BYTE const* op, BYTE const* oend,
1319
seq_t const seq,
1320
BYTE const* prefixStart, BYTE const* virtualStart)
1321
{
1322
#if DEBUGLEVEL >= 1
1323
size_t const windowSize = dctx->fParams.windowSize;
1324
size_t const sequenceSize = seq.litLength + seq.matchLength;
1325
BYTE const* const oLitEnd = op + seq.litLength;
1326
DEBUGLOG(6, "Checking sequence: litL=%u matchL=%u offset=%u",
1327
(U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
1328
assert(op <= oend);
1329
assert((size_t)(oend - op) >= sequenceSize);
1330
assert(sequenceSize <= ZSTD_BLOCKSIZE_MAX);
1331
if (ZSTD_dictionaryIsActive(dctx, prefixStart, oLitEnd)) {
1332
size_t const dictSize = (size_t)((char const*)dctx->dictContentEndForFuzzing - (char const*)dctx->dictContentBeginForFuzzing);
1333
/* Offset must be within the dictionary. */
1334
assert(seq.offset <= (size_t)(oLitEnd - virtualStart));
1335
assert(seq.offset <= windowSize + dictSize);
1336
} else {
1337
/* Offset must be within our window. */
1338
assert(seq.offset <= windowSize);
1339
}
1340
#else
1341
(void)dctx, (void)op, (void)oend, (void)seq, (void)prefixStart, (void)virtualStart;
1342
#endif
1343
}
1344
#endif
1345
1346
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1347
1348
1349
FORCE_INLINE_TEMPLATE size_t
1350
DONT_VECTORIZE
1351
ZSTD_decompressSequences_bodySplitLitBuffer( ZSTD_DCtx* dctx,
1352
void* dst, size_t maxDstSize,
1353
const void* seqStart, size_t seqSize, int nbSeq,
1354
const ZSTD_longOffset_e isLongOffset,
1355
const int frame)
1356
{
1357
const BYTE* ip = (const BYTE*)seqStart;
1358
const BYTE* const iend = ip + seqSize;
1359
BYTE* const ostart = (BYTE*)dst;
1360
BYTE* const oend = ostart + maxDstSize;
1361
BYTE* op = ostart;
1362
const BYTE* litPtr = dctx->litPtr;
1363
const BYTE* litBufferEnd = dctx->litBufferEnd;
1364
const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
1365
const BYTE* const vBase = (const BYTE*) (dctx->virtualStart);
1366
const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
1367
DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer");
1368
(void)frame;
1369
1370
/* Regen sequences */
1371
if (nbSeq) {
1372
seqState_t seqState;
1373
dctx->fseEntropy = 1;
1374
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
1375
RETURN_ERROR_IF(
1376
ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
1377
corruption_detected, "");
1378
ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
1379
ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
1380
ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
1381
assert(dst != NULL);
1382
1383
ZSTD_STATIC_ASSERT(
1384
BIT_DStream_unfinished < BIT_DStream_completed &&
1385
BIT_DStream_endOfBuffer < BIT_DStream_completed &&
1386
BIT_DStream_completed < BIT_DStream_overflow);
1387
1388
/* decompress without overrunning litPtr begins */
1389
{
1390
seq_t sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
1391
/* Align the decompression loop to 32 + 16 bytes.
1392
*
1393
* zstd compiled with gcc-9 on an Intel i9-9900k shows 10% decompression
1394
* speed swings based on the alignment of the decompression loop. This
1395
* performance swing is caused by parts of the decompression loop falling
1396
* out of the DSB. The entire decompression loop should fit in the DSB,
1397
* when it can't we get much worse performance. You can measure if you've
1398
* hit the good case or the bad case with this perf command for some
1399
* compressed file test.zst:
1400
*
1401
* perf stat -e cycles -e instructions -e idq.all_dsb_cycles_any_uops \
1402
* -e idq.all_mite_cycles_any_uops -- ./zstd -tq test.zst
1403
*
1404
* If you see most cycles served out of the MITE you've hit the bad case.
1405
* If you see most cycles served out of the DSB you've hit the good case.
1406
* If it is pretty even then you may be in an okay case.
1407
*
1408
* This issue has been reproduced on the following CPUs:
1409
* - Kabylake: Macbook Pro (15-inch, 2019) 2.4 GHz Intel Core i9
1410
* Use Instruments->Counters to get DSB/MITE cycles.
1411
* I never got performance swings, but I was able to
1412
* go from the good case of mostly DSB to half of the
1413
* cycles served from MITE.
1414
* - Coffeelake: Intel i9-9900k
1415
* - Coffeelake: Intel i7-9700k
1416
*
1417
* I haven't been able to reproduce the instability or DSB misses on any
1418
* of the following CPUS:
1419
* - Haswell
1420
* - Broadwell: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GH
1421
* - Skylake
1422
*
1423
* Alignment is done for each of the three major decompression loops:
1424
* - ZSTD_decompressSequences_bodySplitLitBuffer - presplit section of the literal buffer
1425
* - ZSTD_decompressSequences_bodySplitLitBuffer - postsplit section of the literal buffer
1426
* - ZSTD_decompressSequences_body
1427
* Alignment choices are made to minimize large swings on bad cases and influence on performance
1428
* from changes external to this code, rather than to overoptimize on the current commit.
1429
*
1430
* If you are seeing performance stability this script can help test.
1431
* It tests on 4 commits in zstd where I saw performance change.
1432
*
1433
* https://gist.github.com/terrelln/9889fc06a423fd5ca6e99351564473f4
1434
*/
1435
#if defined(__GNUC__) && defined(__x86_64__)
1436
__asm__(".p2align 6");
1437
# if __GNUC__ >= 7
1438
/* good for gcc-7, gcc-9, and gcc-11 */
1439
__asm__("nop");
1440
__asm__(".p2align 5");
1441
__asm__("nop");
1442
__asm__(".p2align 4");
1443
# if __GNUC__ == 8 || __GNUC__ == 10
1444
/* good for gcc-8 and gcc-10 */
1445
__asm__("nop");
1446
__asm__(".p2align 3");
1447
# endif
1448
# endif
1449
#endif
1450
1451
/* Handle the initial state where litBuffer is currently split between dst and litExtraBuffer */
1452
for (; litPtr + sequence.litLength <= dctx->litBufferEnd; ) {
1453
size_t const oneSeqSize = ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence.litLength - WILDCOPY_OVERLENGTH, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
1454
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1455
assert(!ZSTD_isError(oneSeqSize));
1456
if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1457
#endif
1458
if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1459
return oneSeqSize;
1460
DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1461
op += oneSeqSize;
1462
if (UNLIKELY(!--nbSeq))
1463
break;
1464
BIT_reloadDStream(&(seqState.DStream));
1465
sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
1466
}
1467
1468
/* If there are more sequences, they will need to read literals from litExtraBuffer; copy over the remainder from dst and update litPtr and litEnd */
1469
if (nbSeq > 0) {
1470
const size_t leftoverLit = dctx->litBufferEnd - litPtr;
1471
if (leftoverLit)
1472
{
1473
RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
1474
ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
1475
sequence.litLength -= leftoverLit;
1476
op += leftoverLit;
1477
}
1478
litPtr = dctx->litExtraBuffer;
1479
litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1480
dctx->litBufferLocation = ZSTD_not_in_dst;
1481
{
1482
size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
1483
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1484
assert(!ZSTD_isError(oneSeqSize));
1485
if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1486
#endif
1487
if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1488
return oneSeqSize;
1489
DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1490
op += oneSeqSize;
1491
if (--nbSeq)
1492
BIT_reloadDStream(&(seqState.DStream));
1493
}
1494
}
1495
}
1496
1497
if (nbSeq > 0) /* there is remaining lit from extra buffer */
1498
{
1499
1500
#if defined(__GNUC__) && defined(__x86_64__)
1501
__asm__(".p2align 6");
1502
__asm__("nop");
1503
# if __GNUC__ != 7
1504
/* worse for gcc-7 better for gcc-8, gcc-9, and gcc-10 and clang */
1505
__asm__(".p2align 4");
1506
__asm__("nop");
1507
__asm__(".p2align 3");
1508
# elif __GNUC__ >= 11
1509
__asm__(".p2align 3");
1510
# else
1511
__asm__(".p2align 5");
1512
__asm__("nop");
1513
__asm__(".p2align 3");
1514
# endif
1515
#endif
1516
1517
for (; ; ) {
1518
seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
1519
size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
1520
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1521
assert(!ZSTD_isError(oneSeqSize));
1522
if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1523
#endif
1524
if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1525
return oneSeqSize;
1526
DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1527
op += oneSeqSize;
1528
if (UNLIKELY(!--nbSeq))
1529
break;
1530
BIT_reloadDStream(&(seqState.DStream));
1531
}
1532
}
1533
1534
/* check if reached exact end */
1535
DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer: after decode loop, remaining nbSeq : %i", nbSeq);
1536
RETURN_ERROR_IF(nbSeq, corruption_detected, "");
1537
RETURN_ERROR_IF(BIT_reloadDStream(&seqState.DStream) < BIT_DStream_completed, corruption_detected, "");
1538
/* save reps for next block */
1539
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
1540
}
1541
1542
/* last literal segment */
1543
if (dctx->litBufferLocation == ZSTD_split) /* split hasn't been reached yet, first get dst then copy litExtraBuffer */
1544
{
1545
size_t const lastLLSize = litBufferEnd - litPtr;
1546
RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, "");
1547
if (op != NULL) {
1548
ZSTD_memmove(op, litPtr, lastLLSize);
1549
op += lastLLSize;
1550
}
1551
litPtr = dctx->litExtraBuffer;
1552
litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1553
dctx->litBufferLocation = ZSTD_not_in_dst;
1554
}
1555
{ size_t const lastLLSize = litBufferEnd - litPtr;
1556
RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
1557
if (op != NULL) {
1558
ZSTD_memcpy(op, litPtr, lastLLSize);
1559
op += lastLLSize;
1560
}
1561
}
1562
1563
return op-ostart;
1564
}
1565
1566
FORCE_INLINE_TEMPLATE size_t
1567
DONT_VECTORIZE
1568
ZSTD_decompressSequences_body(ZSTD_DCtx* dctx,
1569
void* dst, size_t maxDstSize,
1570
const void* seqStart, size_t seqSize, int nbSeq,
1571
const ZSTD_longOffset_e isLongOffset,
1572
const int frame)
1573
{
1574
const BYTE* ip = (const BYTE*)seqStart;
1575
const BYTE* const iend = ip + seqSize;
1576
BYTE* const ostart = (BYTE*)dst;
1577
BYTE* const oend = dctx->litBufferLocation == ZSTD_not_in_dst ? ostart + maxDstSize : dctx->litBuffer;
1578
BYTE* op = ostart;
1579
const BYTE* litPtr = dctx->litPtr;
1580
const BYTE* const litEnd = litPtr + dctx->litSize;
1581
const BYTE* const prefixStart = (const BYTE*)(dctx->prefixStart);
1582
const BYTE* const vBase = (const BYTE*)(dctx->virtualStart);
1583
const BYTE* const dictEnd = (const BYTE*)(dctx->dictEnd);
1584
DEBUGLOG(5, "ZSTD_decompressSequences_body: nbSeq = %d", nbSeq);
1585
(void)frame;
1586
1587
/* Regen sequences */
1588
if (nbSeq) {
1589
seqState_t seqState;
1590
dctx->fseEntropy = 1;
1591
{ U32 i; for (i = 0; i < ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
1592
RETURN_ERROR_IF(
1593
ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend - ip)),
1594
corruption_detected, "");
1595
ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
1596
ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
1597
ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
1598
assert(dst != NULL);
1599
1600
ZSTD_STATIC_ASSERT(
1601
BIT_DStream_unfinished < BIT_DStream_completed &&
1602
BIT_DStream_endOfBuffer < BIT_DStream_completed &&
1603
BIT_DStream_completed < BIT_DStream_overflow);
1604
1605
#if defined(__GNUC__) && defined(__x86_64__)
1606
__asm__(".p2align 6");
1607
__asm__("nop");
1608
# if __GNUC__ >= 7
1609
__asm__(".p2align 5");
1610
__asm__("nop");
1611
__asm__(".p2align 3");
1612
# else
1613
__asm__(".p2align 4");
1614
__asm__("nop");
1615
__asm__(".p2align 3");
1616
# endif
1617
#endif
1618
1619
for ( ; ; ) {
1620
seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
1621
size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, prefixStart, vBase, dictEnd);
1622
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1623
assert(!ZSTD_isError(oneSeqSize));
1624
if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
1625
#endif
1626
if (UNLIKELY(ZSTD_isError(oneSeqSize)))
1627
return oneSeqSize;
1628
DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
1629
op += oneSeqSize;
1630
if (UNLIKELY(!--nbSeq))
1631
break;
1632
BIT_reloadDStream(&(seqState.DStream));
1633
}
1634
1635
/* check if reached exact end */
1636
DEBUGLOG(5, "ZSTD_decompressSequences_body: after decode loop, remaining nbSeq : %i", nbSeq);
1637
RETURN_ERROR_IF(nbSeq, corruption_detected, "");
1638
RETURN_ERROR_IF(BIT_reloadDStream(&seqState.DStream) < BIT_DStream_completed, corruption_detected, "");
1639
/* save reps for next block */
1640
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
1641
}
1642
1643
/* last literal segment */
1644
{ size_t const lastLLSize = litEnd - litPtr;
1645
RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
1646
if (op != NULL) {
1647
ZSTD_memcpy(op, litPtr, lastLLSize);
1648
op += lastLLSize;
1649
}
1650
}
1651
1652
return op-ostart;
1653
}
1654
1655
static size_t
1656
ZSTD_decompressSequences_default(ZSTD_DCtx* dctx,
1657
void* dst, size_t maxDstSize,
1658
const void* seqStart, size_t seqSize, int nbSeq,
1659
const ZSTD_longOffset_e isLongOffset,
1660
const int frame)
1661
{
1662
return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1663
}
1664
1665
static size_t
1666
ZSTD_decompressSequencesSplitLitBuffer_default(ZSTD_DCtx* dctx,
1667
void* dst, size_t maxDstSize,
1668
const void* seqStart, size_t seqSize, int nbSeq,
1669
const ZSTD_longOffset_e isLongOffset,
1670
const int frame)
1671
{
1672
return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1673
}
1674
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
1675
1676
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1677
1678
FORCE_INLINE_TEMPLATE size_t
1679
ZSTD_prefetchMatch(size_t prefetchPos, seq_t const sequence,
1680
const BYTE* const prefixStart, const BYTE* const dictEnd)
1681
{
1682
prefetchPos += sequence.litLength;
1683
{ const BYTE* const matchBase = (sequence.offset > prefetchPos) ? dictEnd : prefixStart;
1684
const BYTE* const match = matchBase + prefetchPos - sequence.offset; /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted.
1685
* No consequence though : memory address is only used for prefetching, not for dereferencing */
1686
PREFETCH_L1(match); PREFETCH_L1(match+CACHELINE_SIZE); /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
1687
}
1688
return prefetchPos + sequence.matchLength;
1689
}
1690
1691
/* This decoding function employs prefetching
1692
* to reduce latency impact of cache misses.
1693
* It's generally employed when block contains a significant portion of long-distance matches
1694
* or when coupled with a "cold" dictionary */
1695
FORCE_INLINE_TEMPLATE size_t
1696
ZSTD_decompressSequencesLong_body(
1697
ZSTD_DCtx* dctx,
1698
void* dst, size_t maxDstSize,
1699
const void* seqStart, size_t seqSize, int nbSeq,
1700
const ZSTD_longOffset_e isLongOffset,
1701
const int frame)
1702
{
1703
const BYTE* ip = (const BYTE*)seqStart;
1704
const BYTE* const iend = ip + seqSize;
1705
BYTE* const ostart = (BYTE*)dst;
1706
BYTE* const oend = dctx->litBufferLocation == ZSTD_in_dst ? dctx->litBuffer : ostart + maxDstSize;
1707
BYTE* op = ostart;
1708
const BYTE* litPtr = dctx->litPtr;
1709
const BYTE* litBufferEnd = dctx->litBufferEnd;
1710
const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
1711
const BYTE* const dictStart = (const BYTE*) (dctx->virtualStart);
1712
const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
1713
(void)frame;
1714
1715
/* Regen sequences */
1716
if (nbSeq) {
1717
#define STORED_SEQS 8
1718
#define STORED_SEQS_MASK (STORED_SEQS-1)
1719
#define ADVANCED_SEQS STORED_SEQS
1720
seq_t sequences[STORED_SEQS];
1721
int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS);
1722
seqState_t seqState;
1723
int seqNb;
1724
size_t prefetchPos = (size_t)(op-prefixStart); /* track position relative to prefixStart */
1725
1726
dctx->fseEntropy = 1;
1727
{ int i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
1728
assert(dst != NULL);
1729
assert(iend >= ip);
1730
RETURN_ERROR_IF(
1731
ERR_isError(BIT_initDStream(&seqState.DStream, ip, iend-ip)),
1732
corruption_detected, "");
1733
ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
1734
ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
1735
ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
1736
1737
/* prepare in advance */
1738
for (seqNb=0; (BIT_reloadDStream(&seqState.DStream) <= BIT_DStream_completed) && (seqNb<seqAdvance); seqNb++) {
1739
seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
1740
prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
1741
sequences[seqNb] = sequence;
1742
}
1743
RETURN_ERROR_IF(seqNb<seqAdvance, corruption_detected, "");
1744
1745
/* decompress without stomping litBuffer */
1746
for (; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && (seqNb < nbSeq); seqNb++) {
1747
seq_t sequence = ZSTD_decodeSequence(&seqState, isLongOffset);
1748
size_t oneSeqSize;
1749
1750
if (dctx->litBufferLocation == ZSTD_split && litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength > dctx->litBufferEnd)
1751
{
1752
/* lit buffer is reaching split point, empty out the first buffer and transition to litExtraBuffer */
1753
const size_t leftoverLit = dctx->litBufferEnd - litPtr;
1754
if (leftoverLit)
1755
{
1756
RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
1757
ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
1758
sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength -= leftoverLit;
1759
op += leftoverLit;
1760
}
1761
litPtr = dctx->litExtraBuffer;
1762
litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1763
dctx->litBufferLocation = ZSTD_not_in_dst;
1764
oneSeqSize = ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1765
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1766
assert(!ZSTD_isError(oneSeqSize));
1767
if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
1768
#endif
1769
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1770
1771
prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
1772
sequences[seqNb & STORED_SEQS_MASK] = sequence;
1773
op += oneSeqSize;
1774
}
1775
else
1776
{
1777
/* lit buffer is either wholly contained in first or second split, or not split at all*/
1778
oneSeqSize = dctx->litBufferLocation == ZSTD_split ?
1779
ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength - WILDCOPY_OVERLENGTH, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) :
1780
ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1781
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1782
assert(!ZSTD_isError(oneSeqSize));
1783
if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
1784
#endif
1785
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1786
1787
prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
1788
sequences[seqNb & STORED_SEQS_MASK] = sequence;
1789
op += oneSeqSize;
1790
}
1791
}
1792
RETURN_ERROR_IF(seqNb<nbSeq, corruption_detected, "");
1793
1794
/* finish queue */
1795
seqNb -= seqAdvance;
1796
for ( ; seqNb<nbSeq ; seqNb++) {
1797
seq_t *sequence = &(sequences[seqNb&STORED_SEQS_MASK]);
1798
if (dctx->litBufferLocation == ZSTD_split && litPtr + sequence->litLength > dctx->litBufferEnd)
1799
{
1800
const size_t leftoverLit = dctx->litBufferEnd - litPtr;
1801
if (leftoverLit)
1802
{
1803
RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
1804
ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
1805
sequence->litLength -= leftoverLit;
1806
op += leftoverLit;
1807
}
1808
litPtr = dctx->litExtraBuffer;
1809
litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1810
dctx->litBufferLocation = ZSTD_not_in_dst;
1811
{
1812
size_t const oneSeqSize = ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1813
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1814
assert(!ZSTD_isError(oneSeqSize));
1815
if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
1816
#endif
1817
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1818
op += oneSeqSize;
1819
}
1820
}
1821
else
1822
{
1823
size_t const oneSeqSize = dctx->litBufferLocation == ZSTD_split ?
1824
ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence->litLength - WILDCOPY_OVERLENGTH, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) :
1825
ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
1826
#if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
1827
assert(!ZSTD_isError(oneSeqSize));
1828
if (frame) ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
1829
#endif
1830
if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
1831
op += oneSeqSize;
1832
}
1833
}
1834
1835
/* save reps for next block */
1836
{ U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
1837
}
1838
1839
/* last literal segment */
1840
if (dctx->litBufferLocation == ZSTD_split) /* first deplete literal buffer in dst, then copy litExtraBuffer */
1841
{
1842
size_t const lastLLSize = litBufferEnd - litPtr;
1843
RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, "");
1844
if (op != NULL) {
1845
ZSTD_memmove(op, litPtr, lastLLSize);
1846
op += lastLLSize;
1847
}
1848
litPtr = dctx->litExtraBuffer;
1849
litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
1850
}
1851
{ size_t const lastLLSize = litBufferEnd - litPtr;
1852
RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
1853
if (op != NULL) {
1854
ZSTD_memmove(op, litPtr, lastLLSize);
1855
op += lastLLSize;
1856
}
1857
}
1858
1859
return op-ostart;
1860
}
1861
1862
static size_t
1863
ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx,
1864
void* dst, size_t maxDstSize,
1865
const void* seqStart, size_t seqSize, int nbSeq,
1866
const ZSTD_longOffset_e isLongOffset,
1867
const int frame)
1868
{
1869
return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1870
}
1871
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1872
1873
1874
1875
#if DYNAMIC_BMI2
1876
1877
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1878
static BMI2_TARGET_ATTRIBUTE size_t
1879
DONT_VECTORIZE
1880
ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx,
1881
void* dst, size_t maxDstSize,
1882
const void* seqStart, size_t seqSize, int nbSeq,
1883
const ZSTD_longOffset_e isLongOffset,
1884
const int frame)
1885
{
1886
return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1887
}
1888
static BMI2_TARGET_ATTRIBUTE size_t
1889
DONT_VECTORIZE
1890
ZSTD_decompressSequencesSplitLitBuffer_bmi2(ZSTD_DCtx* dctx,
1891
void* dst, size_t maxDstSize,
1892
const void* seqStart, size_t seqSize, int nbSeq,
1893
const ZSTD_longOffset_e isLongOffset,
1894
const int frame)
1895
{
1896
return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1897
}
1898
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
1899
1900
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1901
static BMI2_TARGET_ATTRIBUTE size_t
1902
ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx* dctx,
1903
void* dst, size_t maxDstSize,
1904
const void* seqStart, size_t seqSize, int nbSeq,
1905
const ZSTD_longOffset_e isLongOffset,
1906
const int frame)
1907
{
1908
return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1909
}
1910
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1911
1912
#endif /* DYNAMIC_BMI2 */
1913
1914
typedef size_t (*ZSTD_decompressSequences_t)(
1915
ZSTD_DCtx* dctx,
1916
void* dst, size_t maxDstSize,
1917
const void* seqStart, size_t seqSize, int nbSeq,
1918
const ZSTD_longOffset_e isLongOffset,
1919
const int frame);
1920
1921
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
1922
static size_t
1923
ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
1924
const void* seqStart, size_t seqSize, int nbSeq,
1925
const ZSTD_longOffset_e isLongOffset,
1926
const int frame)
1927
{
1928
DEBUGLOG(5, "ZSTD_decompressSequences");
1929
#if DYNAMIC_BMI2
1930
if (ZSTD_DCtx_get_bmi2(dctx)) {
1931
return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1932
}
1933
#endif
1934
return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1935
}
1936
static size_t
1937
ZSTD_decompressSequencesSplitLitBuffer(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
1938
const void* seqStart, size_t seqSize, int nbSeq,
1939
const ZSTD_longOffset_e isLongOffset,
1940
const int frame)
1941
{
1942
DEBUGLOG(5, "ZSTD_decompressSequencesSplitLitBuffer");
1943
#if DYNAMIC_BMI2
1944
if (ZSTD_DCtx_get_bmi2(dctx)) {
1945
return ZSTD_decompressSequencesSplitLitBuffer_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1946
}
1947
#endif
1948
return ZSTD_decompressSequencesSplitLitBuffer_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1949
}
1950
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
1951
1952
1953
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
1954
/* ZSTD_decompressSequencesLong() :
1955
* decompression function triggered when a minimum share of offsets is considered "long",
1956
* aka out of cache.
1957
* note : "long" definition seems overloaded here, sometimes meaning "wider than bitstream register", and sometimes meaning "farther than memory cache distance".
1958
* This function will try to mitigate main memory latency through the use of prefetching */
1959
static size_t
1960
ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx,
1961
void* dst, size_t maxDstSize,
1962
const void* seqStart, size_t seqSize, int nbSeq,
1963
const ZSTD_longOffset_e isLongOffset,
1964
const int frame)
1965
{
1966
DEBUGLOG(5, "ZSTD_decompressSequencesLong");
1967
#if DYNAMIC_BMI2
1968
if (ZSTD_DCtx_get_bmi2(dctx)) {
1969
return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1970
}
1971
#endif
1972
return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset, frame);
1973
}
1974
#endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
1975
1976
1977
/**
1978
* @returns The total size of the history referenceable by zstd, including
1979
* both the prefix and the extDict. At @p op any offset larger than this
1980
* is invalid.
1981
*/
1982
static size_t ZSTD_totalHistorySize(BYTE* op, BYTE const* virtualStart)
1983
{
1984
return (size_t)(op - virtualStart);
1985
}
1986
1987
typedef struct {
1988
unsigned longOffsetShare;
1989
unsigned maxNbAdditionalBits;
1990
} ZSTD_OffsetInfo;
1991
1992
/* ZSTD_getOffsetInfo() :
1993
* condition : offTable must be valid
1994
* @return : "share" of long offsets (arbitrarily defined as > (1<<23))
1995
* compared to maximum possible of (1<<OffFSELog),
1996
* as well as the maximum number additional bits required.
1997
*/
1998
static ZSTD_OffsetInfo
1999
ZSTD_getOffsetInfo(const ZSTD_seqSymbol* offTable, int nbSeq)
2000
{
2001
ZSTD_OffsetInfo info = {0, 0};
2002
/* If nbSeq == 0, then the offTable is uninitialized, but we have
2003
* no sequences, so both values should be 0.
2004
*/
2005
if (nbSeq != 0) {
2006
const void* ptr = offTable;
2007
U32 const tableLog = ((const ZSTD_seqSymbol_header*)ptr)[0].tableLog;
2008
const ZSTD_seqSymbol* table = offTable + 1;
2009
U32 const max = 1 << tableLog;
2010
U32 u;
2011
DEBUGLOG(5, "ZSTD_getLongOffsetsShare: (tableLog=%u)", tableLog);
2012
2013
assert(max <= (1 << OffFSELog)); /* max not too large */
2014
for (u=0; u<max; u++) {
2015
info.maxNbAdditionalBits = MAX(info.maxNbAdditionalBits, table[u].nbAdditionalBits);
2016
if (table[u].nbAdditionalBits > 22) info.longOffsetShare += 1;
2017
}
2018
2019
assert(tableLog <= OffFSELog);
2020
info.longOffsetShare <<= (OffFSELog - tableLog); /* scale to OffFSELog */
2021
}
2022
2023
return info;
2024
}
2025
2026
/**
2027
* @returns The maximum offset we can decode in one read of our bitstream, without
2028
* reloading more bits in the middle of the offset bits read. Any offsets larger
2029
* than this must use the long offset decoder.
2030
*/
2031
static size_t ZSTD_maxShortOffset(void)
2032
{
2033
if (MEM_64bits()) {
2034
/* We can decode any offset without reloading bits.
2035
* This might change if the max window size grows.
2036
*/
2037
ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31);
2038
return (size_t)-1;
2039
} else {
2040
/* The maximum offBase is (1 << (STREAM_ACCUMULATOR_MIN + 1)) - 1.
2041
* This offBase would require STREAM_ACCUMULATOR_MIN extra bits.
2042
* Then we have to subtract ZSTD_REP_NUM to get the maximum possible offset.
2043
*/
2044
size_t const maxOffbase = ((size_t)1 << (STREAM_ACCUMULATOR_MIN + 1)) - 1;
2045
size_t const maxOffset = maxOffbase - ZSTD_REP_NUM;
2046
assert(ZSTD_highbit32((U32)maxOffbase) == STREAM_ACCUMULATOR_MIN);
2047
return maxOffset;
2048
}
2049
}
2050
2051
size_t
2052
ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
2053
void* dst, size_t dstCapacity,
2054
const void* src, size_t srcSize, const int frame, const streaming_operation streaming)
2055
{ /* blockType == blockCompressed */
2056
const BYTE* ip = (const BYTE*)src;
2057
DEBUGLOG(5, "ZSTD_decompressBlock_internal (size : %u)", (U32)srcSize);
2058
2059
/* Note : the wording of the specification
2060
* allows compressed block to be sized exactly ZSTD_BLOCKSIZE_MAX.
2061
* This generally does not happen, as it makes little sense,
2062
* since an uncompressed block would feature same size and have no decompression cost.
2063
* Also, note that decoder from reference libzstd before < v1.5.4
2064
* would consider this edge case as an error.
2065
* As a consequence, avoid generating compressed blocks of size ZSTD_BLOCKSIZE_MAX
2066
* for broader compatibility with the deployed ecosystem of zstd decoders */
2067
RETURN_ERROR_IF(srcSize > ZSTD_BLOCKSIZE_MAX, srcSize_wrong, "");
2068
2069
/* Decode literals section */
2070
{ size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize, dst, dstCapacity, streaming);
2071
DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : cSize=%u, nbLiterals=%zu", (U32)litCSize, dctx->litSize);
2072
if (ZSTD_isError(litCSize)) return litCSize;
2073
ip += litCSize;
2074
srcSize -= litCSize;
2075
}
2076
2077
/* Build Decoding Tables */
2078
{
2079
/* Compute the maximum block size, which must also work when !frame and fParams are unset.
2080
* Additionally, take the min with dstCapacity to ensure that the totalHistorySize fits in a size_t.
2081
*/
2082
size_t const blockSizeMax = MIN(dstCapacity, (frame ? dctx->fParams.blockSizeMax : ZSTD_BLOCKSIZE_MAX));
2083
size_t const totalHistorySize = ZSTD_totalHistorySize((BYTE*)dst + blockSizeMax, (BYTE const*)dctx->virtualStart);
2084
/* isLongOffset must be true if there are long offsets.
2085
* Offsets are long if they are larger than ZSTD_maxShortOffset().
2086
* We don't expect that to be the case in 64-bit mode.
2087
*
2088
* We check here to see if our history is large enough to allow long offsets.
2089
* If it isn't, then we can't possible have (valid) long offsets. If the offset
2090
* is invalid, then it is okay to read it incorrectly.
2091
*
2092
* If isLongOffsets is true, then we will later check our decoding table to see
2093
* if it is even possible to generate long offsets.
2094
*/
2095
ZSTD_longOffset_e isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (totalHistorySize > ZSTD_maxShortOffset()));
2096
/* These macros control at build-time which decompressor implementation
2097
* we use. If neither is defined, we do some inspection and dispatch at
2098
* runtime.
2099
*/
2100
#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
2101
!defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
2102
int usePrefetchDecoder = dctx->ddictIsCold;
2103
#else
2104
/* Set to 1 to avoid computing offset info if we don't need to.
2105
* Otherwise this value is ignored.
2106
*/
2107
int usePrefetchDecoder = 1;
2108
#endif
2109
int nbSeq;
2110
size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, srcSize);
2111
if (ZSTD_isError(seqHSize)) return seqHSize;
2112
ip += seqHSize;
2113
srcSize -= seqHSize;
2114
2115
RETURN_ERROR_IF((dst == NULL || dstCapacity == 0) && nbSeq > 0, dstSize_tooSmall, "NULL not handled");
2116
RETURN_ERROR_IF(MEM_64bits() && sizeof(size_t) == sizeof(void*) && (size_t)(-1) - (size_t)dst < (size_t)(1 << 20), dstSize_tooSmall,
2117
"invalid dst");
2118
2119
/* If we could potentially have long offsets, or we might want to use the prefetch decoder,
2120
* compute information about the share of long offsets, and the maximum nbAdditionalBits.
2121
* NOTE: could probably use a larger nbSeq limit
2122
*/
2123
if (isLongOffset || (!usePrefetchDecoder && (totalHistorySize > (1u << 24)) && (nbSeq > 8))) {
2124
ZSTD_OffsetInfo const info = ZSTD_getOffsetInfo(dctx->OFTptr, nbSeq);
2125
if (isLongOffset && info.maxNbAdditionalBits <= STREAM_ACCUMULATOR_MIN) {
2126
/* If isLongOffset, but the maximum number of additional bits that we see in our table is small
2127
* enough, then we know it is impossible to have too long an offset in this block, so we can
2128
* use the regular offset decoder.
2129
*/
2130
isLongOffset = ZSTD_lo_isRegularOffset;
2131
}
2132
if (!usePrefetchDecoder) {
2133
U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */
2134
usePrefetchDecoder = (info.longOffsetShare >= minShare);
2135
}
2136
}
2137
2138
dctx->ddictIsCold = 0;
2139
2140
#if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
2141
!defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
2142
if (usePrefetchDecoder) {
2143
#else
2144
(void)usePrefetchDecoder;
2145
{
2146
#endif
2147
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
2148
return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
2149
#endif
2150
}
2151
2152
#ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
2153
/* else */
2154
if (dctx->litBufferLocation == ZSTD_split)
2155
return ZSTD_decompressSequencesSplitLitBuffer(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
2156
else
2157
return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset, frame);
2158
#endif
2159
}
2160
}
2161
2162
2163
void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize)
2164
{
2165
if (dst != dctx->previousDstEnd && dstSize > 0) { /* not contiguous */
2166
dctx->dictEnd = dctx->previousDstEnd;
2167
dctx->virtualStart = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart));
2168
dctx->prefixStart = dst;
2169
dctx->previousDstEnd = dst;
2170
}
2171
}
2172
2173
2174
size_t ZSTD_decompressBlock_deprecated(ZSTD_DCtx* dctx,
2175
void* dst, size_t dstCapacity,
2176
const void* src, size_t srcSize)
2177
{
2178
size_t dSize;
2179
ZSTD_checkContinuity(dctx, dst, dstCapacity);
2180
dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, /* frame */ 0, not_streaming);
2181
dctx->previousDstEnd = (char*)dst + dSize;
2182
return dSize;
2183
}
2184
2185
2186
/* NOTE: Must just wrap ZSTD_decompressBlock_deprecated() */
2187
size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx,
2188
void* dst, size_t dstCapacity,
2189
const void* src, size_t srcSize)
2190
{
2191
return ZSTD_decompressBlock_deprecated(dctx, dst, dstCapacity, src, srcSize);
2192
}
2193
2194