Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmzstd/lib/dictBuilder/cover.c
3156 views
1
/*
2
* Copyright (c) Meta Platforms, Inc. and affiliates.
3
* All rights reserved.
4
*
5
* This source code is licensed under both the BSD-style license (found in the
6
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
7
* in the COPYING file in the root directory of this source tree).
8
* You may select, at your option, one of the above-listed licenses.
9
*/
10
11
/* *****************************************************************************
12
* Constructs a dictionary using a heuristic based on the following paper:
13
*
14
* Liao, Petri, Moffat, Wirth
15
* Effective Construction of Relative Lempel-Ziv Dictionaries
16
* Published in WWW 2016.
17
*
18
* Adapted from code originally written by @ot (Giuseppe Ottaviano).
19
******************************************************************************/
20
21
/*-*************************************
22
* Dependencies
23
***************************************/
24
#include <stdio.h> /* fprintf */
25
#include <stdlib.h> /* malloc, free, qsort */
26
#include <string.h> /* memset */
27
#include <time.h> /* clock */
28
29
#ifndef ZDICT_STATIC_LINKING_ONLY
30
# define ZDICT_STATIC_LINKING_ONLY
31
#endif
32
33
#include "../common/mem.h" /* read */
34
#include "../common/pool.h"
35
#include "../common/threading.h"
36
#include "../common/zstd_internal.h" /* includes zstd.h */
37
#include "../common/bits.h" /* ZSTD_highbit32 */
38
#include "../zdict.h"
39
#include "cover.h"
40
41
/*-*************************************
42
* Constants
43
***************************************/
44
/**
45
* There are 32bit indexes used to ref samples, so limit samples size to 4GB
46
* on 64bit builds.
47
* For 32bit builds we choose 1 GB.
48
* Most 32bit platforms have 2GB user-mode addressable space and we allocate a large
49
* contiguous buffer, so 1GB is already a high limit.
50
*/
51
#define COVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB))
52
#define COVER_DEFAULT_SPLITPOINT 1.0
53
54
/*-*************************************
55
* Console display
56
***************************************/
57
#ifndef LOCALDISPLAYLEVEL
58
static int g_displayLevel = 0;
59
#endif
60
#undef DISPLAY
61
#define DISPLAY(...) \
62
{ \
63
fprintf(stderr, __VA_ARGS__); \
64
fflush(stderr); \
65
}
66
#undef LOCALDISPLAYLEVEL
67
#define LOCALDISPLAYLEVEL(displayLevel, l, ...) \
68
if (displayLevel >= l) { \
69
DISPLAY(__VA_ARGS__); \
70
} /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */
71
#undef DISPLAYLEVEL
72
#define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
73
74
#ifndef LOCALDISPLAYUPDATE
75
static const clock_t g_refreshRate = CLOCKS_PER_SEC * 15 / 100;
76
static clock_t g_time = 0;
77
#endif
78
#undef LOCALDISPLAYUPDATE
79
#define LOCALDISPLAYUPDATE(displayLevel, l, ...) \
80
if (displayLevel >= l) { \
81
if ((clock() - g_time > g_refreshRate) || (displayLevel >= 4)) { \
82
g_time = clock(); \
83
DISPLAY(__VA_ARGS__); \
84
} \
85
}
86
#undef DISPLAYUPDATE
87
#define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
88
89
/*-*************************************
90
* Hash table
91
***************************************
92
* A small specialized hash map for storing activeDmers.
93
* The map does not resize, so if it becomes full it will loop forever.
94
* Thus, the map must be large enough to store every value.
95
* The map implements linear probing and keeps its load less than 0.5.
96
*/
97
98
#define MAP_EMPTY_VALUE ((U32)-1)
99
typedef struct COVER_map_pair_t_s {
100
U32 key;
101
U32 value;
102
} COVER_map_pair_t;
103
104
typedef struct COVER_map_s {
105
COVER_map_pair_t *data;
106
U32 sizeLog;
107
U32 size;
108
U32 sizeMask;
109
} COVER_map_t;
110
111
/**
112
* Clear the map.
113
*/
114
static void COVER_map_clear(COVER_map_t *map) {
115
memset(map->data, MAP_EMPTY_VALUE, map->size * sizeof(COVER_map_pair_t));
116
}
117
118
/**
119
* Initializes a map of the given size.
120
* Returns 1 on success and 0 on failure.
121
* The map must be destroyed with COVER_map_destroy().
122
* The map is only guaranteed to be large enough to hold size elements.
123
*/
124
static int COVER_map_init(COVER_map_t *map, U32 size) {
125
map->sizeLog = ZSTD_highbit32(size) + 2;
126
map->size = (U32)1 << map->sizeLog;
127
map->sizeMask = map->size - 1;
128
map->data = (COVER_map_pair_t *)malloc(map->size * sizeof(COVER_map_pair_t));
129
if (!map->data) {
130
map->sizeLog = 0;
131
map->size = 0;
132
return 0;
133
}
134
COVER_map_clear(map);
135
return 1;
136
}
137
138
/**
139
* Internal hash function
140
*/
141
static const U32 COVER_prime4bytes = 2654435761U;
142
static U32 COVER_map_hash(COVER_map_t *map, U32 key) {
143
return (key * COVER_prime4bytes) >> (32 - map->sizeLog);
144
}
145
146
/**
147
* Helper function that returns the index that a key should be placed into.
148
*/
149
static U32 COVER_map_index(COVER_map_t *map, U32 key) {
150
const U32 hash = COVER_map_hash(map, key);
151
U32 i;
152
for (i = hash;; i = (i + 1) & map->sizeMask) {
153
COVER_map_pair_t *pos = &map->data[i];
154
if (pos->value == MAP_EMPTY_VALUE) {
155
return i;
156
}
157
if (pos->key == key) {
158
return i;
159
}
160
}
161
}
162
163
/**
164
* Returns the pointer to the value for key.
165
* If key is not in the map, it is inserted and the value is set to 0.
166
* The map must not be full.
167
*/
168
static U32 *COVER_map_at(COVER_map_t *map, U32 key) {
169
COVER_map_pair_t *pos = &map->data[COVER_map_index(map, key)];
170
if (pos->value == MAP_EMPTY_VALUE) {
171
pos->key = key;
172
pos->value = 0;
173
}
174
return &pos->value;
175
}
176
177
/**
178
* Deletes key from the map if present.
179
*/
180
static void COVER_map_remove(COVER_map_t *map, U32 key) {
181
U32 i = COVER_map_index(map, key);
182
COVER_map_pair_t *del = &map->data[i];
183
U32 shift = 1;
184
if (del->value == MAP_EMPTY_VALUE) {
185
return;
186
}
187
for (i = (i + 1) & map->sizeMask;; i = (i + 1) & map->sizeMask) {
188
COVER_map_pair_t *const pos = &map->data[i];
189
/* If the position is empty we are done */
190
if (pos->value == MAP_EMPTY_VALUE) {
191
del->value = MAP_EMPTY_VALUE;
192
return;
193
}
194
/* If pos can be moved to del do so */
195
if (((i - COVER_map_hash(map, pos->key)) & map->sizeMask) >= shift) {
196
del->key = pos->key;
197
del->value = pos->value;
198
del = pos;
199
shift = 1;
200
} else {
201
++shift;
202
}
203
}
204
}
205
206
/**
207
* Destroys a map that is inited with COVER_map_init().
208
*/
209
static void COVER_map_destroy(COVER_map_t *map) {
210
if (map->data) {
211
free(map->data);
212
}
213
map->data = NULL;
214
map->size = 0;
215
}
216
217
/*-*************************************
218
* Context
219
***************************************/
220
221
typedef struct {
222
const BYTE *samples;
223
size_t *offsets;
224
const size_t *samplesSizes;
225
size_t nbSamples;
226
size_t nbTrainSamples;
227
size_t nbTestSamples;
228
U32 *suffix;
229
size_t suffixSize;
230
U32 *freqs;
231
U32 *dmerAt;
232
unsigned d;
233
} COVER_ctx_t;
234
235
/* We need a global context for qsort... */
236
static COVER_ctx_t *g_coverCtx = NULL;
237
238
/*-*************************************
239
* Helper functions
240
***************************************/
241
242
/**
243
* Returns the sum of the sample sizes.
244
*/
245
size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) {
246
size_t sum = 0;
247
unsigned i;
248
for (i = 0; i < nbSamples; ++i) {
249
sum += samplesSizes[i];
250
}
251
return sum;
252
}
253
254
/**
255
* Returns -1 if the dmer at lp is less than the dmer at rp.
256
* Return 0 if the dmers at lp and rp are equal.
257
* Returns 1 if the dmer at lp is greater than the dmer at rp.
258
*/
259
static int COVER_cmp(COVER_ctx_t *ctx, const void *lp, const void *rp) {
260
U32 const lhs = *(U32 const *)lp;
261
U32 const rhs = *(U32 const *)rp;
262
return memcmp(ctx->samples + lhs, ctx->samples + rhs, ctx->d);
263
}
264
/**
265
* Faster version for d <= 8.
266
*/
267
static int COVER_cmp8(COVER_ctx_t *ctx, const void *lp, const void *rp) {
268
U64 const mask = (ctx->d == 8) ? (U64)-1 : (((U64)1 << (8 * ctx->d)) - 1);
269
U64 const lhs = MEM_readLE64(ctx->samples + *(U32 const *)lp) & mask;
270
U64 const rhs = MEM_readLE64(ctx->samples + *(U32 const *)rp) & mask;
271
if (lhs < rhs) {
272
return -1;
273
}
274
return (lhs > rhs);
275
}
276
277
/**
278
* Same as COVER_cmp() except ties are broken by pointer value
279
* NOTE: g_coverCtx must be set to call this function. A global is required because
280
* qsort doesn't take an opaque pointer.
281
*/
282
static int WIN_CDECL COVER_strict_cmp(const void *lp, const void *rp) {
283
int result = COVER_cmp(g_coverCtx, lp, rp);
284
if (result == 0) {
285
result = lp < rp ? -1 : 1;
286
}
287
return result;
288
}
289
/**
290
* Faster version for d <= 8.
291
*/
292
static int WIN_CDECL COVER_strict_cmp8(const void *lp, const void *rp) {
293
int result = COVER_cmp8(g_coverCtx, lp, rp);
294
if (result == 0) {
295
result = lp < rp ? -1 : 1;
296
}
297
return result;
298
}
299
300
/**
301
* Returns the first pointer in [first, last) whose element does not compare
302
* less than value. If no such element exists it returns last.
303
*/
304
static const size_t *COVER_lower_bound(const size_t *first, const size_t *last,
305
size_t value) {
306
size_t count = last - first;
307
while (count != 0) {
308
size_t step = count / 2;
309
const size_t *ptr = first;
310
ptr += step;
311
if (*ptr < value) {
312
first = ++ptr;
313
count -= step + 1;
314
} else {
315
count = step;
316
}
317
}
318
return first;
319
}
320
321
/**
322
* Generic groupBy function.
323
* Groups an array sorted by cmp into groups with equivalent values.
324
* Calls grp for each group.
325
*/
326
static void
327
COVER_groupBy(const void *data, size_t count, size_t size, COVER_ctx_t *ctx,
328
int (*cmp)(COVER_ctx_t *, const void *, const void *),
329
void (*grp)(COVER_ctx_t *, const void *, const void *)) {
330
const BYTE *ptr = (const BYTE *)data;
331
size_t num = 0;
332
while (num < count) {
333
const BYTE *grpEnd = ptr + size;
334
++num;
335
while (num < count && cmp(ctx, ptr, grpEnd) == 0) {
336
grpEnd += size;
337
++num;
338
}
339
grp(ctx, ptr, grpEnd);
340
ptr = grpEnd;
341
}
342
}
343
344
/*-*************************************
345
* Cover functions
346
***************************************/
347
348
/**
349
* Called on each group of positions with the same dmer.
350
* Counts the frequency of each dmer and saves it in the suffix array.
351
* Fills `ctx->dmerAt`.
352
*/
353
static void COVER_group(COVER_ctx_t *ctx, const void *group,
354
const void *groupEnd) {
355
/* The group consists of all the positions with the same first d bytes. */
356
const U32 *grpPtr = (const U32 *)group;
357
const U32 *grpEnd = (const U32 *)groupEnd;
358
/* The dmerId is how we will reference this dmer.
359
* This allows us to map the whole dmer space to a much smaller space, the
360
* size of the suffix array.
361
*/
362
const U32 dmerId = (U32)(grpPtr - ctx->suffix);
363
/* Count the number of samples this dmer shows up in */
364
U32 freq = 0;
365
/* Details */
366
const size_t *curOffsetPtr = ctx->offsets;
367
const size_t *offsetsEnd = ctx->offsets + ctx->nbSamples;
368
/* Once *grpPtr >= curSampleEnd this occurrence of the dmer is in a
369
* different sample than the last.
370
*/
371
size_t curSampleEnd = ctx->offsets[0];
372
for (; grpPtr != grpEnd; ++grpPtr) {
373
/* Save the dmerId for this position so we can get back to it. */
374
ctx->dmerAt[*grpPtr] = dmerId;
375
/* Dictionaries only help for the first reference to the dmer.
376
* After that zstd can reference the match from the previous reference.
377
* So only count each dmer once for each sample it is in.
378
*/
379
if (*grpPtr < curSampleEnd) {
380
continue;
381
}
382
freq += 1;
383
/* Binary search to find the end of the sample *grpPtr is in.
384
* In the common case that grpPtr + 1 == grpEnd we can skip the binary
385
* search because the loop is over.
386
*/
387
if (grpPtr + 1 != grpEnd) {
388
const size_t *sampleEndPtr =
389
COVER_lower_bound(curOffsetPtr, offsetsEnd, *grpPtr);
390
curSampleEnd = *sampleEndPtr;
391
curOffsetPtr = sampleEndPtr + 1;
392
}
393
}
394
/* At this point we are never going to look at this segment of the suffix
395
* array again. We take advantage of this fact to save memory.
396
* We store the frequency of the dmer in the first position of the group,
397
* which is dmerId.
398
*/
399
ctx->suffix[dmerId] = freq;
400
}
401
402
403
/**
404
* Selects the best segment in an epoch.
405
* Segments of are scored according to the function:
406
*
407
* Let F(d) be the frequency of dmer d.
408
* Let S_i be the dmer at position i of segment S which has length k.
409
*
410
* Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
411
*
412
* Once the dmer d is in the dictionary we set F(d) = 0.
413
*/
414
static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs,
415
COVER_map_t *activeDmers, U32 begin,
416
U32 end,
417
ZDICT_cover_params_t parameters) {
418
/* Constants */
419
const U32 k = parameters.k;
420
const U32 d = parameters.d;
421
const U32 dmersInK = k - d + 1;
422
/* Try each segment (activeSegment) and save the best (bestSegment) */
423
COVER_segment_t bestSegment = {0, 0, 0};
424
COVER_segment_t activeSegment;
425
/* Reset the activeDmers in the segment */
426
COVER_map_clear(activeDmers);
427
/* The activeSegment starts at the beginning of the epoch. */
428
activeSegment.begin = begin;
429
activeSegment.end = begin;
430
activeSegment.score = 0;
431
/* Slide the activeSegment through the whole epoch.
432
* Save the best segment in bestSegment.
433
*/
434
while (activeSegment.end < end) {
435
/* The dmerId for the dmer at the next position */
436
U32 newDmer = ctx->dmerAt[activeSegment.end];
437
/* The entry in activeDmers for this dmerId */
438
U32 *newDmerOcc = COVER_map_at(activeDmers, newDmer);
439
/* If the dmer isn't already present in the segment add its score. */
440
if (*newDmerOcc == 0) {
441
/* The paper suggest using the L-0.5 norm, but experiments show that it
442
* doesn't help.
443
*/
444
activeSegment.score += freqs[newDmer];
445
}
446
/* Add the dmer to the segment */
447
activeSegment.end += 1;
448
*newDmerOcc += 1;
449
450
/* If the window is now too large, drop the first position */
451
if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
452
U32 delDmer = ctx->dmerAt[activeSegment.begin];
453
U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer);
454
activeSegment.begin += 1;
455
*delDmerOcc -= 1;
456
/* If this is the last occurrence of the dmer, subtract its score */
457
if (*delDmerOcc == 0) {
458
COVER_map_remove(activeDmers, delDmer);
459
activeSegment.score -= freqs[delDmer];
460
}
461
}
462
463
/* If this segment is the best so far save it */
464
if (activeSegment.score > bestSegment.score) {
465
bestSegment = activeSegment;
466
}
467
}
468
{
469
/* Trim off the zero frequency head and tail from the segment. */
470
U32 newBegin = bestSegment.end;
471
U32 newEnd = bestSegment.begin;
472
U32 pos;
473
for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
474
U32 freq = freqs[ctx->dmerAt[pos]];
475
if (freq != 0) {
476
newBegin = MIN(newBegin, pos);
477
newEnd = pos + 1;
478
}
479
}
480
bestSegment.begin = newBegin;
481
bestSegment.end = newEnd;
482
}
483
{
484
/* Zero out the frequency of each dmer covered by the chosen segment. */
485
U32 pos;
486
for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
487
freqs[ctx->dmerAt[pos]] = 0;
488
}
489
}
490
return bestSegment;
491
}
492
493
/**
494
* Check the validity of the parameters.
495
* Returns non-zero if the parameters are valid and 0 otherwise.
496
*/
497
static int COVER_checkParameters(ZDICT_cover_params_t parameters,
498
size_t maxDictSize) {
499
/* k and d are required parameters */
500
if (parameters.d == 0 || parameters.k == 0) {
501
return 0;
502
}
503
/* k <= maxDictSize */
504
if (parameters.k > maxDictSize) {
505
return 0;
506
}
507
/* d <= k */
508
if (parameters.d > parameters.k) {
509
return 0;
510
}
511
/* 0 < splitPoint <= 1 */
512
if (parameters.splitPoint <= 0 || parameters.splitPoint > 1){
513
return 0;
514
}
515
return 1;
516
}
517
518
/**
519
* Clean up a context initialized with `COVER_ctx_init()`.
520
*/
521
static void COVER_ctx_destroy(COVER_ctx_t *ctx) {
522
if (!ctx) {
523
return;
524
}
525
if (ctx->suffix) {
526
free(ctx->suffix);
527
ctx->suffix = NULL;
528
}
529
if (ctx->freqs) {
530
free(ctx->freqs);
531
ctx->freqs = NULL;
532
}
533
if (ctx->dmerAt) {
534
free(ctx->dmerAt);
535
ctx->dmerAt = NULL;
536
}
537
if (ctx->offsets) {
538
free(ctx->offsets);
539
ctx->offsets = NULL;
540
}
541
}
542
543
/**
544
* Prepare a context for dictionary building.
545
* The context is only dependent on the parameter `d` and can be used multiple
546
* times.
547
* Returns 0 on success or error code on error.
548
* The context must be destroyed with `COVER_ctx_destroy()`.
549
*/
550
static size_t COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
551
const size_t *samplesSizes, unsigned nbSamples,
552
unsigned d, double splitPoint) {
553
const BYTE *const samples = (const BYTE *)samplesBuffer;
554
const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
555
/* Split samples into testing and training sets */
556
const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples;
557
const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples;
558
const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize;
559
const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize;
560
/* Checks */
561
if (totalSamplesSize < MAX(d, sizeof(U64)) ||
562
totalSamplesSize >= (size_t)COVER_MAX_SAMPLES_SIZE) {
563
DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
564
(unsigned)(totalSamplesSize>>20), (COVER_MAX_SAMPLES_SIZE >> 20));
565
return ERROR(srcSize_wrong);
566
}
567
/* Check if there are at least 5 training samples */
568
if (nbTrainSamples < 5) {
569
DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid.", nbTrainSamples);
570
return ERROR(srcSize_wrong);
571
}
572
/* Check if there's testing sample */
573
if (nbTestSamples < 1) {
574
DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.", nbTestSamples);
575
return ERROR(srcSize_wrong);
576
}
577
/* Zero the context */
578
memset(ctx, 0, sizeof(*ctx));
579
DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples,
580
(unsigned)trainingSamplesSize);
581
DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples,
582
(unsigned)testSamplesSize);
583
ctx->samples = samples;
584
ctx->samplesSizes = samplesSizes;
585
ctx->nbSamples = nbSamples;
586
ctx->nbTrainSamples = nbTrainSamples;
587
ctx->nbTestSamples = nbTestSamples;
588
/* Partial suffix array */
589
ctx->suffixSize = trainingSamplesSize - MAX(d, sizeof(U64)) + 1;
590
ctx->suffix = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
591
/* Maps index to the dmerID */
592
ctx->dmerAt = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
593
/* The offsets of each file */
594
ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t));
595
if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) {
596
DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n");
597
COVER_ctx_destroy(ctx);
598
return ERROR(memory_allocation);
599
}
600
ctx->freqs = NULL;
601
ctx->d = d;
602
603
/* Fill offsets from the samplesSizes */
604
{
605
U32 i;
606
ctx->offsets[0] = 0;
607
for (i = 1; i <= nbSamples; ++i) {
608
ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
609
}
610
}
611
DISPLAYLEVEL(2, "Constructing partial suffix array\n");
612
{
613
/* suffix is a partial suffix array.
614
* It only sorts suffixes by their first parameters.d bytes.
615
* The sort is stable, so each dmer group is sorted by position in input.
616
*/
617
U32 i;
618
for (i = 0; i < ctx->suffixSize; ++i) {
619
ctx->suffix[i] = i;
620
}
621
/* qsort doesn't take an opaque pointer, so pass as a global.
622
* On OpenBSD qsort() is not guaranteed to be stable, their mergesort() is.
623
*/
624
g_coverCtx = ctx;
625
#if defined(__OpenBSD__)
626
mergesort(ctx->suffix, ctx->suffixSize, sizeof(U32),
627
(ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
628
#else
629
qsort(ctx->suffix, ctx->suffixSize, sizeof(U32),
630
(ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
631
#endif
632
}
633
DISPLAYLEVEL(2, "Computing frequencies\n");
634
/* For each dmer group (group of positions with the same first d bytes):
635
* 1. For each position we set dmerAt[position] = dmerID. The dmerID is
636
* (groupBeginPtr - suffix). This allows us to go from position to
637
* dmerID so we can look up values in freq.
638
* 2. We calculate how many samples the dmer occurs in and save it in
639
* freqs[dmerId].
640
*/
641
COVER_groupBy(ctx->suffix, ctx->suffixSize, sizeof(U32), ctx,
642
(ctx->d <= 8 ? &COVER_cmp8 : &COVER_cmp), &COVER_group);
643
ctx->freqs = ctx->suffix;
644
ctx->suffix = NULL;
645
return 0;
646
}
647
648
void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel)
649
{
650
const double ratio = (double)nbDmers / (double)maxDictSize;
651
if (ratio >= 10) {
652
return;
653
}
654
LOCALDISPLAYLEVEL(displayLevel, 1,
655
"WARNING: The maximum dictionary size %u is too large "
656
"compared to the source size %u! "
657
"size(source)/size(dictionary) = %f, but it should be >= "
658
"10! This may lead to a subpar dictionary! We recommend "
659
"training on sources at least 10x, and preferably 100x "
660
"the size of the dictionary! \n", (U32)maxDictSize,
661
(U32)nbDmers, ratio);
662
}
663
664
COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize,
665
U32 nbDmers, U32 k, U32 passes)
666
{
667
const U32 minEpochSize = k * 10;
668
COVER_epoch_info_t epochs;
669
epochs.num = MAX(1, maxDictSize / k / passes);
670
epochs.size = nbDmers / epochs.num;
671
if (epochs.size >= minEpochSize) {
672
assert(epochs.size * epochs.num <= nbDmers);
673
return epochs;
674
}
675
epochs.size = MIN(minEpochSize, nbDmers);
676
epochs.num = nbDmers / epochs.size;
677
assert(epochs.size * epochs.num <= nbDmers);
678
return epochs;
679
}
680
681
/**
682
* Given the prepared context build the dictionary.
683
*/
684
static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs,
685
COVER_map_t *activeDmers, void *dictBuffer,
686
size_t dictBufferCapacity,
687
ZDICT_cover_params_t parameters) {
688
BYTE *const dict = (BYTE *)dictBuffer;
689
size_t tail = dictBufferCapacity;
690
/* Divide the data into epochs. We will select one segment from each epoch. */
691
const COVER_epoch_info_t epochs = COVER_computeEpochs(
692
(U32)dictBufferCapacity, (U32)ctx->suffixSize, parameters.k, 4);
693
const size_t maxZeroScoreRun = MAX(10, MIN(100, epochs.num >> 3));
694
size_t zeroScoreRun = 0;
695
size_t epoch;
696
DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n",
697
(U32)epochs.num, (U32)epochs.size);
698
/* Loop through the epochs until there are no more segments or the dictionary
699
* is full.
700
*/
701
for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) {
702
const U32 epochBegin = (U32)(epoch * epochs.size);
703
const U32 epochEnd = epochBegin + epochs.size;
704
size_t segmentSize;
705
/* Select a segment */
706
COVER_segment_t segment = COVER_selectSegment(
707
ctx, freqs, activeDmers, epochBegin, epochEnd, parameters);
708
/* If the segment covers no dmers, then we are out of content.
709
* There may be new content in other epochs, for continue for some time.
710
*/
711
if (segment.score == 0) {
712
if (++zeroScoreRun >= maxZeroScoreRun) {
713
break;
714
}
715
continue;
716
}
717
zeroScoreRun = 0;
718
/* Trim the segment if necessary and if it is too small then we are done */
719
segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
720
if (segmentSize < parameters.d) {
721
break;
722
}
723
/* We fill the dictionary from the back to allow the best segments to be
724
* referenced with the smallest offsets.
725
*/
726
tail -= segmentSize;
727
memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
728
DISPLAYUPDATE(
729
2, "\r%u%% ",
730
(unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
731
}
732
DISPLAYLEVEL(2, "\r%79s\r", "");
733
return tail;
734
}
735
736
ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover(
737
void *dictBuffer, size_t dictBufferCapacity,
738
const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
739
ZDICT_cover_params_t parameters)
740
{
741
BYTE* const dict = (BYTE*)dictBuffer;
742
COVER_ctx_t ctx;
743
COVER_map_t activeDmers;
744
parameters.splitPoint = 1.0;
745
/* Initialize global data */
746
g_displayLevel = (int)parameters.zParams.notificationLevel;
747
/* Checks */
748
if (!COVER_checkParameters(parameters, dictBufferCapacity)) {
749
DISPLAYLEVEL(1, "Cover parameters incorrect\n");
750
return ERROR(parameter_outOfBound);
751
}
752
if (nbSamples == 0) {
753
DISPLAYLEVEL(1, "Cover must have at least one input file\n");
754
return ERROR(srcSize_wrong);
755
}
756
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
757
DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
758
ZDICT_DICTSIZE_MIN);
759
return ERROR(dstSize_tooSmall);
760
}
761
/* Initialize context and activeDmers */
762
{
763
size_t const initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
764
parameters.d, parameters.splitPoint);
765
if (ZSTD_isError(initVal)) {
766
return initVal;
767
}
768
}
769
COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, g_displayLevel);
770
if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
771
DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
772
COVER_ctx_destroy(&ctx);
773
return ERROR(memory_allocation);
774
}
775
776
DISPLAYLEVEL(2, "Building dictionary\n");
777
{
778
const size_t tail =
779
COVER_buildDictionary(&ctx, ctx.freqs, &activeDmers, dictBuffer,
780
dictBufferCapacity, parameters);
781
const size_t dictionarySize = ZDICT_finalizeDictionary(
782
dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
783
samplesBuffer, samplesSizes, nbSamples, parameters.zParams);
784
if (!ZSTD_isError(dictionarySize)) {
785
DISPLAYLEVEL(2, "Constructed dictionary of size %u\n",
786
(unsigned)dictionarySize);
787
}
788
COVER_ctx_destroy(&ctx);
789
COVER_map_destroy(&activeDmers);
790
return dictionarySize;
791
}
792
}
793
794
795
796
size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,
797
const size_t *samplesSizes, const BYTE *samples,
798
size_t *offsets,
799
size_t nbTrainSamples, size_t nbSamples,
800
BYTE *const dict, size_t dictBufferCapacity) {
801
size_t totalCompressedSize = ERROR(GENERIC);
802
/* Pointers */
803
ZSTD_CCtx *cctx;
804
ZSTD_CDict *cdict;
805
void *dst;
806
/* Local variables */
807
size_t dstCapacity;
808
size_t i;
809
/* Allocate dst with enough space to compress the maximum sized sample */
810
{
811
size_t maxSampleSize = 0;
812
i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
813
for (; i < nbSamples; ++i) {
814
maxSampleSize = MAX(samplesSizes[i], maxSampleSize);
815
}
816
dstCapacity = ZSTD_compressBound(maxSampleSize);
817
dst = malloc(dstCapacity);
818
}
819
/* Create the cctx and cdict */
820
cctx = ZSTD_createCCtx();
821
cdict = ZSTD_createCDict(dict, dictBufferCapacity,
822
parameters.zParams.compressionLevel);
823
if (!dst || !cctx || !cdict) {
824
goto _compressCleanup;
825
}
826
/* Compress each sample and sum their sizes (or error) */
827
totalCompressedSize = dictBufferCapacity;
828
i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
829
for (; i < nbSamples; ++i) {
830
const size_t size = ZSTD_compress_usingCDict(
831
cctx, dst, dstCapacity, samples + offsets[i],
832
samplesSizes[i], cdict);
833
if (ZSTD_isError(size)) {
834
totalCompressedSize = size;
835
goto _compressCleanup;
836
}
837
totalCompressedSize += size;
838
}
839
_compressCleanup:
840
ZSTD_freeCCtx(cctx);
841
ZSTD_freeCDict(cdict);
842
if (dst) {
843
free(dst);
844
}
845
return totalCompressedSize;
846
}
847
848
849
/**
850
* Initialize the `COVER_best_t`.
851
*/
852
void COVER_best_init(COVER_best_t *best) {
853
if (best==NULL) return; /* compatible with init on NULL */
854
(void)ZSTD_pthread_mutex_init(&best->mutex, NULL);
855
(void)ZSTD_pthread_cond_init(&best->cond, NULL);
856
best->liveJobs = 0;
857
best->dict = NULL;
858
best->dictSize = 0;
859
best->compressedSize = (size_t)-1;
860
memset(&best->parameters, 0, sizeof(best->parameters));
861
}
862
863
/**
864
* Wait until liveJobs == 0.
865
*/
866
void COVER_best_wait(COVER_best_t *best) {
867
if (!best) {
868
return;
869
}
870
ZSTD_pthread_mutex_lock(&best->mutex);
871
while (best->liveJobs != 0) {
872
ZSTD_pthread_cond_wait(&best->cond, &best->mutex);
873
}
874
ZSTD_pthread_mutex_unlock(&best->mutex);
875
}
876
877
/**
878
* Call COVER_best_wait() and then destroy the COVER_best_t.
879
*/
880
void COVER_best_destroy(COVER_best_t *best) {
881
if (!best) {
882
return;
883
}
884
COVER_best_wait(best);
885
if (best->dict) {
886
free(best->dict);
887
}
888
ZSTD_pthread_mutex_destroy(&best->mutex);
889
ZSTD_pthread_cond_destroy(&best->cond);
890
}
891
892
/**
893
* Called when a thread is about to be launched.
894
* Increments liveJobs.
895
*/
896
void COVER_best_start(COVER_best_t *best) {
897
if (!best) {
898
return;
899
}
900
ZSTD_pthread_mutex_lock(&best->mutex);
901
++best->liveJobs;
902
ZSTD_pthread_mutex_unlock(&best->mutex);
903
}
904
905
/**
906
* Called when a thread finishes executing, both on error or success.
907
* Decrements liveJobs and signals any waiting threads if liveJobs == 0.
908
* If this dictionary is the best so far save it and its parameters.
909
*/
910
void COVER_best_finish(COVER_best_t *best, ZDICT_cover_params_t parameters,
911
COVER_dictSelection_t selection) {
912
void* dict = selection.dictContent;
913
size_t compressedSize = selection.totalCompressedSize;
914
size_t dictSize = selection.dictSize;
915
if (!best) {
916
return;
917
}
918
{
919
size_t liveJobs;
920
ZSTD_pthread_mutex_lock(&best->mutex);
921
--best->liveJobs;
922
liveJobs = best->liveJobs;
923
/* If the new dictionary is better */
924
if (compressedSize < best->compressedSize) {
925
/* Allocate space if necessary */
926
if (!best->dict || best->dictSize < dictSize) {
927
if (best->dict) {
928
free(best->dict);
929
}
930
best->dict = malloc(dictSize);
931
if (!best->dict) {
932
best->compressedSize = ERROR(GENERIC);
933
best->dictSize = 0;
934
ZSTD_pthread_cond_signal(&best->cond);
935
ZSTD_pthread_mutex_unlock(&best->mutex);
936
return;
937
}
938
}
939
/* Save the dictionary, parameters, and size */
940
if (dict) {
941
memcpy(best->dict, dict, dictSize);
942
best->dictSize = dictSize;
943
best->parameters = parameters;
944
best->compressedSize = compressedSize;
945
}
946
}
947
if (liveJobs == 0) {
948
ZSTD_pthread_cond_broadcast(&best->cond);
949
}
950
ZSTD_pthread_mutex_unlock(&best->mutex);
951
}
952
}
953
954
static COVER_dictSelection_t setDictSelection(BYTE* buf, size_t s, size_t csz)
955
{
956
COVER_dictSelection_t ds;
957
ds.dictContent = buf;
958
ds.dictSize = s;
959
ds.totalCompressedSize = csz;
960
return ds;
961
}
962
963
COVER_dictSelection_t COVER_dictSelectionError(size_t error) {
964
return setDictSelection(NULL, 0, error);
965
}
966
967
unsigned COVER_dictSelectionIsError(COVER_dictSelection_t selection) {
968
return (ZSTD_isError(selection.totalCompressedSize) || !selection.dictContent);
969
}
970
971
void COVER_dictSelectionFree(COVER_dictSelection_t selection){
972
free(selection.dictContent);
973
}
974
975
COVER_dictSelection_t COVER_selectDict(BYTE* customDictContent, size_t dictBufferCapacity,
976
size_t dictContentSize, const BYTE* samplesBuffer, const size_t* samplesSizes, unsigned nbFinalizeSamples,
977
size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t* offsets, size_t totalCompressedSize) {
978
979
size_t largestDict = 0;
980
size_t largestCompressed = 0;
981
BYTE* customDictContentEnd = customDictContent + dictContentSize;
982
983
BYTE * largestDictbuffer = (BYTE *)malloc(dictBufferCapacity);
984
BYTE * candidateDictBuffer = (BYTE *)malloc(dictBufferCapacity);
985
double regressionTolerance = ((double)params.shrinkDictMaxRegression / 100.0) + 1.00;
986
987
if (!largestDictbuffer || !candidateDictBuffer) {
988
free(largestDictbuffer);
989
free(candidateDictBuffer);
990
return COVER_dictSelectionError(dictContentSize);
991
}
992
993
/* Initial dictionary size and compressed size */
994
memcpy(largestDictbuffer, customDictContent, dictContentSize);
995
dictContentSize = ZDICT_finalizeDictionary(
996
largestDictbuffer, dictBufferCapacity, customDictContent, dictContentSize,
997
samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
998
999
if (ZDICT_isError(dictContentSize)) {
1000
free(largestDictbuffer);
1001
free(candidateDictBuffer);
1002
return COVER_dictSelectionError(dictContentSize);
1003
}
1004
1005
totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
1006
samplesBuffer, offsets,
1007
nbCheckSamples, nbSamples,
1008
largestDictbuffer, dictContentSize);
1009
1010
if (ZSTD_isError(totalCompressedSize)) {
1011
free(largestDictbuffer);
1012
free(candidateDictBuffer);
1013
return COVER_dictSelectionError(totalCompressedSize);
1014
}
1015
1016
if (params.shrinkDict == 0) {
1017
free(candidateDictBuffer);
1018
return setDictSelection(largestDictbuffer, dictContentSize, totalCompressedSize);
1019
}
1020
1021
largestDict = dictContentSize;
1022
largestCompressed = totalCompressedSize;
1023
dictContentSize = ZDICT_DICTSIZE_MIN;
1024
1025
/* Largest dict is initially at least ZDICT_DICTSIZE_MIN */
1026
while (dictContentSize < largestDict) {
1027
memcpy(candidateDictBuffer, largestDictbuffer, largestDict);
1028
dictContentSize = ZDICT_finalizeDictionary(
1029
candidateDictBuffer, dictBufferCapacity, customDictContentEnd - dictContentSize, dictContentSize,
1030
samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
1031
1032
if (ZDICT_isError(dictContentSize)) {
1033
free(largestDictbuffer);
1034
free(candidateDictBuffer);
1035
return COVER_dictSelectionError(dictContentSize);
1036
1037
}
1038
1039
totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
1040
samplesBuffer, offsets,
1041
nbCheckSamples, nbSamples,
1042
candidateDictBuffer, dictContentSize);
1043
1044
if (ZSTD_isError(totalCompressedSize)) {
1045
free(largestDictbuffer);
1046
free(candidateDictBuffer);
1047
return COVER_dictSelectionError(totalCompressedSize);
1048
}
1049
1050
if ((double)totalCompressedSize <= (double)largestCompressed * regressionTolerance) {
1051
free(largestDictbuffer);
1052
return setDictSelection( candidateDictBuffer, dictContentSize, totalCompressedSize );
1053
}
1054
dictContentSize *= 2;
1055
}
1056
dictContentSize = largestDict;
1057
totalCompressedSize = largestCompressed;
1058
free(candidateDictBuffer);
1059
return setDictSelection( largestDictbuffer, dictContentSize, totalCompressedSize );
1060
}
1061
1062
/**
1063
* Parameters for COVER_tryParameters().
1064
*/
1065
typedef struct COVER_tryParameters_data_s {
1066
const COVER_ctx_t *ctx;
1067
COVER_best_t *best;
1068
size_t dictBufferCapacity;
1069
ZDICT_cover_params_t parameters;
1070
} COVER_tryParameters_data_t;
1071
1072
/**
1073
* Tries a set of parameters and updates the COVER_best_t with the results.
1074
* This function is thread safe if zstd is compiled with multithreaded support.
1075
* It takes its parameters as an *OWNING* opaque pointer to support threading.
1076
*/
1077
static void COVER_tryParameters(void *opaque)
1078
{
1079
/* Save parameters as local variables */
1080
COVER_tryParameters_data_t *const data = (COVER_tryParameters_data_t*)opaque;
1081
const COVER_ctx_t *const ctx = data->ctx;
1082
const ZDICT_cover_params_t parameters = data->parameters;
1083
size_t dictBufferCapacity = data->dictBufferCapacity;
1084
size_t totalCompressedSize = ERROR(GENERIC);
1085
/* Allocate space for hash table, dict, and freqs */
1086
COVER_map_t activeDmers;
1087
BYTE* const dict = (BYTE*)malloc(dictBufferCapacity);
1088
COVER_dictSelection_t selection = COVER_dictSelectionError(ERROR(GENERIC));
1089
U32* const freqs = (U32*)malloc(ctx->suffixSize * sizeof(U32));
1090
if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
1091
DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
1092
goto _cleanup;
1093
}
1094
if (!dict || !freqs) {
1095
DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
1096
goto _cleanup;
1097
}
1098
/* Copy the frequencies because we need to modify them */
1099
memcpy(freqs, ctx->freqs, ctx->suffixSize * sizeof(U32));
1100
/* Build the dictionary */
1101
{
1102
const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict,
1103
dictBufferCapacity, parameters);
1104
selection = COVER_selectDict(dict + tail, dictBufferCapacity, dictBufferCapacity - tail,
1105
ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples, ctx->nbTrainSamples, ctx->nbSamples, parameters, ctx->offsets,
1106
totalCompressedSize);
1107
1108
if (COVER_dictSelectionIsError(selection)) {
1109
DISPLAYLEVEL(1, "Failed to select dictionary\n");
1110
goto _cleanup;
1111
}
1112
}
1113
_cleanup:
1114
free(dict);
1115
COVER_best_finish(data->best, parameters, selection);
1116
free(data);
1117
COVER_map_destroy(&activeDmers);
1118
COVER_dictSelectionFree(selection);
1119
free(freqs);
1120
}
1121
1122
ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
1123
void* dictBuffer, size_t dictBufferCapacity, const void* samplesBuffer,
1124
const size_t* samplesSizes, unsigned nbSamples,
1125
ZDICT_cover_params_t* parameters)
1126
{
1127
/* constants */
1128
const unsigned nbThreads = parameters->nbThreads;
1129
const double splitPoint =
1130
parameters->splitPoint <= 0.0 ? COVER_DEFAULT_SPLITPOINT : parameters->splitPoint;
1131
const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
1132
const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
1133
const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
1134
const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
1135
const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
1136
const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
1137
const unsigned kIterations =
1138
(1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
1139
const unsigned shrinkDict = 0;
1140
/* Local variables */
1141
const int displayLevel = parameters->zParams.notificationLevel;
1142
unsigned iteration = 1;
1143
unsigned d;
1144
unsigned k;
1145
COVER_best_t best;
1146
POOL_ctx *pool = NULL;
1147
int warned = 0;
1148
1149
/* Checks */
1150
if (splitPoint <= 0 || splitPoint > 1) {
1151
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
1152
return ERROR(parameter_outOfBound);
1153
}
1154
if (kMinK < kMaxD || kMaxK < kMinK) {
1155
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
1156
return ERROR(parameter_outOfBound);
1157
}
1158
if (nbSamples == 0) {
1159
DISPLAYLEVEL(1, "Cover must have at least one input file\n");
1160
return ERROR(srcSize_wrong);
1161
}
1162
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
1163
DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
1164
ZDICT_DICTSIZE_MIN);
1165
return ERROR(dstSize_tooSmall);
1166
}
1167
if (nbThreads > 1) {
1168
pool = POOL_create(nbThreads, 1);
1169
if (!pool) {
1170
return ERROR(memory_allocation);
1171
}
1172
}
1173
/* Initialization */
1174
COVER_best_init(&best);
1175
/* Turn down global display level to clean up display at level 2 and below */
1176
g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
1177
/* Loop through d first because each new value needs a new context */
1178
LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
1179
kIterations);
1180
for (d = kMinD; d <= kMaxD; d += 2) {
1181
/* Initialize the context for this value of d */
1182
COVER_ctx_t ctx;
1183
LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
1184
{
1185
const size_t initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint);
1186
if (ZSTD_isError(initVal)) {
1187
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
1188
COVER_best_destroy(&best);
1189
POOL_free(pool);
1190
return initVal;
1191
}
1192
}
1193
if (!warned) {
1194
COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, displayLevel);
1195
warned = 1;
1196
}
1197
/* Loop through k reusing the same context */
1198
for (k = kMinK; k <= kMaxK; k += kStepSize) {
1199
/* Prepare the arguments */
1200
COVER_tryParameters_data_t *data = (COVER_tryParameters_data_t *)malloc(
1201
sizeof(COVER_tryParameters_data_t));
1202
LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
1203
if (!data) {
1204
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
1205
COVER_best_destroy(&best);
1206
COVER_ctx_destroy(&ctx);
1207
POOL_free(pool);
1208
return ERROR(memory_allocation);
1209
}
1210
data->ctx = &ctx;
1211
data->best = &best;
1212
data->dictBufferCapacity = dictBufferCapacity;
1213
data->parameters = *parameters;
1214
data->parameters.k = k;
1215
data->parameters.d = d;
1216
data->parameters.splitPoint = splitPoint;
1217
data->parameters.steps = kSteps;
1218
data->parameters.shrinkDict = shrinkDict;
1219
data->parameters.zParams.notificationLevel = g_displayLevel;
1220
/* Check the parameters */
1221
if (!COVER_checkParameters(data->parameters, dictBufferCapacity)) {
1222
DISPLAYLEVEL(1, "Cover parameters incorrect\n");
1223
free(data);
1224
continue;
1225
}
1226
/* Call the function and pass ownership of data to it */
1227
COVER_best_start(&best);
1228
if (pool) {
1229
POOL_add(pool, &COVER_tryParameters, data);
1230
} else {
1231
COVER_tryParameters(data);
1232
}
1233
/* Print status */
1234
LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%% ",
1235
(unsigned)((iteration * 100) / kIterations));
1236
++iteration;
1237
}
1238
COVER_best_wait(&best);
1239
COVER_ctx_destroy(&ctx);
1240
}
1241
LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
1242
/* Fill the output buffer and parameters with output of the best parameters */
1243
{
1244
const size_t dictSize = best.dictSize;
1245
if (ZSTD_isError(best.compressedSize)) {
1246
const size_t compressedSize = best.compressedSize;
1247
COVER_best_destroy(&best);
1248
POOL_free(pool);
1249
return compressedSize;
1250
}
1251
*parameters = best.parameters;
1252
memcpy(dictBuffer, best.dict, dictSize);
1253
COVER_best_destroy(&best);
1254
POOL_free(pool);
1255
return dictSize;
1256
}
1257
}
1258
1259