Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Ok-landscape
GitHub Repository: Ok-landscape/computational-pipeline
Path: blob/main/latex-templates/templates/astronomy/stellar_evolution.tex
51 views
unlisted
1
\documentclass[a4paper, 11pt]{article}
2
\usepackage[utf8]{inputenc}
3
\usepackage[T1]{fontenc}
4
\usepackage{amsmath, amssymb}
5
\usepackage{graphicx}
6
\usepackage{siunitx}
7
\usepackage{booktabs}
8
\usepackage{subcaption}
9
\usepackage[makestderr]{pythontex}
10
11
% Theorem environments
12
\newtheorem{definition}{Definition}
13
\newtheorem{theorem}{Theorem}
14
\newtheorem{example}{Example}
15
\newtheorem{remark}{Remark}
16
17
\title{Stellar Evolution: From Main Sequence to Stellar Remnants\\
18
\large A Comprehensive Analysis of the HR Diagram and Nuclear Burning Stages}
19
\author{Stellar Astrophysics Division\\Computational Science Templates}
20
\date{\today}
21
22
\begin{document}
23
\maketitle
24
25
\begin{abstract}
26
This comprehensive analysis explores stellar structure and evolution through the Hertzsprung-Russell diagram. We derive the fundamental stellar relations including the mass-luminosity relation, main sequence lifetime, and Stefan-Boltzmann law. The analysis covers all major evolutionary phases from pre-main sequence contraction through hydrogen and helium burning to white dwarf, neutron star, and black hole endpoints. We generate synthetic stellar populations to visualize the main sequence, red giant branch, horizontal branch, and white dwarf cooling sequence, and explore the physics governing each evolutionary stage.
27
\end{abstract}
28
29
\section{Introduction}
30
31
The Hertzsprung-Russell (HR) diagram, independently developed by Ejnar Hertzsprung and Henry Norris Russell in the early 1900s, provides a powerful tool for understanding stellar populations and evolution. By plotting stellar luminosity against effective temperature (or equivalently, color or spectral type), the HR diagram reveals the fundamental relationships governing stellar structure.
32
33
\begin{definition}[Hertzsprung-Russell Diagram]
34
A scatter plot of stellar luminosity $L$ versus effective temperature $T_{\text{eff}}$ (with temperature decreasing to the right), showing distinct regions occupied by different stellar types and evolutionary stages.
35
\end{definition}
36
37
\section{Theoretical Framework}
38
39
\subsection{Stellar Luminosity}
40
41
The luminosity of a star is determined by its radius and effective temperature:
42
43
\begin{theorem}[Stefan-Boltzmann Law]
44
\begin{equation}
45
L = 4\pi R^2 \sigma T_{\text{eff}}^4
46
\end{equation}
47
where $\sigma = 5.67 \times 10^{-8}$ W m$^{-2}$ K$^{-4}$ is the Stefan-Boltzmann constant.
48
\end{theorem}
49
50
\subsection{Mass-Luminosity Relation}
51
52
For main sequence stars, luminosity scales strongly with mass:
53
54
\begin{theorem}[Mass-Luminosity Relation]
55
\begin{equation}
56
\frac{L}{L_\odot} = \left(\frac{M}{M_\odot}\right)^\alpha
57
\end{equation}
58
where $\alpha \approx 3.5$ for stars with $0.5 < M/M_\odot < 20$, with variations at the extremes.
59
\end{theorem}
60
61
\begin{remark}[Mass-Luminosity Variations]
62
\begin{itemize}
63
\item Low mass ($M < 0.5 M_\odot$): $\alpha \approx 2.3$
64
\item Intermediate mass: $\alpha \approx 4$
65
\item High mass ($M > 20 M_\odot$): $\alpha \approx 1$ (Eddington limit)
66
\end{itemize}
67
\end{remark}
68
69
\subsection{Main Sequence Lifetime}
70
71
Nuclear burning timescale depends on fuel supply and consumption rate:
72
73
\begin{equation}
74
\tau_{\text{MS}} \approx \frac{M}{L} \propto M^{1-\alpha} \approx \frac{10^{10}}{(M/M_\odot)^{2.5}} \text{ years}
75
\end{equation}
76
77
\subsection{Stellar Spectral Classification}
78
79
\begin{definition}[Spectral Types]
80
The Harvard classification scheme orders stars by temperature:
81
\begin{center}
82
O - B - A - F - G - K - M
83
\end{center}
84
(``Oh Be A Fine Girl/Guy Kiss Me'')
85
86
Temperature ranges: O ($>$30,000 K), B (10,000-30,000 K), A (7,500-10,000 K), F (6,000-7,500 K), G (5,200-6,000 K), K (3,700-5,200 K), M ($<$3,700 K)
87
\end{definition}
88
89
\section{Computational Analysis}
90
91
\begin{pycode}
92
import numpy as np
93
import matplotlib.pyplot as plt
94
from matplotlib.colors import LogNorm
95
plt.rc('text', usetex=True)
96
plt.rc('font', family='serif')
97
98
np.random.seed(42)
99
100
# Solar values
101
L_sun = 3.828e26 # W
102
T_sun = 5778 # K
103
R_sun = 6.96e8 # m
104
M_sun = 1.989e30 # kg
105
106
# Main sequence population
107
n_ms = 800
108
# IMF-weighted mass distribution (Salpeter)
109
mass_exponent = -2.35
110
mass_ms = 10**np.random.uniform(-1, 1.7, n_ms) # 0.1 - 50 M_sun
111
112
# Mass-luminosity relation with mass-dependent exponent
113
def mass_to_luminosity(M):
114
"""Mass-luminosity relation with mass-dependent exponent"""
115
L = np.zeros_like(M)
116
low = M < 0.43
117
mid_low = (M >= 0.43) & (M < 2)
118
mid_high = (M >= 2) & (M < 20)
119
high = M >= 20
120
121
L[low] = 0.23 * M[low]**2.3
122
L[mid_low] = M[mid_low]**4
123
L[mid_high] = 1.5 * M[mid_high]**3.5
124
L[high] = 3200 * M[high]
125
return L
126
127
L_ms = mass_to_luminosity(mass_ms)
128
129
# Mass-temperature relation
130
def mass_to_temperature(M):
131
"""Main sequence temperature from mass"""
132
return T_sun * M**0.5
133
134
T_ms = mass_to_temperature(mass_ms)
135
136
# Add scatter
137
L_ms *= 10**np.random.normal(0, 0.08, n_ms)
138
T_ms *= 10**np.random.normal(0, 0.015, n_ms)
139
140
# Calculate radii from Stefan-Boltzmann
141
R_ms = np.sqrt(L_ms * L_sun / (4 * np.pi * 5.67e-8 * T_ms**4)) / R_sun
142
143
# Red Giant Branch
144
n_rgb = 200
145
T_rgb = np.random.uniform(3500, 5200, n_rgb)
146
L_rgb = 10**np.random.uniform(1.5, 3.5, n_rgb)
147
148
# Horizontal Branch (helium burning)
149
n_hb = 100
150
T_hb = np.random.uniform(4500, 20000, n_hb)
151
L_hb = 10**np.random.uniform(1.5, 2.5, n_hb)
152
153
# Asymptotic Giant Branch
154
n_agb = 80
155
T_agb = np.random.uniform(2800, 4000, n_agb)
156
L_agb = 10**np.random.uniform(3.0, 4.5, n_agb)
157
158
# White Dwarfs (cooling sequence)
159
n_wd = 150
160
T_wd = 10**np.random.uniform(3.5, 5.0, n_wd) # 3000 - 100000 K
161
# WD cooling: L ~ T^4 * R^2, with R ~ 0.01 R_sun
162
R_wd = 0.01 # solar radii
163
L_wd = (R_wd)**2 * (T_wd/T_sun)**4 * 10**np.random.normal(0, 0.2, n_wd)
164
165
# Supergiants
166
n_sg = 50
167
T_sg = np.random.uniform(3000, 30000, n_sg)
168
L_sg = 10**np.random.uniform(4, 6, n_sg)
169
170
# Pre-main sequence (Hayashi track)
171
n_pms = 100
172
T_pms = np.random.uniform(3000, 5000, n_pms)
173
L_pms = 10**np.random.uniform(0, 2, n_pms)
174
175
# Spectral classification
176
def spectral_class(T):
177
if T > 30000: return 'O'
178
elif T > 10000: return 'B'
179
elif T > 7500: return 'A'
180
elif T > 6000: return 'F'
181
elif T > 5200: return 'G'
182
elif T > 3700: return 'K'
183
else: return 'M'
184
185
# Luminosity class
186
def luminosity_class(L, T):
187
if L > 1e4:
188
return 'I (Supergiant)'
189
elif L > 100:
190
return 'III (Giant)'
191
elif L > 10:
192
return 'IV (Subgiant)'
193
else:
194
return 'V (Main Seq.)'
195
196
# Create comprehensive figure
197
fig = plt.figure(figsize=(14, 16))
198
199
# Plot 1: Full HR diagram
200
ax1 = fig.add_subplot(3, 3, 1)
201
ax1.scatter(T_ms, L_ms, c='blue', s=3, alpha=0.4, label='Main Sequence')
202
ax1.scatter(T_rgb, L_rgb, c='red', s=10, alpha=0.5, label='RGB')
203
ax1.scatter(T_hb, L_hb, c='orange', s=8, alpha=0.5, label='HB')
204
ax1.scatter(T_agb, L_agb, c='darkred', s=15, alpha=0.5, label='AGB')
205
ax1.scatter(T_wd, L_wd, c='white', edgecolors='gray', s=8, alpha=0.6, label='WD')
206
ax1.scatter(T_sg, L_sg, c='yellow', edgecolors='black', s=25, alpha=0.7, label='Supergiant')
207
208
ax1.set_xscale('log')
209
ax1.set_yscale('log')
210
ax1.set_xlim([50000, 2000])
211
ax1.set_ylim([1e-5, 1e7])
212
ax1.set_xlabel('Effective Temperature (K)')
213
ax1.set_ylabel('Luminosity ($L_\\odot$)')
214
ax1.set_title('Hertzsprung-Russell Diagram')
215
ax1.legend(fontsize=6, loc='lower left')
216
ax1.grid(True, alpha=0.3)
217
218
# Plot 2: Main sequence only with constant radius lines
219
ax2 = fig.add_subplot(3, 3, 2)
220
ax2.scatter(T_ms, L_ms, c=np.log10(mass_ms), s=10, alpha=0.6, cmap='viridis')
221
222
# Constant radius lines
223
T_line = np.logspace(3.5, 5, 100)
224
for R_val in [0.1, 1, 10, 100]:
225
L_R = (R_val)**2 * (T_line/T_sun)**4
226
ax2.plot(T_line, L_R, 'k--', alpha=0.4, linewidth=1)
227
ax2.text(T_line[-1]*0.8, L_R[-1]*1.5, f'{R_val}$R_\\odot$', fontsize=7)
228
229
ax2.set_xscale('log')
230
ax2.set_yscale('log')
231
ax2.set_xlim([50000, 2500])
232
ax2.set_ylim([1e-4, 1e6])
233
ax2.set_xlabel('Temperature (K)')
234
ax2.set_ylabel('Luminosity ($L_\\odot$)')
235
ax2.set_title('Main Sequence (colored by mass)')
236
ax2.grid(True, alpha=0.3)
237
238
# Plot 3: Mass-luminosity relation
239
ax3 = fig.add_subplot(3, 3, 3)
240
mass_plot = np.logspace(-1, 2, 100)
241
L_theory = mass_to_luminosity(mass_plot)
242
ax3.plot(mass_plot, L_theory, 'r-', linewidth=2, label='Theory')
243
ax3.scatter(mass_ms, L_ms, c='blue', s=5, alpha=0.3, label='Synthetic')
244
245
ax3.set_xscale('log')
246
ax3.set_yscale('log')
247
ax3.set_xlabel('Mass ($M_\\odot$)')
248
ax3.set_ylabel('Luminosity ($L_\\odot$)')
249
ax3.set_title('Mass-Luminosity Relation')
250
ax3.legend(fontsize=8)
251
ax3.grid(True, alpha=0.3)
252
253
# Plot 4: Main sequence lifetime
254
ax4 = fig.add_subplot(3, 3, 4)
255
tau_ms = 10e9 / mass_ms**2.5 # years
256
ax4.scatter(mass_ms, tau_ms/1e9, c='blue', s=10, alpha=0.5)
257
258
# Reference points
259
ref_masses = [0.5, 1, 2, 5, 10, 25]
260
ref_tau = [10e9/m**2.5/1e9 for m in ref_masses]
261
for m, t in zip(ref_masses, ref_tau):
262
ax4.plot(m, t, 'ro', markersize=8)
263
264
ax4.set_xscale('log')
265
ax4.set_yscale('log')
266
ax4.set_xlabel('Mass ($M_\\odot$)')
267
ax4.set_ylabel('MS Lifetime (Gyr)')
268
ax4.set_title('Main Sequence Lifetime')
269
ax4.grid(True, alpha=0.3)
270
271
# Plot 5: Spectral type distribution
272
ax5 = fig.add_subplot(3, 3, 5)
273
all_T = np.concatenate([T_ms, T_rgb, T_hb, T_agb, T_wd, T_sg])
274
spectral_types = ['O', 'B', 'A', 'F', 'G', 'K', 'M']
275
spec_counts = [sum(1 for T in all_T if spectral_class(T) == s) for s in spectral_types]
276
colors = ['blue', 'cyan', 'white', 'lightyellow', 'yellow', 'orange', 'red']
277
278
bars = ax5.bar(spectral_types, spec_counts, color=colors, edgecolor='black', alpha=0.8)
279
ax5.set_xlabel('Spectral Class')
280
ax5.set_ylabel('Count')
281
ax5.set_title('Spectral Type Distribution')
282
ax5.grid(True, alpha=0.3, axis='y')
283
284
# Plot 6: Evolutionary track (1 solar mass)
285
ax6 = fig.add_subplot(3, 3, 6)
286
# Simplified evolutionary track for 1 M_sun
287
track_phases = {
288
'ZAMS': (5778, 1, 'o'),
289
'TO': (5900, 1.5, 's'),
290
'RGB': (4500, 100, '^'),
291
'HB': (5000, 50, 'D'),
292
'AGB': (3500, 1000, 'p'),
293
'PN': (100000, 100, '*'),
294
'WD': (10000, 0.01, 'v')
295
}
296
297
for phase, (T, L, marker) in track_phases.items():
298
ax6.scatter([T], [L], marker=marker, s=100, label=phase, zorder=10)
299
300
# Connect with line
301
T_track = [5778, 5900, 4500, 5000, 3500, 100000, 10000]
302
L_track = [1, 1.5, 100, 50, 1000, 100, 0.01]
303
ax6.plot(T_track, L_track, 'k--', alpha=0.5, linewidth=1)
304
305
ax6.set_xscale('log')
306
ax6.set_yscale('log')
307
ax6.set_xlim([200000, 2500])
308
ax6.set_ylim([1e-3, 1e4])
309
ax6.set_xlabel('Temperature (K)')
310
ax6.set_ylabel('Luminosity ($L_\\odot$)')
311
ax6.set_title('1 $M_\\odot$ Evolutionary Track')
312
ax6.legend(fontsize=7, loc='lower left', ncol=2)
313
ax6.grid(True, alpha=0.3)
314
315
# Plot 7: Stellar endpoints by mass
316
ax7 = fig.add_subplot(3, 3, 7)
317
mass_range = np.linspace(0.1, 50, 100)
318
remnant_mass = np.zeros_like(mass_range)
319
320
for i, m in enumerate(mass_range):
321
if m < 8: # White dwarf
322
remnant_mass[i] = 0.5 + 0.1 * m
323
elif m < 25: # Neutron star
324
remnant_mass[i] = 1.4
325
else: # Black hole
326
remnant_mass[i] = 0.1 * m
327
328
ax7.plot(mass_range, remnant_mass, 'b-', linewidth=2)
329
ax7.axvline(x=8, color='r', linestyle='--', alpha=0.7, label='WD/NS boundary')
330
ax7.axvline(x=25, color='purple', linestyle='--', alpha=0.7, label='NS/BH boundary')
331
ax7.set_xlabel('Initial Mass ($M_\\odot$)')
332
ax7.set_ylabel('Remnant Mass ($M_\\odot$)')
333
ax7.set_title('Stellar Remnant Masses')
334
ax7.legend(fontsize=8)
335
ax7.grid(True, alpha=0.3)
336
337
# Plot 8: Nuclear burning stages
338
ax8 = fig.add_subplot(3, 3, 8)
339
burning_stages = ['H', 'He', 'C', 'Ne', 'O', 'Si']
340
temps = [1.5e7, 1e8, 5e8, 1.2e9, 1.5e9, 2.7e9] # K
341
durations_25 = [7e6, 5e5, 600, 1, 0.5, 0.001] # years for 25 M_sun
342
343
ax8.barh(burning_stages, np.log10(durations_25), color='steelblue', alpha=0.7)
344
ax8.set_xlabel('$\\log_{10}$(Duration/yr)')
345
ax8.set_ylabel('Burning Stage')
346
ax8.set_title('Nuclear Burning (25 $M_\\odot$)')
347
ax8.grid(True, alpha=0.3, axis='x')
348
349
# Plot 9: Color-magnitude diagram
350
ax9 = fig.add_subplot(3, 3, 9)
351
# B-V color index (simplified)
352
def T_to_BV(T):
353
return 7090/T - 0.71
354
355
BV_ms = T_to_BV(T_ms)
356
BV_rgb = T_to_BV(T_rgb)
357
BV_wd = T_to_BV(T_wd)
358
359
# Absolute magnitude
360
Mv_ms = 4.83 - 2.5*np.log10(L_ms)
361
Mv_rgb = 4.83 - 2.5*np.log10(L_rgb)
362
Mv_wd = 4.83 - 2.5*np.log10(L_wd)
363
364
ax9.scatter(BV_ms, Mv_ms, c='blue', s=3, alpha=0.4, label='MS')
365
ax9.scatter(BV_rgb, Mv_rgb, c='red', s=8, alpha=0.5, label='RGB')
366
ax9.scatter(BV_wd, Mv_wd, c='gray', s=5, alpha=0.5, label='WD')
367
368
ax9.set_xlim([-0.5, 2.5])
369
ax9.set_ylim([15, -10])
370
ax9.set_xlabel('B-V Color Index')
371
ax9.set_ylabel('Absolute Magnitude $M_V$')
372
ax9.set_title('Color-Magnitude Diagram')
373
ax9.legend(fontsize=8)
374
ax9.grid(True, alpha=0.3)
375
376
plt.tight_layout()
377
plt.savefig('stellar_evolution_plot.pdf', bbox_inches='tight', dpi=150)
378
print(r'\begin{center}')
379
print(r'\includegraphics[width=\textwidth]{stellar_evolution_plot.pdf}')
380
print(r'\end{center}')
381
plt.close()
382
383
# Statistics
384
total_stars = n_ms + n_rgb + n_hb + n_agb + n_wd + n_sg
385
ms_fraction = n_ms / total_stars * 100
386
\end{pycode}
387
388
\section{Results and Analysis}
389
390
\subsection{Stellar Population Statistics}
391
392
\begin{pycode}
393
# Population statistics table
394
print(r'\begin{table}[h]')
395
print(r'\centering')
396
print(r'\caption{Synthetic Stellar Population Statistics}')
397
print(r'\begin{tabular}{lcc}')
398
print(r'\toprule')
399
print(r'Evolutionary Stage & Count & Fraction (\\%) \\')
400
print(r'\midrule')
401
stages = [('Main Sequence', n_ms), ('Red Giant Branch', n_rgb),
402
('Horizontal Branch', n_hb), ('AGB', n_agb),
403
('White Dwarf', n_wd), ('Supergiant', n_sg)]
404
for name, count in stages:
405
frac = count / total_stars * 100
406
print(f"{name} & {count} & {frac:.1f} \\\\")
407
print(r'\midrule')
408
print(f"Total & {total_stars} & 100 \\\\")
409
print(r'\bottomrule')
410
print(r'\end{tabular}')
411
print(r'\end{table}')
412
\end{pycode}
413
414
\subsection{Main Sequence Properties}
415
416
\begin{pycode}
417
# MS lifetime table
418
print(r'\begin{table}[h]')
419
print(r'\centering')
420
print(r'\caption{Main Sequence Lifetimes}')
421
print(r'\begin{tabular}{cccc}')
422
print(r'\toprule')
423
print(r'Mass ($M_\\odot$) & Luminosity ($L_\\odot$) & Temperature (K) & Lifetime (Gyr) \\')
424
print(r'\midrule')
425
ref_masses = [0.5, 1, 2, 5, 10, 25]
426
for m in ref_masses:
427
L = mass_to_luminosity(np.array([m]))[0]
428
T = mass_to_temperature(m)
429
tau = 10 / m**2.5
430
print(f"{m:.1f} & {L:.1f} & {T:.0f} & {tau:.2f} \\\\")
431
print(r'\bottomrule')
432
print(r'\end{tabular}')
433
print(r'\end{table}')
434
\end{pycode}
435
436
\begin{example}[Solar Evolution]
437
The Sun is a G2V main sequence star with the following properties:
438
\begin{itemize}
439
\item Mass: $M = 1 M_\odot$
440
\item Luminosity: $L = 1 L_\odot = $ \py{f"{L_sun:.3e}"} W
441
\item Effective temperature: $T_{\text{eff}} = $ \py{f"{T_sun}"} K
442
\item Main sequence lifetime: $\tau_{\text{MS}} \approx 10$ Gyr
443
\item Current age: 4.6 Gyr (middle of MS phase)
444
\end{itemize}
445
\end{example}
446
447
\section{Evolutionary Phases}
448
449
\subsection{Pre-Main Sequence}
450
451
Stars form from collapsing molecular clouds and contract along Hayashi tracks (nearly vertical in HR diagram) before reaching the main sequence.
452
453
\subsection{Main Sequence}
454
455
Core hydrogen burning via pp-chain (low mass) or CNO cycle (high mass). Stars spend $\sim$90\% of their lives on the main sequence.
456
457
\subsection{Red Giant Branch}
458
459
After core hydrogen exhaustion:
460
\begin{enumerate}
461
\item Hydrogen shell burning begins
462
\item Core contracts, envelope expands
463
\item Surface cools to $\sim$4000 K
464
\item Luminosity increases to $\sim$100-1000 $L_\odot$
465
\end{enumerate}
466
467
\subsection{Helium Burning}
468
469
\begin{remark}[Helium Flash]
470
In low-mass stars ($M < 2 M_\odot$), helium ignition is degenerate and occurs explosively (helium flash), though the energy is absorbed internally.
471
\end{remark}
472
473
Stars on the Horizontal Branch burn helium in the core and hydrogen in a shell.
474
475
\subsection{Asymptotic Giant Branch}
476
477
Double-shell burning (H and He) produces thermal pulses and significant mass loss.
478
479
\section{Stellar Endpoints}
480
481
\subsection{White Dwarfs}
482
483
Final state for $M < 8 M_\odot$:
484
\begin{itemize}
485
\item Supported by electron degeneracy pressure
486
\item Mass limit: Chandrasekhar mass $M_{Ch} = 1.4 M_\odot$
487
\item Cooling timescale: $\sim$10 Gyr
488
\end{itemize}
489
490
\subsection{Neutron Stars}
491
492
Core-collapse remnants for $8 < M/M_\odot < 25$:
493
\begin{itemize}
494
\item Supported by neutron degeneracy pressure
495
\item Typical mass: $1.4 M_\odot$
496
\item Radius: $\sim$10 km
497
\end{itemize}
498
499
\subsection{Black Holes}
500
501
For $M > 25 M_\odot$, no known physics can halt collapse.
502
503
\section{Nuclear Burning Stages}
504
505
\begin{pycode}
506
# Nuclear burning table
507
print(r'\begin{table}[h]')
508
print(r'\centering')
509
print(r'\caption{Nuclear Burning in Massive Stars (25 $M_\\odot$)}')
510
print(r'\begin{tabular}{lccc}')
511
print(r'\toprule')
512
print(r'Stage & Temperature (K) & Duration & Products \\')
513
print(r'\midrule')
514
print(r'H $\\rightarrow$ He & $1.5 \\times 10^7$ & 7 Myr & He \\')
515
print(r'He $\\rightarrow$ C,O & $1 \\times 10^8$ & 500 kyr & C, O \\')
516
print(r'C $\\rightarrow$ Ne,Mg & $5 \\times 10^8$ & 600 yr & Ne, Mg \\')
517
print(r'Ne $\\rightarrow$ O,Mg & $1.2 \\times 10^9$ & 1 yr & O, Mg \\')
518
print(r'O $\\rightarrow$ Si,S & $1.5 \\times 10^9$ & 6 months & Si, S \\')
519
print(r'Si $\\rightarrow$ Fe & $2.7 \\times 10^9$ & 1 day & Fe \\')
520
print(r'\bottomrule')
521
print(r'\end{tabular}')
522
print(r'\end{table}')
523
\end{pycode}
524
525
\section{Limitations and Extensions}
526
527
\subsection{Model Limitations}
528
\begin{enumerate}
529
\item \textbf{Single stars}: Binaries not included
530
\item \textbf{Solar metallicity}: Population II not modeled
531
\item \textbf{No rotation}: Rotating stars evolve differently
532
\item \textbf{Simplified tracks}: No detailed stellar models
533
\end{enumerate}
534
535
\subsection{Possible Extensions}
536
\begin{itemize}
537
\item Binary evolution and mass transfer
538
\item Metallicity effects on evolution
539
\item Stellar rotation and magnetic fields
540
\item Detailed nucleosynthesis yields
541
\end{itemize}
542
543
\section{Conclusion}
544
545
This analysis demonstrates the power of the HR diagram for stellar astrophysics:
546
\begin{itemize}
547
\item Main sequence stars follow the mass-luminosity relation
548
\item MS lifetime: $\tau \propto M^{-2.5}$
549
\item Red giants: cool but luminous ($L \sim 100 L_\odot$, $T \sim 4000$ K)
550
\item White dwarfs: hot but dim ($L \sim 0.01 L_\odot$)
551
\item Stellar endpoints depend on initial mass
552
\end{itemize}
553
554
\section*{Further Reading}
555
\begin{itemize}
556
\item Kippenhahn, R., Weigert, A., \& Weiss, A. (2012). \textit{Stellar Structure and Evolution}. Springer.
557
\item Prialnik, D. (2009). \textit{An Introduction to the Theory of Stellar Structure and Evolution}. Cambridge University Press.
558
\item Salaris, M. \& Cassisi, S. (2005). \textit{Evolution of Stars and Stellar Populations}. Wiley.
559
\end{itemize}
560
561
\end{document}
562
563