Path: blob/main/latex-templates/templates/astrophysics/black_holes.tex
51 views
unlisted
% Black Hole Physics1\documentclass[11pt,a4paper]{article}2\usepackage[utf8]{inputenc}3\usepackage[T1]{fontenc}4\usepackage{amsmath,amssymb}5\usepackage{graphicx}6\usepackage{booktabs}7\usepackage{siunitx}8\usepackage{geometry}9\geometry{margin=1in}10\usepackage{pythontex}11\usepackage{hyperref}12\usepackage{float}1314\title{Black Hole Physics\\Schwarzschild Radius, Accretion, and Hawking Radiation}15\author{Astrophysics Research Group}16\date{\today}1718\begin{document}19\maketitle2021\begin{abstract}22Computational analysis of black hole physics including Schwarzschild geometry, accretion disk properties, and Hawking radiation calculations.23\end{abstract}2425\section{Introduction}2627Black holes are regions of spacetime where gravity is so strong that nothing can escape.2829\begin{pycode}30import numpy as np31import matplotlib.pyplot as plt32plt.rcParams['text.usetex'] = True33plt.rcParams['font.family'] = 'serif'3435# Physical constants36G = 6.674e-11 # Gravitational constant37c = 2.998e8 # Speed of light38h_bar = 1.055e-34 # Reduced Planck constant39k_B = 1.381e-23 # Boltzmann constant40M_sun = 1.989e30 # Solar mass41\end{pycode}4243\section{Schwarzschild Radius}4445$r_s = \frac{2GM}{c^2}$4647\begin{pycode}48masses = np.logspace(0, 10, 100) # Solar masses49r_s = 2 * G * masses * M_sun / c**25051fig, ax = plt.subplots(figsize=(10, 6))52ax.loglog(masses, r_s / 1000, 'b-', linewidth=2)53ax.set_xlabel('Mass ($M_\\odot$)')54ax.set_ylabel('Schwarzschild Radius (km)')55ax.set_title('Schwarzschild Radius vs Mass')56ax.grid(True, alpha=0.3, which='both')5758# Mark notable objects59notable = {'Stellar (10)': 10, 'Sgr A* (4e6)': 4e6, 'M87* (6.5e9)': 6.5e9}60for name, M in notable.items():61r = 2 * G * M * M_sun / c**262ax.plot(M, r/1000, 'ro', markersize=8)63ax.annotate(name, (M, r/1000), xytext=(5, 5), textcoords='offset points', fontsize=8)64plt.tight_layout()65plt.savefig('schwarzschild_radius.pdf', dpi=150, bbox_inches='tight')66plt.close()67\end{pycode}6869\begin{figure}[H]70\centering71\includegraphics[width=0.9\textwidth]{schwarzschild_radius.pdf}72\caption{Schwarzschild radius as function of mass.}73\end{figure}7475\section{ISCO and Photon Sphere}7677\begin{pycode}78M_bh = 10 * M_sun79r_s_bh = 2 * G * M_bh / c**280r_photon = 1.5 * r_s_bh # Photon sphere81r_isco = 3 * r_s_bh # Innermost stable circular orbit8283r = np.linspace(1.01 * r_s_bh, 20 * r_s_bh, 1000)8485# Effective potential for massive particle (L = 4GM/c)86L = 4 * G * M_bh / c87V_eff = -G * M_bh / r + L**2 / (2 * r**2) - G * M_bh * L**2 / (c**2 * r**3)88V_eff_normalized = V_eff / (c**2)8990fig, ax = plt.subplots(figsize=(10, 6))91ax.plot(r / r_s_bh, V_eff_normalized, 'b-', linewidth=2)92ax.axvline(x=1.5, color='g', linestyle='--', label=f'Photon sphere')93ax.axvline(x=3, color='r', linestyle='--', label=f'ISCO')94ax.set_xlabel('$r/r_s$')95ax.set_ylabel('$V_{eff}/c^2$')96ax.set_title('Effective Potential near Black Hole')97ax.legend()98ax.grid(True, alpha=0.3)99ax.set_xlim([1, 20])100plt.tight_layout()101plt.savefig('effective_potential.pdf', dpi=150, bbox_inches='tight')102plt.close()103\end{pycode}104105\begin{figure}[H]106\centering107\includegraphics[width=0.9\textwidth]{effective_potential.pdf}108\caption{Effective potential showing ISCO and photon sphere.}109\end{figure}110111\section{Hawking Temperature}112113$T_H = \frac{\hbar c^3}{8\pi G M k_B}$114115\begin{pycode}116masses_hawking = np.logspace(-8, 10, 100) * M_sun117T_H = h_bar * c**3 / (8 * np.pi * G * masses_hawking * k_B)118119fig, ax = plt.subplots(figsize=(10, 6))120ax.loglog(masses_hawking / M_sun, T_H, 'b-', linewidth=2)121ax.axhline(y=2.725, color='r', linestyle='--', label='CMB Temperature')122ax.set_xlabel('Mass ($M_\\odot$)')123ax.set_ylabel('Hawking Temperature (K)')124ax.set_title('Hawking Temperature vs Black Hole Mass')125ax.legend()126ax.grid(True, alpha=0.3, which='both')127plt.tight_layout()128plt.savefig('hawking_temperature.pdf', dpi=150, bbox_inches='tight')129plt.close()130131# Example calculation132M_example = 10 * M_sun133T_example = h_bar * c**3 / (8 * np.pi * G * M_example * k_B)134\end{pycode}135136\begin{figure}[H]137\centering138\includegraphics[width=0.9\textwidth]{hawking_temperature.pdf}139\caption{Hawking temperature for different black hole masses.}140\end{figure}141142\section{Accretion Disk Temperature}143144$T(r) = \left(\frac{3GM\dot{M}}{8\pi\sigma r^3}\right)^{1/4}$145146\begin{pycode}147sigma_sb = 5.67e-8 # Stefan-Boltzmann constant148M_dot = 1e-8 * M_sun / (365.25 * 24 * 3600) # Accretion rate149150r_disk = np.linspace(3 * r_s_bh, 100 * r_s_bh, 100)151T_disk = (3 * G * M_bh * M_dot / (8 * np.pi * sigma_sb * r_disk**3))**0.25152153fig, ax = plt.subplots(figsize=(10, 6))154ax.semilogy(r_disk / r_s_bh, T_disk, 'b-', linewidth=2)155ax.set_xlabel('$r/r_s$')156ax.set_ylabel('Temperature (K)')157ax.set_title('Accretion Disk Temperature Profile')158ax.grid(True, alpha=0.3)159plt.tight_layout()160plt.savefig('disk_temperature.pdf', dpi=150, bbox_inches='tight')161plt.close()162\end{pycode}163164\begin{figure}[H]165\centering166\includegraphics[width=0.9\textwidth]{disk_temperature.pdf}167\caption{Temperature profile of thin accretion disk.}168\end{figure}169170\section{Time Dilation}171172\begin{pycode}173r_time = np.linspace(1.01 * r_s_bh, 10 * r_s_bh, 100)174time_dilation = np.sqrt(1 - r_s_bh / r_time)175176fig, ax = plt.subplots(figsize=(10, 6))177ax.plot(r_time / r_s_bh, time_dilation, 'b-', linewidth=2)178ax.set_xlabel('$r/r_s$')179ax.set_ylabel('$d\\tau/dt$')180ax.set_title('Gravitational Time Dilation')181ax.grid(True, alpha=0.3)182ax.set_xlim([1, 10])183ax.set_ylim([0, 1])184plt.tight_layout()185plt.savefig('time_dilation.pdf', dpi=150, bbox_inches='tight')186plt.close()187\end{pycode}188189\begin{figure}[H]190\centering191\includegraphics[width=0.9\textwidth]{time_dilation.pdf}192\caption{Time dilation factor near black hole.}193\end{figure}194195\section{Eddington Luminosity}196197$L_{Edd} = \frac{4\pi GMm_pc}{\sigma_T}$198199\begin{pycode}200m_p = 1.673e-27 # Proton mass201sigma_T = 6.65e-29 # Thomson cross-section202L_sun = 3.828e26 # Solar luminosity203204masses_edd = np.logspace(0, 10, 100)205L_edd = 4 * np.pi * G * masses_edd * M_sun * m_p * c / sigma_T206207fig, ax = plt.subplots(figsize=(10, 6))208ax.loglog(masses_edd, L_edd / L_sun, 'b-', linewidth=2)209ax.set_xlabel('Mass ($M_\\odot$)')210ax.set_ylabel('Eddington Luminosity ($L_\\odot$)')211ax.set_title('Eddington Limit')212ax.grid(True, alpha=0.3, which='both')213plt.tight_layout()214plt.savefig('eddington_luminosity.pdf', dpi=150, bbox_inches='tight')215plt.close()216217L_edd_10 = 4 * np.pi * G * 10 * M_sun * m_p * c / sigma_T218\end{pycode}219220\begin{figure}[H]221\centering222\includegraphics[width=0.9\textwidth]{eddington_luminosity.pdf}223\caption{Eddington luminosity limit.}224\end{figure}225226\section{Black Hole Spin}227228\begin{pycode}229a_spin = np.linspace(0, 0.998, 100) # Dimensionless spin parameter230r_isco_spin = 3 + (3 - a_spin) * np.sqrt(3 + a_spin) - np.sqrt((3 - a_spin) * (3 + a_spin + 2 * np.sqrt(3 + a_spin)))231232fig, ax = plt.subplots(figsize=(10, 6))233ax.plot(a_spin, r_isco_spin, 'b-', linewidth=2)234ax.set_xlabel('Spin Parameter $a/M$')235ax.set_ylabel('ISCO Radius ($r_g$)')236ax.set_title('ISCO vs Kerr Spin Parameter')237ax.grid(True, alpha=0.3)238plt.tight_layout()239plt.savefig('kerr_isco.pdf', dpi=150, bbox_inches='tight')240plt.close()241\end{pycode}242243\begin{figure}[H]244\centering245\includegraphics[width=0.9\textwidth]{kerr_isco.pdf}246\caption{ISCO radius for Kerr black holes.}247\end{figure}248249\section{Results}250251\begin{pycode}252r_s_10 = 2 * G * 10 * M_sun / c**2253print(r'\begin{table}[H]')254print(r'\centering')255print(r'\caption{Black Hole Properties (10 $M_\odot$)}')256print(r'\begin{tabular}{@{}lc@{}}')257print(r'\toprule')258print(r'Property & Value \\')259print(r'\midrule')260print(f'Schwarzschild radius & {r_s_10/1000:.2f} km \\\\')261print(f'ISCO radius & {3*r_s_10/1000:.2f} km \\\\')262print(f'Hawking temperature & {T_example:.2e} K \\\\')263print(f'Eddington luminosity & {L_edd_10/L_sun:.2e} $L_\\odot$ \\\\')264print(r'\bottomrule')265print(r'\end{tabular}')266print(r'\end{table}')267\end{pycode}268269\section{Conclusions}270271This analysis covers key aspects of black hole physics including Schwarzschild geometry, thermal properties, and accretion processes.272273\end{document}274275276