Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Kitware
GitHub Repository: Kitware/CMake
Path: blob/master/Utilities/cmzstd/lib/dictBuilder/zdict.c
5042 views
1
/*
2
* Copyright (c) Meta Platforms, Inc. and affiliates.
3
* All rights reserved.
4
*
5
* This source code is licensed under both the BSD-style license (found in the
6
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
7
* in the COPYING file in the root directory of this source tree).
8
* You may select, at your option, one of the above-listed licenses.
9
*/
10
11
12
/*-**************************************
13
* Tuning parameters
14
****************************************/
15
#define MINRATIO 4 /* minimum nb of apparition to be selected in dictionary */
16
#define ZDICT_MAX_SAMPLES_SIZE (2000U << 20)
17
#define ZDICT_MIN_SAMPLES_SIZE (ZDICT_CONTENTSIZE_MIN * MINRATIO)
18
19
20
/*-**************************************
21
* Compiler Options
22
****************************************/
23
/* Unix Large Files support (>4GB) */
24
#define _FILE_OFFSET_BITS 64
25
#if (defined(__sun__) && (!defined(__LP64__))) /* Sun Solaris 32-bits requires specific definitions */
26
# ifndef _LARGEFILE_SOURCE
27
# define _LARGEFILE_SOURCE
28
# endif
29
#elif ! defined(__LP64__) /* No point defining Large file for 64 bit */
30
# ifndef _LARGEFILE64_SOURCE
31
# define _LARGEFILE64_SOURCE
32
# endif
33
#endif
34
35
36
/*-*************************************
37
* Dependencies
38
***************************************/
39
#include <stdlib.h> /* malloc, free */
40
#include <string.h> /* memset */
41
#include <stdio.h> /* fprintf, fopen, ftello64 */
42
#include <time.h> /* clock */
43
44
#ifndef ZDICT_STATIC_LINKING_ONLY
45
# define ZDICT_STATIC_LINKING_ONLY
46
#endif
47
48
#include "../common/mem.h" /* read */
49
#include "../common/fse.h" /* FSE_normalizeCount, FSE_writeNCount */
50
#include "../common/huf.h" /* HUF_buildCTable, HUF_writeCTable */
51
#include "../common/zstd_internal.h" /* includes zstd.h */
52
#include "../common/xxhash.h" /* XXH64 */
53
#include "../compress/zstd_compress_internal.h" /* ZSTD_loadCEntropy() */
54
#include "../zdict.h"
55
#include "divsufsort.h"
56
#include "../common/bits.h" /* ZSTD_NbCommonBytes */
57
58
59
/*-*************************************
60
* Constants
61
***************************************/
62
#define KB *(1 <<10)
63
#define MB *(1 <<20)
64
#define GB *(1U<<30)
65
66
#define DICTLISTSIZE_DEFAULT 10000
67
68
#define NOISELENGTH 32
69
70
static const U32 g_selectivity_default = 9;
71
72
73
/*-*************************************
74
* Console display
75
***************************************/
76
#undef DISPLAY
77
#define DISPLAY(...) do { fprintf(stderr, __VA_ARGS__); fflush( stderr ); } while (0)
78
#undef DISPLAYLEVEL
79
#define DISPLAYLEVEL(l, ...) do { if (notificationLevel>=l) { DISPLAY(__VA_ARGS__); } } while (0) /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */
80
81
static clock_t ZDICT_clockSpan(clock_t nPrevious) { return clock() - nPrevious; }
82
83
static void ZDICT_printHex(const void* ptr, size_t length)
84
{
85
const BYTE* const b = (const BYTE*)ptr;
86
size_t u;
87
for (u=0; u<length; u++) {
88
BYTE c = b[u];
89
if (c<32 || c>126) c = '.'; /* non-printable char */
90
DISPLAY("%c", c);
91
}
92
}
93
94
95
/*-********************************************************
96
* Helper functions
97
**********************************************************/
98
unsigned ZDICT_isError(size_t errorCode) { return ERR_isError(errorCode); }
99
100
const char* ZDICT_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
101
102
unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize)
103
{
104
if (dictSize < 8) return 0;
105
if (MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return 0;
106
return MEM_readLE32((const char*)dictBuffer + 4);
107
}
108
109
size_t ZDICT_getDictHeaderSize(const void* dictBuffer, size_t dictSize)
110
{
111
size_t headerSize;
112
if (dictSize <= 8 || MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return ERROR(dictionary_corrupted);
113
114
{ ZSTD_compressedBlockState_t* bs = (ZSTD_compressedBlockState_t*)malloc(sizeof(ZSTD_compressedBlockState_t));
115
U32* wksp = (U32*)malloc(HUF_WORKSPACE_SIZE);
116
if (!bs || !wksp) {
117
headerSize = ERROR(memory_allocation);
118
} else {
119
ZSTD_reset_compressedBlockState(bs);
120
headerSize = ZSTD_loadCEntropy(bs, wksp, dictBuffer, dictSize);
121
}
122
123
free(bs);
124
free(wksp);
125
}
126
127
return headerSize;
128
}
129
130
/*-********************************************************
131
* Dictionary training functions
132
**********************************************************/
133
/*! ZDICT_count() :
134
Count the nb of common bytes between 2 pointers.
135
Note : this function presumes end of buffer followed by noisy guard band.
136
*/
137
static size_t ZDICT_count(const void* pIn, const void* pMatch)
138
{
139
const char* const pStart = (const char*)pIn;
140
for (;;) {
141
size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
142
if (!diff) {
143
pIn = (const char*)pIn+sizeof(size_t);
144
pMatch = (const char*)pMatch+sizeof(size_t);
145
continue;
146
}
147
pIn = (const char*)pIn+ZSTD_NbCommonBytes(diff);
148
return (size_t)((const char*)pIn - pStart);
149
}
150
}
151
152
153
typedef struct {
154
U32 pos;
155
U32 length;
156
U32 savings;
157
} dictItem;
158
159
static void ZDICT_initDictItem(dictItem* d)
160
{
161
d->pos = 1;
162
d->length = 0;
163
d->savings = (U32)(-1);
164
}
165
166
167
#define LLIMIT 64 /* heuristic determined experimentally */
168
#define MINMATCHLENGTH 7 /* heuristic determined experimentally */
169
static dictItem ZDICT_analyzePos(
170
BYTE* doneMarks,
171
const int* suffix, U32 start,
172
const void* buffer, U32 minRatio, U32 notificationLevel)
173
{
174
U32 lengthList[LLIMIT] = {0};
175
U32 cumulLength[LLIMIT] = {0};
176
U32 savings[LLIMIT] = {0};
177
const BYTE* b = (const BYTE*)buffer;
178
size_t maxLength = LLIMIT;
179
size_t pos = (size_t)suffix[start];
180
U32 end = start;
181
dictItem solution;
182
183
/* init */
184
memset(&solution, 0, sizeof(solution));
185
doneMarks[pos] = 1;
186
187
/* trivial repetition cases */
188
if ( (MEM_read16(b+pos+0) == MEM_read16(b+pos+2))
189
||(MEM_read16(b+pos+1) == MEM_read16(b+pos+3))
190
||(MEM_read16(b+pos+2) == MEM_read16(b+pos+4)) ) {
191
/* skip and mark segment */
192
U16 const pattern16 = MEM_read16(b+pos+4);
193
U32 u, patternEnd = 6;
194
while (MEM_read16(b+pos+patternEnd) == pattern16) patternEnd+=2 ;
195
if (b[pos+patternEnd] == b[pos+patternEnd-1]) patternEnd++;
196
for (u=1; u<patternEnd; u++)
197
doneMarks[pos+u] = 1;
198
return solution;
199
}
200
201
/* look forward */
202
{ size_t length;
203
do {
204
end++;
205
length = ZDICT_count(b + pos, b + suffix[end]);
206
} while (length >= MINMATCHLENGTH);
207
}
208
209
/* look backward */
210
{ size_t length;
211
do {
212
length = ZDICT_count(b + pos, b + *(suffix+start-1));
213
if (length >=MINMATCHLENGTH) start--;
214
} while(length >= MINMATCHLENGTH);
215
}
216
217
/* exit if not found a minimum nb of repetitions */
218
if (end-start < minRatio) {
219
U32 idx;
220
for(idx=start; idx<end; idx++)
221
doneMarks[suffix[idx]] = 1;
222
return solution;
223
}
224
225
{ int i;
226
U32 mml;
227
U32 refinedStart = start;
228
U32 refinedEnd = end;
229
230
DISPLAYLEVEL(4, "\n");
231
DISPLAYLEVEL(4, "found %3u matches of length >= %i at pos %7u ", (unsigned)(end-start), MINMATCHLENGTH, (unsigned)pos);
232
DISPLAYLEVEL(4, "\n");
233
234
for (mml = MINMATCHLENGTH ; ; mml++) {
235
BYTE currentChar = 0;
236
U32 currentCount = 0;
237
U32 currentID = refinedStart;
238
U32 id;
239
U32 selectedCount = 0;
240
U32 selectedID = currentID;
241
for (id =refinedStart; id < refinedEnd; id++) {
242
if (b[suffix[id] + mml] != currentChar) {
243
if (currentCount > selectedCount) {
244
selectedCount = currentCount;
245
selectedID = currentID;
246
}
247
currentID = id;
248
currentChar = b[ suffix[id] + mml];
249
currentCount = 0;
250
}
251
currentCount ++;
252
}
253
if (currentCount > selectedCount) { /* for last */
254
selectedCount = currentCount;
255
selectedID = currentID;
256
}
257
258
if (selectedCount < minRatio)
259
break;
260
refinedStart = selectedID;
261
refinedEnd = refinedStart + selectedCount;
262
}
263
264
/* evaluate gain based on new dict */
265
start = refinedStart;
266
pos = suffix[refinedStart];
267
end = start;
268
memset(lengthList, 0, sizeof(lengthList));
269
270
/* look forward */
271
{ size_t length;
272
do {
273
end++;
274
length = ZDICT_count(b + pos, b + suffix[end]);
275
if (length >= LLIMIT) length = LLIMIT-1;
276
lengthList[length]++;
277
} while (length >=MINMATCHLENGTH);
278
}
279
280
/* look backward */
281
{ size_t length = MINMATCHLENGTH;
282
while ((length >= MINMATCHLENGTH) & (start > 0)) {
283
length = ZDICT_count(b + pos, b + suffix[start - 1]);
284
if (length >= LLIMIT) length = LLIMIT - 1;
285
lengthList[length]++;
286
if (length >= MINMATCHLENGTH) start--;
287
}
288
}
289
290
/* largest useful length */
291
memset(cumulLength, 0, sizeof(cumulLength));
292
cumulLength[maxLength-1] = lengthList[maxLength-1];
293
for (i=(int)(maxLength-2); i>=0; i--)
294
cumulLength[i] = cumulLength[i+1] + lengthList[i];
295
296
for (i=LLIMIT-1; i>=MINMATCHLENGTH; i--) if (cumulLength[i]>=minRatio) break;
297
maxLength = i;
298
299
/* reduce maxLength in case of final into repetitive data */
300
{ U32 l = (U32)maxLength;
301
BYTE const c = b[pos + maxLength-1];
302
while (b[pos+l-2]==c) l--;
303
maxLength = l;
304
}
305
if (maxLength < MINMATCHLENGTH) return solution; /* skip : no long-enough solution */
306
307
/* calculate savings */
308
savings[5] = 0;
309
for (i=MINMATCHLENGTH; i<=(int)maxLength; i++)
310
savings[i] = savings[i-1] + (lengthList[i] * (i-3));
311
312
DISPLAYLEVEL(4, "Selected dict at position %u, of length %u : saves %u (ratio: %.2f) \n",
313
(unsigned)pos, (unsigned)maxLength, (unsigned)savings[maxLength], (double)savings[maxLength] / (double)maxLength);
314
315
solution.pos = (U32)pos;
316
solution.length = (U32)maxLength;
317
solution.savings = savings[maxLength];
318
319
/* mark positions done */
320
{ U32 id;
321
for (id=start; id<end; id++) {
322
U32 p, pEnd, length;
323
U32 const testedPos = (U32)suffix[id];
324
if (testedPos == pos)
325
length = solution.length;
326
else {
327
length = (U32)ZDICT_count(b+pos, b+testedPos);
328
if (length > solution.length) length = solution.length;
329
}
330
pEnd = (U32)(testedPos + length);
331
for (p=testedPos; p<pEnd; p++)
332
doneMarks[p] = 1;
333
} } }
334
335
return solution;
336
}
337
338
339
static int isIncluded(const void* in, const void* container, size_t length)
340
{
341
const char* const ip = (const char*) in;
342
const char* const into = (const char*) container;
343
size_t u;
344
345
for (u=0; u<length; u++) { /* works because end of buffer is a noisy guard band */
346
if (ip[u] != into[u]) break;
347
}
348
349
return u==length;
350
}
351
352
/*! ZDICT_tryMerge() :
353
check if dictItem can be merged, do it if possible
354
@return : id of destination elt, 0 if not merged
355
*/
356
static U32 ZDICT_tryMerge(dictItem* table, dictItem elt, U32 eltNbToSkip, const void* buffer)
357
{
358
const U32 tableSize = table->pos;
359
const U32 eltEnd = elt.pos + elt.length;
360
const char* const buf = (const char*) buffer;
361
362
/* tail overlap */
363
U32 u; for (u=1; u<tableSize; u++) {
364
if (u==eltNbToSkip) continue;
365
if ((table[u].pos > elt.pos) && (table[u].pos <= eltEnd)) { /* overlap, existing > new */
366
/* append */
367
U32 const addedLength = table[u].pos - elt.pos;
368
table[u].length += addedLength;
369
table[u].pos = elt.pos;
370
table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */
371
table[u].savings += elt.length / 8; /* rough approx bonus */
372
elt = table[u];
373
/* sort : improve rank */
374
while ((u>1) && (table[u-1].savings < elt.savings))
375
table[u] = table[u-1], u--;
376
table[u] = elt;
377
return u;
378
} }
379
380
/* front overlap */
381
for (u=1; u<tableSize; u++) {
382
if (u==eltNbToSkip) continue;
383
384
if ((table[u].pos + table[u].length >= elt.pos) && (table[u].pos < elt.pos)) { /* overlap, existing < new */
385
/* append */
386
int const addedLength = (int)eltEnd - (int)(table[u].pos + table[u].length);
387
table[u].savings += elt.length / 8; /* rough approx bonus */
388
if (addedLength > 0) { /* otherwise, elt fully included into existing */
389
table[u].length += addedLength;
390
table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */
391
}
392
/* sort : improve rank */
393
elt = table[u];
394
while ((u>1) && (table[u-1].savings < elt.savings))
395
table[u] = table[u-1], u--;
396
table[u] = elt;
397
return u;
398
}
399
400
if (MEM_read64(buf + table[u].pos) == MEM_read64(buf + elt.pos + 1)) {
401
if (isIncluded(buf + table[u].pos, buf + elt.pos + 1, table[u].length)) {
402
size_t const addedLength = MAX( (int)elt.length - (int)table[u].length , 1 );
403
table[u].pos = elt.pos;
404
table[u].savings += (U32)(elt.savings * addedLength / elt.length);
405
table[u].length = MIN(elt.length, table[u].length + 1);
406
return u;
407
}
408
}
409
}
410
411
return 0;
412
}
413
414
415
static void ZDICT_removeDictItem(dictItem* table, U32 id)
416
{
417
/* convention : table[0].pos stores nb of elts */
418
U32 const max = table[0].pos;
419
U32 u;
420
if (!id) return; /* protection, should never happen */
421
for (u=id; u<max-1; u++)
422
table[u] = table[u+1];
423
table->pos--;
424
}
425
426
427
static void ZDICT_insertDictItem(dictItem* table, U32 maxSize, dictItem elt, const void* buffer)
428
{
429
/* merge if possible */
430
U32 mergeId = ZDICT_tryMerge(table, elt, 0, buffer);
431
if (mergeId) {
432
U32 newMerge = 1;
433
while (newMerge) {
434
newMerge = ZDICT_tryMerge(table, table[mergeId], mergeId, buffer);
435
if (newMerge) ZDICT_removeDictItem(table, mergeId);
436
mergeId = newMerge;
437
}
438
return;
439
}
440
441
/* insert */
442
{ U32 current;
443
U32 nextElt = table->pos;
444
if (nextElt >= maxSize) nextElt = maxSize-1;
445
current = nextElt-1;
446
while (table[current].savings < elt.savings) {
447
table[current+1] = table[current];
448
current--;
449
}
450
table[current+1] = elt;
451
table->pos = nextElt+1;
452
}
453
}
454
455
456
static U32 ZDICT_dictSize(const dictItem* dictList)
457
{
458
U32 u, dictSize = 0;
459
for (u=1; u<dictList[0].pos; u++)
460
dictSize += dictList[u].length;
461
return dictSize;
462
}
463
464
465
static size_t ZDICT_trainBuffer_legacy(dictItem* dictList, U32 dictListSize,
466
const void* const buffer, size_t bufferSize, /* buffer must end with noisy guard band */
467
const size_t* fileSizes, unsigned nbFiles,
468
unsigned minRatio, U32 notificationLevel)
469
{
470
int* const suffix0 = (int*)malloc((bufferSize+2)*sizeof(*suffix0));
471
int* const suffix = suffix0+1;
472
U32* reverseSuffix = (U32*)malloc((bufferSize)*sizeof(*reverseSuffix));
473
BYTE* doneMarks = (BYTE*)malloc((bufferSize+16)*sizeof(*doneMarks)); /* +16 for overflow security */
474
U32* filePos = (U32*)malloc(nbFiles * sizeof(*filePos));
475
size_t result = 0;
476
clock_t displayClock = 0;
477
clock_t const refreshRate = CLOCKS_PER_SEC * 3 / 10;
478
479
# undef DISPLAYUPDATE
480
# define DISPLAYUPDATE(l, ...) \
481
do { \
482
if (notificationLevel>=l) { \
483
if (ZDICT_clockSpan(displayClock) > refreshRate) { \
484
displayClock = clock(); \
485
DISPLAY(__VA_ARGS__); \
486
} \
487
if (notificationLevel>=4) fflush(stderr); \
488
} \
489
} while (0)
490
491
/* init */
492
DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */
493
if (!suffix0 || !reverseSuffix || !doneMarks || !filePos) {
494
result = ERROR(memory_allocation);
495
goto _cleanup;
496
}
497
if (minRatio < MINRATIO) minRatio = MINRATIO;
498
memset(doneMarks, 0, bufferSize+16);
499
500
/* limit sample set size (divsufsort limitation)*/
501
if (bufferSize > ZDICT_MAX_SAMPLES_SIZE) DISPLAYLEVEL(3, "sample set too large : reduced to %u MB ...\n", (unsigned)(ZDICT_MAX_SAMPLES_SIZE>>20));
502
while (bufferSize > ZDICT_MAX_SAMPLES_SIZE) bufferSize -= fileSizes[--nbFiles];
503
504
/* sort */
505
DISPLAYLEVEL(2, "sorting %u files of total size %u MB ...\n", nbFiles, (unsigned)(bufferSize>>20));
506
{ int const divSuftSortResult = divsufsort((const unsigned char*)buffer, suffix, (int)bufferSize, 0);
507
if (divSuftSortResult != 0) { result = ERROR(GENERIC); goto _cleanup; }
508
}
509
suffix[bufferSize] = (int)bufferSize; /* leads into noise */
510
suffix0[0] = (int)bufferSize; /* leads into noise */
511
/* build reverse suffix sort */
512
{ size_t pos;
513
for (pos=0; pos < bufferSize; pos++)
514
reverseSuffix[suffix[pos]] = (U32)pos;
515
/* note filePos tracks borders between samples.
516
It's not used at this stage, but planned to become useful in a later update */
517
filePos[0] = 0;
518
for (pos=1; pos<nbFiles; pos++)
519
filePos[pos] = (U32)(filePos[pos-1] + fileSizes[pos-1]);
520
}
521
522
DISPLAYLEVEL(2, "finding patterns ... \n");
523
DISPLAYLEVEL(3, "minimum ratio : %u \n", minRatio);
524
525
{ U32 cursor; for (cursor=0; cursor < bufferSize; ) {
526
dictItem solution;
527
if (doneMarks[cursor]) { cursor++; continue; }
528
solution = ZDICT_analyzePos(doneMarks, suffix, reverseSuffix[cursor], buffer, minRatio, notificationLevel);
529
if (solution.length==0) { cursor++; continue; }
530
ZDICT_insertDictItem(dictList, dictListSize, solution, buffer);
531
cursor += solution.length;
532
DISPLAYUPDATE(2, "\r%4.2f %% \r", (double)cursor / (double)bufferSize * 100.0);
533
} }
534
535
_cleanup:
536
free(suffix0);
537
free(reverseSuffix);
538
free(doneMarks);
539
free(filePos);
540
return result;
541
}
542
543
544
static void ZDICT_fillNoise(void* buffer, size_t length)
545
{
546
unsigned const prime1 = 2654435761U;
547
unsigned const prime2 = 2246822519U;
548
unsigned acc = prime1;
549
size_t p=0;
550
for (p=0; p<length; p++) {
551
acc *= prime2;
552
((unsigned char*)buffer)[p] = (unsigned char)(acc >> 21);
553
}
554
}
555
556
557
typedef struct
558
{
559
ZSTD_CDict* dict; /* dictionary */
560
ZSTD_CCtx* zc; /* working context */
561
void* workPlace; /* must be ZSTD_BLOCKSIZE_MAX allocated */
562
} EStats_ress_t;
563
564
#define MAXREPOFFSET 1024
565
566
static void ZDICT_countEStats(EStats_ress_t esr, const ZSTD_parameters* params,
567
unsigned* countLit, unsigned* offsetcodeCount, unsigned* matchlengthCount, unsigned* litlengthCount, U32* repOffsets,
568
const void* src, size_t srcSize,
569
U32 notificationLevel)
570
{
571
size_t const blockSizeMax = MIN (ZSTD_BLOCKSIZE_MAX, 1 << params->cParams.windowLog);
572
size_t cSize;
573
574
if (srcSize > blockSizeMax) srcSize = blockSizeMax; /* protection vs large samples */
575
{ size_t const errorCode = ZSTD_compressBegin_usingCDict_deprecated(esr.zc, esr.dict);
576
if (ZSTD_isError(errorCode)) { DISPLAYLEVEL(1, "warning : ZSTD_compressBegin_usingCDict failed \n"); return; }
577
578
}
579
cSize = ZSTD_compressBlock_deprecated(esr.zc, esr.workPlace, ZSTD_BLOCKSIZE_MAX, src, srcSize);
580
if (ZSTD_isError(cSize)) { DISPLAYLEVEL(3, "warning : could not compress sample size %u \n", (unsigned)srcSize); return; }
581
582
if (cSize) { /* if == 0; block is not compressible */
583
const SeqStore_t* const seqStorePtr = ZSTD_getSeqStore(esr.zc);
584
585
/* literals stats */
586
{ const BYTE* bytePtr;
587
for(bytePtr = seqStorePtr->litStart; bytePtr < seqStorePtr->lit; bytePtr++)
588
countLit[*bytePtr]++;
589
}
590
591
/* seqStats */
592
{ U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
593
ZSTD_seqToCodes(seqStorePtr);
594
595
{ const BYTE* codePtr = seqStorePtr->ofCode;
596
U32 u;
597
for (u=0; u<nbSeq; u++) offsetcodeCount[codePtr[u]]++;
598
}
599
600
{ const BYTE* codePtr = seqStorePtr->mlCode;
601
U32 u;
602
for (u=0; u<nbSeq; u++) matchlengthCount[codePtr[u]]++;
603
}
604
605
{ const BYTE* codePtr = seqStorePtr->llCode;
606
U32 u;
607
for (u=0; u<nbSeq; u++) litlengthCount[codePtr[u]]++;
608
}
609
610
if (nbSeq >= 2) { /* rep offsets */
611
const SeqDef* const seq = seqStorePtr->sequencesStart;
612
U32 offset1 = seq[0].offBase - ZSTD_REP_NUM;
613
U32 offset2 = seq[1].offBase - ZSTD_REP_NUM;
614
if (offset1 >= MAXREPOFFSET) offset1 = 0;
615
if (offset2 >= MAXREPOFFSET) offset2 = 0;
616
repOffsets[offset1] += 3;
617
repOffsets[offset2] += 1;
618
} } }
619
}
620
621
static size_t ZDICT_totalSampleSize(const size_t* fileSizes, unsigned nbFiles)
622
{
623
size_t total=0;
624
unsigned u;
625
for (u=0; u<nbFiles; u++) total += fileSizes[u];
626
return total;
627
}
628
629
typedef struct { U32 offset; U32 count; } offsetCount_t;
630
631
static void ZDICT_insertSortCount(offsetCount_t table[ZSTD_REP_NUM+1], U32 val, U32 count)
632
{
633
U32 u;
634
table[ZSTD_REP_NUM].offset = val;
635
table[ZSTD_REP_NUM].count = count;
636
for (u=ZSTD_REP_NUM; u>0; u--) {
637
offsetCount_t tmp;
638
if (table[u-1].count >= table[u].count) break;
639
tmp = table[u-1];
640
table[u-1] = table[u];
641
table[u] = tmp;
642
}
643
}
644
645
/* ZDICT_flatLit() :
646
* rewrite `countLit` to contain a mostly flat but still compressible distribution of literals.
647
* necessary to avoid generating a non-compressible distribution that HUF_writeCTable() cannot encode.
648
*/
649
static void ZDICT_flatLit(unsigned* countLit)
650
{
651
int u;
652
for (u=1; u<256; u++) countLit[u] = 2;
653
countLit[0] = 4;
654
countLit[253] = 1;
655
countLit[254] = 1;
656
}
657
658
#define OFFCODE_MAX 30 /* only applicable to first block */
659
static size_t ZDICT_analyzeEntropy(void* dstBuffer, size_t maxDstSize,
660
int compressionLevel,
661
const void* srcBuffer, const size_t* fileSizes, unsigned nbFiles,
662
const void* dictBuffer, size_t dictBufferSize,
663
unsigned notificationLevel)
664
{
665
unsigned countLit[256];
666
HUF_CREATE_STATIC_CTABLE(hufTable, 255);
667
unsigned offcodeCount[OFFCODE_MAX+1];
668
short offcodeNCount[OFFCODE_MAX+1];
669
U32 offcodeMax = ZSTD_highbit32((U32)(dictBufferSize + 128 KB));
670
unsigned matchLengthCount[MaxML+1];
671
short matchLengthNCount[MaxML+1];
672
unsigned litLengthCount[MaxLL+1];
673
short litLengthNCount[MaxLL+1];
674
U32 repOffset[MAXREPOFFSET];
675
offsetCount_t bestRepOffset[ZSTD_REP_NUM+1];
676
EStats_ress_t esr = { NULL, NULL, NULL };
677
ZSTD_parameters params;
678
U32 u, huffLog = 11, Offlog = OffFSELog, mlLog = MLFSELog, llLog = LLFSELog, total;
679
size_t pos = 0, errorCode;
680
size_t eSize = 0;
681
size_t const totalSrcSize = ZDICT_totalSampleSize(fileSizes, nbFiles);
682
size_t const averageSampleSize = totalSrcSize / (nbFiles + !nbFiles);
683
BYTE* dstPtr = (BYTE*)dstBuffer;
684
U32 wksp[HUF_CTABLE_WORKSPACE_SIZE_U32];
685
686
/* init */
687
DEBUGLOG(4, "ZDICT_analyzeEntropy");
688
if (offcodeMax>OFFCODE_MAX) { eSize = ERROR(dictionaryCreation_failed); goto _cleanup; } /* too large dictionary */
689
for (u=0; u<256; u++) countLit[u] = 1; /* any character must be described */
690
for (u=0; u<=offcodeMax; u++) offcodeCount[u] = 1;
691
for (u=0; u<=MaxML; u++) matchLengthCount[u] = 1;
692
for (u=0; u<=MaxLL; u++) litLengthCount[u] = 1;
693
memset(repOffset, 0, sizeof(repOffset));
694
repOffset[1] = repOffset[4] = repOffset[8] = 1;
695
memset(bestRepOffset, 0, sizeof(bestRepOffset));
696
if (compressionLevel==0) compressionLevel = ZSTD_CLEVEL_DEFAULT;
697
params = ZSTD_getParams(compressionLevel, averageSampleSize, dictBufferSize);
698
699
esr.dict = ZSTD_createCDict_advanced(dictBuffer, dictBufferSize, ZSTD_dlm_byRef, ZSTD_dct_rawContent, params.cParams, ZSTD_defaultCMem);
700
esr.zc = ZSTD_createCCtx();
701
esr.workPlace = malloc(ZSTD_BLOCKSIZE_MAX);
702
if (!esr.dict || !esr.zc || !esr.workPlace) {
703
eSize = ERROR(memory_allocation);
704
DISPLAYLEVEL(1, "Not enough memory \n");
705
goto _cleanup;
706
}
707
708
/* collect stats on all samples */
709
for (u=0; u<nbFiles; u++) {
710
ZDICT_countEStats(esr, &params,
711
countLit, offcodeCount, matchLengthCount, litLengthCount, repOffset,
712
(const char*)srcBuffer + pos, fileSizes[u],
713
notificationLevel);
714
pos += fileSizes[u];
715
}
716
717
if (notificationLevel >= 4) {
718
/* writeStats */
719
DISPLAYLEVEL(4, "Offset Code Frequencies : \n");
720
for (u=0; u<=offcodeMax; u++) {
721
DISPLAYLEVEL(4, "%2u :%7u \n", u, offcodeCount[u]);
722
} }
723
724
/* analyze, build stats, starting with literals */
725
{ size_t maxNbBits = HUF_buildCTable_wksp(hufTable, countLit, 255, huffLog, wksp, sizeof(wksp));
726
if (HUF_isError(maxNbBits)) {
727
eSize = maxNbBits;
728
DISPLAYLEVEL(1, " HUF_buildCTable error \n");
729
goto _cleanup;
730
}
731
if (maxNbBits==8) { /* not compressible : will fail on HUF_writeCTable() */
732
DISPLAYLEVEL(2, "warning : pathological dataset : literals are not compressible : samples are noisy or too regular \n");
733
ZDICT_flatLit(countLit); /* replace distribution by a fake "mostly flat but still compressible" distribution, that HUF_writeCTable() can encode */
734
maxNbBits = HUF_buildCTable_wksp(hufTable, countLit, 255, huffLog, wksp, sizeof(wksp));
735
assert(maxNbBits==9);
736
}
737
huffLog = (U32)maxNbBits;
738
}
739
740
/* looking for most common first offsets */
741
{ U32 offset;
742
for (offset=1; offset<MAXREPOFFSET; offset++)
743
ZDICT_insertSortCount(bestRepOffset, offset, repOffset[offset]);
744
}
745
/* note : the result of this phase should be used to better appreciate the impact on statistics */
746
747
total=0; for (u=0; u<=offcodeMax; u++) total+=offcodeCount[u];
748
errorCode = FSE_normalizeCount(offcodeNCount, Offlog, offcodeCount, total, offcodeMax, /* useLowProbCount */ 1);
749
if (FSE_isError(errorCode)) {
750
eSize = errorCode;
751
DISPLAYLEVEL(1, "FSE_normalizeCount error with offcodeCount \n");
752
goto _cleanup;
753
}
754
Offlog = (U32)errorCode;
755
756
total=0; for (u=0; u<=MaxML; u++) total+=matchLengthCount[u];
757
errorCode = FSE_normalizeCount(matchLengthNCount, mlLog, matchLengthCount, total, MaxML, /* useLowProbCount */ 1);
758
if (FSE_isError(errorCode)) {
759
eSize = errorCode;
760
DISPLAYLEVEL(1, "FSE_normalizeCount error with matchLengthCount \n");
761
goto _cleanup;
762
}
763
mlLog = (U32)errorCode;
764
765
total=0; for (u=0; u<=MaxLL; u++) total+=litLengthCount[u];
766
errorCode = FSE_normalizeCount(litLengthNCount, llLog, litLengthCount, total, MaxLL, /* useLowProbCount */ 1);
767
if (FSE_isError(errorCode)) {
768
eSize = errorCode;
769
DISPLAYLEVEL(1, "FSE_normalizeCount error with litLengthCount \n");
770
goto _cleanup;
771
}
772
llLog = (U32)errorCode;
773
774
/* write result to buffer */
775
{ size_t const hhSize = HUF_writeCTable_wksp(dstPtr, maxDstSize, hufTable, 255, huffLog, wksp, sizeof(wksp));
776
if (HUF_isError(hhSize)) {
777
eSize = hhSize;
778
DISPLAYLEVEL(1, "HUF_writeCTable error \n");
779
goto _cleanup;
780
}
781
dstPtr += hhSize;
782
maxDstSize -= hhSize;
783
eSize += hhSize;
784
}
785
786
{ size_t const ohSize = FSE_writeNCount(dstPtr, maxDstSize, offcodeNCount, OFFCODE_MAX, Offlog);
787
if (FSE_isError(ohSize)) {
788
eSize = ohSize;
789
DISPLAYLEVEL(1, "FSE_writeNCount error with offcodeNCount \n");
790
goto _cleanup;
791
}
792
dstPtr += ohSize;
793
maxDstSize -= ohSize;
794
eSize += ohSize;
795
}
796
797
{ size_t const mhSize = FSE_writeNCount(dstPtr, maxDstSize, matchLengthNCount, MaxML, mlLog);
798
if (FSE_isError(mhSize)) {
799
eSize = mhSize;
800
DISPLAYLEVEL(1, "FSE_writeNCount error with matchLengthNCount \n");
801
goto _cleanup;
802
}
803
dstPtr += mhSize;
804
maxDstSize -= mhSize;
805
eSize += mhSize;
806
}
807
808
{ size_t const lhSize = FSE_writeNCount(dstPtr, maxDstSize, litLengthNCount, MaxLL, llLog);
809
if (FSE_isError(lhSize)) {
810
eSize = lhSize;
811
DISPLAYLEVEL(1, "FSE_writeNCount error with litlengthNCount \n");
812
goto _cleanup;
813
}
814
dstPtr += lhSize;
815
maxDstSize -= lhSize;
816
eSize += lhSize;
817
}
818
819
if (maxDstSize<12) {
820
eSize = ERROR(dstSize_tooSmall);
821
DISPLAYLEVEL(1, "not enough space to write RepOffsets \n");
822
goto _cleanup;
823
}
824
# if 0
825
MEM_writeLE32(dstPtr+0, bestRepOffset[0].offset);
826
MEM_writeLE32(dstPtr+4, bestRepOffset[1].offset);
827
MEM_writeLE32(dstPtr+8, bestRepOffset[2].offset);
828
#else
829
/* at this stage, we don't use the result of "most common first offset",
830
* as the impact of statistics is not properly evaluated */
831
MEM_writeLE32(dstPtr+0, repStartValue[0]);
832
MEM_writeLE32(dstPtr+4, repStartValue[1]);
833
MEM_writeLE32(dstPtr+8, repStartValue[2]);
834
#endif
835
eSize += 12;
836
837
_cleanup:
838
ZSTD_freeCDict(esr.dict);
839
ZSTD_freeCCtx(esr.zc);
840
free(esr.workPlace);
841
842
return eSize;
843
}
844
845
846
/**
847
* @returns the maximum repcode value
848
*/
849
static U32 ZDICT_maxRep(U32 const reps[ZSTD_REP_NUM])
850
{
851
U32 maxRep = reps[0];
852
int r;
853
for (r = 1; r < ZSTD_REP_NUM; ++r)
854
maxRep = MAX(maxRep, reps[r]);
855
return maxRep;
856
}
857
858
size_t ZDICT_finalizeDictionary(void* dictBuffer, size_t dictBufferCapacity,
859
const void* customDictContent, size_t dictContentSize,
860
const void* samplesBuffer, const size_t* samplesSizes,
861
unsigned nbSamples, ZDICT_params_t params)
862
{
863
size_t hSize;
864
#define HBUFFSIZE 256 /* should prove large enough for all entropy headers */
865
BYTE header[HBUFFSIZE];
866
int const compressionLevel = (params.compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : params.compressionLevel;
867
U32 const notificationLevel = params.notificationLevel;
868
/* The final dictionary content must be at least as large as the largest repcode */
869
size_t const minContentSize = (size_t)ZDICT_maxRep(repStartValue);
870
size_t paddingSize;
871
872
/* check conditions */
873
DEBUGLOG(4, "ZDICT_finalizeDictionary");
874
if (dictBufferCapacity < dictContentSize) return ERROR(dstSize_tooSmall);
875
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) return ERROR(dstSize_tooSmall);
876
877
/* dictionary header */
878
MEM_writeLE32(header, ZSTD_MAGIC_DICTIONARY);
879
{ U64 const randomID = XXH64(customDictContent, dictContentSize, 0);
880
U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
881
U32 const dictID = params.dictID ? params.dictID : compliantID;
882
MEM_writeLE32(header+4, dictID);
883
}
884
hSize = 8;
885
886
/* entropy tables */
887
DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */
888
DISPLAYLEVEL(2, "statistics ... \n");
889
{ size_t const eSize = ZDICT_analyzeEntropy(header+hSize, HBUFFSIZE-hSize,
890
compressionLevel,
891
samplesBuffer, samplesSizes, nbSamples,
892
customDictContent, dictContentSize,
893
notificationLevel);
894
if (ZDICT_isError(eSize)) return eSize;
895
hSize += eSize;
896
}
897
898
/* Shrink the content size if it doesn't fit in the buffer */
899
if (hSize + dictContentSize > dictBufferCapacity) {
900
dictContentSize = dictBufferCapacity - hSize;
901
}
902
903
/* Pad the dictionary content with zeros if it is too small */
904
if (dictContentSize < minContentSize) {
905
RETURN_ERROR_IF(hSize + minContentSize > dictBufferCapacity, dstSize_tooSmall,
906
"dictBufferCapacity too small to fit max repcode");
907
paddingSize = minContentSize - dictContentSize;
908
} else {
909
paddingSize = 0;
910
}
911
912
{
913
size_t const dictSize = hSize + paddingSize + dictContentSize;
914
915
/* The dictionary consists of the header, optional padding, and the content.
916
* The padding comes before the content because the "best" position in the
917
* dictionary is the last byte.
918
*/
919
BYTE* const outDictHeader = (BYTE*)dictBuffer;
920
BYTE* const outDictPadding = outDictHeader + hSize;
921
BYTE* const outDictContent = outDictPadding + paddingSize;
922
923
assert(dictSize <= dictBufferCapacity);
924
assert(outDictContent + dictContentSize == (BYTE*)dictBuffer + dictSize);
925
926
/* First copy the customDictContent into its final location.
927
* `customDictContent` and `dictBuffer` may overlap, so we must
928
* do this before any other writes into the output buffer.
929
* Then copy the header & padding into the output buffer.
930
*/
931
memmove(outDictContent, customDictContent, dictContentSize);
932
memcpy(outDictHeader, header, hSize);
933
memset(outDictPadding, 0, paddingSize);
934
935
return dictSize;
936
}
937
}
938
939
940
static size_t ZDICT_addEntropyTablesFromBuffer_advanced(
941
void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
942
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
943
ZDICT_params_t params)
944
{
945
int const compressionLevel = (params.compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : params.compressionLevel;
946
U32 const notificationLevel = params.notificationLevel;
947
size_t hSize = 8;
948
949
/* calculate entropy tables */
950
DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */
951
DISPLAYLEVEL(2, "statistics ... \n");
952
{ size_t const eSize = ZDICT_analyzeEntropy((char*)dictBuffer+hSize, dictBufferCapacity-hSize,
953
compressionLevel,
954
samplesBuffer, samplesSizes, nbSamples,
955
(char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize,
956
notificationLevel);
957
if (ZDICT_isError(eSize)) return eSize;
958
hSize += eSize;
959
}
960
961
/* add dictionary header (after entropy tables) */
962
MEM_writeLE32(dictBuffer, ZSTD_MAGIC_DICTIONARY);
963
{ U64 const randomID = XXH64((char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, 0);
964
U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
965
U32 const dictID = params.dictID ? params.dictID : compliantID;
966
MEM_writeLE32((char*)dictBuffer+4, dictID);
967
}
968
969
if (hSize + dictContentSize < dictBufferCapacity)
970
memmove((char*)dictBuffer + hSize, (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize);
971
return MIN(dictBufferCapacity, hSize+dictContentSize);
972
}
973
974
/*! ZDICT_trainFromBuffer_unsafe_legacy() :
975
* Warning : `samplesBuffer` must be followed by noisy guard band !!!
976
* @return : size of dictionary, or an error code which can be tested with ZDICT_isError()
977
*/
978
static size_t ZDICT_trainFromBuffer_unsafe_legacy(
979
void* dictBuffer, size_t maxDictSize,
980
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
981
ZDICT_legacy_params_t params)
982
{
983
U32 const dictListSize = MAX(MAX(DICTLISTSIZE_DEFAULT, nbSamples), (U32)(maxDictSize/16));
984
dictItem* const dictList = (dictItem*)malloc(dictListSize * sizeof(*dictList));
985
unsigned const selectivity = params.selectivityLevel == 0 ? g_selectivity_default : params.selectivityLevel;
986
unsigned const minRep = (selectivity > 30) ? MINRATIO : nbSamples >> selectivity;
987
size_t const targetDictSize = maxDictSize;
988
size_t const samplesBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
989
size_t dictSize = 0;
990
U32 const notificationLevel = params.zParams.notificationLevel;
991
992
/* checks */
993
if (!dictList) return ERROR(memory_allocation);
994
if (maxDictSize < ZDICT_DICTSIZE_MIN) { free(dictList); return ERROR(dstSize_tooSmall); } /* requested dictionary size is too small */
995
if (samplesBuffSize < ZDICT_MIN_SAMPLES_SIZE) { free(dictList); return ERROR(dictionaryCreation_failed); } /* not enough source to create dictionary */
996
997
/* init */
998
ZDICT_initDictItem(dictList);
999
1000
/* build dictionary */
1001
ZDICT_trainBuffer_legacy(dictList, dictListSize,
1002
samplesBuffer, samplesBuffSize,
1003
samplesSizes, nbSamples,
1004
minRep, notificationLevel);
1005
1006
/* display best matches */
1007
if (params.zParams.notificationLevel>= 3) {
1008
unsigned const nb = MIN(25, dictList[0].pos);
1009
unsigned const dictContentSize = ZDICT_dictSize(dictList);
1010
unsigned u;
1011
DISPLAYLEVEL(3, "\n %u segments found, of total size %u \n", (unsigned)dictList[0].pos-1, dictContentSize);
1012
DISPLAYLEVEL(3, "list %u best segments \n", nb-1);
1013
for (u=1; u<nb; u++) {
1014
unsigned const pos = dictList[u].pos;
1015
unsigned const length = dictList[u].length;
1016
U32 const printedLength = MIN(40, length);
1017
if ((pos > samplesBuffSize) || ((pos + length) > samplesBuffSize)) {
1018
free(dictList);
1019
return ERROR(GENERIC); /* should never happen */
1020
}
1021
DISPLAYLEVEL(3, "%3u:%3u bytes at pos %8u, savings %7u bytes |",
1022
u, length, pos, (unsigned)dictList[u].savings);
1023
ZDICT_printHex((const char*)samplesBuffer+pos, printedLength);
1024
DISPLAYLEVEL(3, "| \n");
1025
} }
1026
1027
1028
/* create dictionary */
1029
{ unsigned dictContentSize = ZDICT_dictSize(dictList);
1030
if (dictContentSize < ZDICT_CONTENTSIZE_MIN) { free(dictList); return ERROR(dictionaryCreation_failed); } /* dictionary content too small */
1031
if (dictContentSize < targetDictSize/4) {
1032
DISPLAYLEVEL(2, "! warning : selected content significantly smaller than requested (%u < %u) \n", dictContentSize, (unsigned)maxDictSize);
1033
if (samplesBuffSize < 10 * targetDictSize)
1034
DISPLAYLEVEL(2, "! consider increasing the number of samples (total size : %u MB)\n", (unsigned)(samplesBuffSize>>20));
1035
if (minRep > MINRATIO) {
1036
DISPLAYLEVEL(2, "! consider increasing selectivity to produce larger dictionary (-s%u) \n", selectivity+1);
1037
DISPLAYLEVEL(2, "! note : larger dictionaries are not necessarily better, test its efficiency on samples \n");
1038
}
1039
}
1040
1041
if ((dictContentSize > targetDictSize*3) && (nbSamples > 2*MINRATIO) && (selectivity>1)) {
1042
unsigned proposedSelectivity = selectivity-1;
1043
while ((nbSamples >> proposedSelectivity) <= MINRATIO) { proposedSelectivity--; }
1044
DISPLAYLEVEL(2, "! note : calculated dictionary significantly larger than requested (%u > %u) \n", dictContentSize, (unsigned)maxDictSize);
1045
DISPLAYLEVEL(2, "! consider increasing dictionary size, or produce denser dictionary (-s%u) \n", proposedSelectivity);
1046
DISPLAYLEVEL(2, "! always test dictionary efficiency on real samples \n");
1047
}
1048
1049
/* limit dictionary size */
1050
{ U32 const max = dictList->pos; /* convention : nb of useful elts within dictList */
1051
U32 currentSize = 0;
1052
U32 n; for (n=1; n<max; n++) {
1053
currentSize += dictList[n].length;
1054
if (currentSize > targetDictSize) { currentSize -= dictList[n].length; break; }
1055
}
1056
dictList->pos = n;
1057
dictContentSize = currentSize;
1058
}
1059
1060
/* build dict content */
1061
{ U32 u;
1062
BYTE* ptr = (BYTE*)dictBuffer + maxDictSize;
1063
for (u=1; u<dictList->pos; u++) {
1064
U32 l = dictList[u].length;
1065
ptr -= l;
1066
if (ptr<(BYTE*)dictBuffer) { free(dictList); return ERROR(GENERIC); } /* should not happen */
1067
memcpy(ptr, (const char*)samplesBuffer+dictList[u].pos, l);
1068
} }
1069
1070
dictSize = ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, maxDictSize,
1071
samplesBuffer, samplesSizes, nbSamples,
1072
params.zParams);
1073
}
1074
1075
/* clean up */
1076
free(dictList);
1077
return dictSize;
1078
}
1079
1080
1081
/* ZDICT_trainFromBuffer_legacy() :
1082
* issue : samplesBuffer need to be followed by a noisy guard band.
1083
* work around : duplicate the buffer, and add the noise */
1084
size_t ZDICT_trainFromBuffer_legacy(void* dictBuffer, size_t dictBufferCapacity,
1085
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
1086
ZDICT_legacy_params_t params)
1087
{
1088
size_t result;
1089
void* newBuff;
1090
size_t const sBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
1091
if (sBuffSize < ZDICT_MIN_SAMPLES_SIZE) return 0; /* not enough content => no dictionary */
1092
1093
newBuff = malloc(sBuffSize + NOISELENGTH);
1094
if (!newBuff) return ERROR(memory_allocation);
1095
1096
memcpy(newBuff, samplesBuffer, sBuffSize);
1097
ZDICT_fillNoise((char*)newBuff + sBuffSize, NOISELENGTH); /* guard band, for end of buffer condition */
1098
1099
result =
1100
ZDICT_trainFromBuffer_unsafe_legacy(dictBuffer, dictBufferCapacity, newBuff,
1101
samplesSizes, nbSamples, params);
1102
free(newBuff);
1103
return result;
1104
}
1105
1106
1107
size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
1108
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
1109
{
1110
ZDICT_fastCover_params_t params;
1111
DEBUGLOG(3, "ZDICT_trainFromBuffer");
1112
memset(&params, 0, sizeof(params));
1113
params.d = 8;
1114
params.steps = 4;
1115
/* Use default level since no compression level information is available */
1116
params.zParams.compressionLevel = ZSTD_CLEVEL_DEFAULT;
1117
#if defined(DEBUGLEVEL) && (DEBUGLEVEL>=1)
1118
params.zParams.notificationLevel = DEBUGLEVEL;
1119
#endif
1120
return ZDICT_optimizeTrainFromBuffer_fastCover(dictBuffer, dictBufferCapacity,
1121
samplesBuffer, samplesSizes, nbSamples,
1122
&params);
1123
}
1124
1125
size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
1126
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
1127
{
1128
ZDICT_params_t params;
1129
memset(&params, 0, sizeof(params));
1130
return ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, dictBufferCapacity,
1131
samplesBuffer, samplesSizes, nbSamples,
1132
params);
1133
}
1134
1135