Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Ok-landscape
GitHub Repository: Ok-landscape/computational-pipeline
Path: blob/main/latex-templates/templates/chemical-engineering/reaction_engineering.tex
51 views
unlisted
1
\documentclass[11pt,a4paper]{article}
2
\usepackage[utf8]{inputenc}
3
\usepackage[T1]{fontenc}
4
\usepackage{amsmath,amssymb}
5
\usepackage{graphicx}
6
\usepackage{booktabs}
7
\usepackage{siunitx}
8
\usepackage{geometry}
9
\geometry{margin=1in}
10
\usepackage{pythontex}
11
\usepackage{hyperref}
12
\usepackage{float}
13
\usepackage{cite}
14
15
\title{Reaction Engineering\\CSTR and PFR Design}
16
\author{Chemical Engineering Research Group}
17
\date{\today}
18
19
\begin{document}
20
\maketitle
21
22
\begin{abstract}
23
This report presents comprehensive computational analysis of chemical reactor design and kinetics, focusing on batch reactors, continuous stirred tank reactors (CSTRs), and plug flow reactors (PFRs). We investigate first-order and second-order reaction kinetics, residence time distributions, temperature effects via Arrhenius behavior, and reactor performance comparisons using Levenspiel plots. The analysis provides design equations, numerical solutions for non-isothermal operation, and optimization strategies for industrial reactor systems.
24
\end{abstract}
25
26
\section{Introduction}
27
28
Chemical reactor design is fundamental to the chemical process industry, determining the size, configuration, and operating conditions required to achieve desired conversion and selectivity \cite{Fogler2016, Levenspiel1999}. The choice between batch, CSTR, and PFR configurations depends on reaction kinetics, heat transfer requirements, and production scale \cite{Smith2005}.
29
30
This computational study examines reactor performance across different configurations, investigating the effects of reaction order, temperature, and residence time on conversion. We employ Python-based numerical methods to solve design equations and generate Levenspiel plots for reactor comparison \cite{Scott2006}.
31
32
\begin{pycode}
33
34
import numpy as np
35
import matplotlib.pyplot as plt
36
from scipy.integrate import odeint, solve_ivp
37
from scipy.optimize import fsolve, brentq
38
plt.rcParams['text.usetex'] = True
39
plt.rcParams['font.family'] = 'serif'
40
41
# Global constants
42
R = 8.314 # J/(mol·K) - Universal gas constant
43
44
\end{pycode}
45
46
\section{Batch Reactor Kinetics}
47
48
For a constant-volume batch reactor, the design equation for species A is:
49
\begin{equation}
50
\frac{dC_A}{dt} = -r_A
51
\end{equation}
52
53
For a first-order irreversible reaction $A \rightarrow P$ with rate constant $k$:
54
\begin{equation}
55
-r_A = k C_A \quad \Rightarrow \quad C_A(t) = C_{A0} e^{-kt}
56
\end{equation}
57
58
For a second-order reaction $A \rightarrow P$:
59
\begin{equation}
60
-r_A = k C_A^2 \quad \Rightarrow \quad C_A(t) = \frac{C_{A0}}{1 + k C_{A0} t}
61
\end{equation}
62
63
The conversion $X_A$ is defined as: $X_A = 1 - C_A/C_{A0}$
64
65
\begin{pycode}
66
# Batch reactor kinetics comparison
67
k1 = 0.1 # rate constant for first-order (1/min)
68
k2 = 0.15 # rate constant for second-order (L/(mol·min))
69
C_A0 = 1.0 # initial concentration (mol/L)
70
t = np.linspace(0, 60, 500)
71
72
# First-order kinetics
73
C_A_first = C_A0 * np.exp(-k1 * t)
74
X_A_first = 1 - C_A_first / C_A0
75
76
# Second-order kinetics
77
C_A_second = C_A0 / (1 + k2 * C_A0 * t)
78
X_A_second = 1 - C_A_second / C_A0
79
80
# Store key results
81
t_90_first = -np.log(0.1) / k1
82
t_90_second = 9 / (k2 * C_A0)
83
84
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
85
86
# Concentration profiles
87
ax1.plot(t, C_A_first, 'b-', linewidth=2, label='First-order')
88
ax1.plot(t, C_A_second, 'r--', linewidth=2, label='Second-order')
89
ax1.axhline(y=0.1*C_A0, color='gray', linestyle=':', alpha=0.5)
90
ax1.set_xlabel('Time (min)', fontsize=11)
91
ax1.set_ylabel('$C_A$ (mol/L)', fontsize=11)
92
ax1.set_title('Batch Reactor Concentration Decay', fontsize=12)
93
ax1.legend(fontsize=10)
94
ax1.grid(True, alpha=0.3)
95
96
# Conversion profiles
97
ax2.plot(t, X_A_first, 'b-', linewidth=2, label='First-order')
98
ax2.plot(t, X_A_second, 'r--', linewidth=2, label='Second-order')
99
ax2.axhline(y=0.9, color='gray', linestyle=':', alpha=0.5, label='90\\% conversion')
100
ax2.set_xlabel('Time (min)', fontsize=11)
101
ax2.set_ylabel('Conversion $X_A$', fontsize=11)
102
ax2.set_title('Batch Reactor Conversion', fontsize=12)
103
ax2.legend(fontsize=10)
104
ax2.grid(True, alpha=0.3)
105
106
plt.tight_layout()
107
plt.savefig('reaction_engineering_plot1.pdf', dpi=150, bbox_inches='tight')
108
plt.close()
109
\end{pycode}
110
111
\begin{figure}[H]
112
\centering
113
\includegraphics[width=0.95\textwidth]{reaction_engineering_plot1.pdf}
114
\caption{Batch reactor performance for first-order and second-order reactions. First-order kinetics exhibit exponential decay, while second-order reactions show hyperbolic behavior. For 90\% conversion with $C_{A0} = \py{C_A0}$ mol/L, first-order requires $\py{f'{t_90_first:.1f}'}$ min while second-order requires $\py{f'{t_90_second:.1f}'}$ min, demonstrating the impact of reaction order on batch time.}
115
\end{figure}
116
117
\section{CSTR Design}
118
119
For a continuous stirred tank reactor (CSTR) at steady state, the design equation is:
120
\begin{equation}
121
\tau = \frac{V}{Q} = \frac{C_{A0} - C_A}{-r_A} = \frac{C_{A0} X_A}{-r_A}
122
\end{equation}
123
124
For a first-order reaction in a single CSTR:
125
\begin{equation}
126
\tau = \frac{X_A}{k(1 - X_A)}
127
\end{equation}
128
129
For $N$ equal-volume CSTRs in series, each with volume $V_i = V/N$:
130
\begin{equation}
131
X_{A,N} = 1 - \frac{1}{(1 + k\tau/N)^N}
132
\end{equation}
133
134
\begin{pycode}
135
# CSTR design - single and multiple reactors in series
136
k_cstr = 0.1 # rate constant (1/min)
137
X_target = 0.90 # target conversion
138
139
# Single CSTR residence time for target conversion
140
tau_single = X_target / (k_cstr * (1 - X_target))
141
142
# Multiple CSTRs in series
143
N_reactors = np.array([1, 2, 3, 4, 5, 10])
144
X_A_range = np.linspace(0.01, 0.99, 200)
145
146
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
147
148
# Conversion vs residence time for different numbers of CSTRs
149
tau_values = np.linspace(0, 50, 300)
150
for N in [1, 2, 3, 5]:
151
if N == 1:
152
X_vals = (k_cstr * tau_values) / (1 + k_cstr * tau_values)
153
label_str = 'Single CSTR'
154
else:
155
X_vals = 1 - 1 / (1 + k_cstr * tau_values / N)**N
156
label_str = f'{N} CSTRs in series'
157
ax1.plot(tau_values, X_vals, linewidth=2, label=label_str)
158
159
ax1.axhline(y=0.9, color='gray', linestyle=':', alpha=0.5)
160
ax1.axvline(x=tau_single, color='gray', linestyle=':', alpha=0.5)
161
ax1.set_xlabel('Total Residence Time $\\tau$ (min)', fontsize=11)
162
ax1.set_ylabel('Conversion $X_A$', fontsize=11)
163
ax1.set_title('CSTR Performance: Effect of Staging', fontsize=12)
164
ax1.legend(fontsize=9)
165
ax1.grid(True, alpha=0.3)
166
ax1.set_xlim(0, 50)
167
168
# Volume requirement for different staging configurations
169
total_volumes = []
170
for N in N_reactors:
171
if N == 1:
172
tau_req = X_target / (k_cstr * (1 - X_target))
173
else:
174
# Solve for tau: X_A = 1 - 1/(1 + k*tau/N)^N
175
def equation(tau):
176
return 1 - 1/(1 + k_cstr*tau/N)**N - X_target
177
tau_req = brentq(equation, 0, 100)
178
total_volumes.append(tau_req) # Assuming Q=1 so V=tau
179
180
ax2.plot(N_reactors, total_volumes, 'o-', linewidth=2, markersize=8, color='steelblue')
181
ax2.axhline(y=tau_single, color='gray', linestyle='--', alpha=0.5, label='Single CSTR')
182
ax2.set_xlabel('Number of CSTRs in Series', fontsize=11)
183
ax2.set_ylabel('Total Volume Required (L)', fontsize=11)
184
ax2.set_title(f'Volume Optimization for $X_A = {X_target}$', fontsize=12)
185
ax2.legend(fontsize=10)
186
ax2.grid(True, alpha=0.3)
187
188
plt.tight_layout()
189
plt.savefig('reaction_engineering_plot2.pdf', dpi=150, bbox_inches='tight')
190
plt.close()
191
192
# Store results
193
V_single = total_volumes[0]
194
V_three = total_volumes[2]
195
reduction_pct = (V_single - V_three) / V_single * 100
196
\end{pycode}
197
198
\begin{figure}[H]
199
\centering
200
\includegraphics[width=0.95\textwidth]{reaction_engineering_plot2.pdf}
201
\caption{CSTR staging analysis showing the benefit of multiple reactors in series. For first-order kinetics with $k = \py{k_cstr}$ min$^{-1}$, achieving $X_A = \py{X_target}$ requires $\tau = \py{f'{tau_single:.1f}'}$ min for a single CSTR. Using three CSTRs in series reduces total volume by $\py{f'{reduction_pct:.1f}'}$\%, approaching PFR performance while maintaining the advantages of perfect mixing within each stage.}
202
\end{figure}
203
204
\section{Plug Flow Reactor (PFR) Design}
205
206
For a PFR, the differential design equation is:
207
\begin{equation}
208
\frac{dX_A}{dV} = \frac{-r_A}{F_{A0}}
209
\end{equation}
210
211
For isothermal first-order kinetics, this integrates to:
212
\begin{equation}
213
V = \frac{F_{A0}}{k} \ln\left(\frac{1}{1-X_A}\right) = \frac{Q C_{A0}}{k} \ln\left(\frac{1}{1-X_A}\right)
214
\end{equation}
215
216
Comparing residence times: $\tau_{PFR} = -\frac{1}{k}\ln(1-X_A)$ vs. $\tau_{CSTR} = \frac{X_A}{k(1-X_A)}$
217
218
For non-isothermal operation, we must solve coupled ODEs numerically:
219
\begin{align}
220
\frac{dX_A}{dV} &= \frac{k(T) C_{A0} (1-X_A)}{F_{A0}} \\
221
\frac{dT}{dV} &= \frac{(-\Delta H_R) k(T) C_{A0} (1-X_A) - UA(T - T_c)}{\rho C_p Q}
222
\end{align}
223
224
\begin{pycode}
225
# PFR design with non-isothermal operation
226
k_pfr = 0.1 # rate constant at reference T (1/min)
227
C_A0_pfr = 1.0 # inlet concentration (mol/L)
228
Q_pfr = 10.0 # volumetric flow rate (L/min)
229
F_A0 = Q_pfr * C_A0_pfr # molar flow rate (mol/min)
230
231
# Isothermal PFR
232
X_A_pfr = np.linspace(0.01, 0.95, 100)
233
V_pfr = (F_A0 / k_pfr) * np.log(1 / (1 - X_A_pfr))
234
tau_pfr = V_pfr / Q_pfr
235
236
# Compare with CSTR
237
tau_cstr_comp = X_A_pfr / (k_pfr * (1 - X_A_pfr))
238
V_cstr_comp = tau_cstr_comp * Q_pfr
239
240
# Non-isothermal PFR with exothermic reaction
241
def pfr_nonisothermal(V, y):
242
X_A, T = y
243
244
# Arrhenius temperature dependence
245
A = 1e10 # pre-exponential factor (1/min)
246
Ea = 75000 # activation energy (J/mol)
247
k_T = A * np.exp(-Ea / (R * T))
248
249
# Energy balance parameters
250
DH_R = -50000 # heat of reaction (J/mol) - exothermic
251
rho = 1000 # density (kg/m³)
252
Cp = 4180 # heat capacity (J/(kg·K))
253
U = 500 # heat transfer coefficient (W/(m²·K))
254
A_heat = 0.5 # heat transfer area per volume (m²/L)
255
T_c = 298 # coolant temperature (K)
256
257
dX_dV = (k_T * C_A0_pfr * (1 - X_A)) / F_A0
258
dT_dV = ((-DH_R) * k_T * C_A0_pfr * (1 - X_A) - U * A_heat * (T - T_c)) / (rho * Cp * Q_pfr / 1000)
259
260
return [dX_dV, dT_dV]
261
262
# Initial conditions
263
T_inlet = 320 # inlet temperature (K)
264
V_range = np.linspace(0, 50, 500)
265
266
sol = odeint(pfr_nonisothermal, [0, T_inlet], V_range)
267
X_A_noniso = sol[:, 0]
268
T_profile = sol[:, 1]
269
270
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
271
272
# Isothermal reactor comparison
273
ax1.plot(tau_pfr, X_A_pfr, 'b-', linewidth=2, label='PFR')
274
ax1.plot(tau_cstr_comp, X_A_pfr, 'r--', linewidth=2, label='CSTR')
275
ax1.axhline(y=0.9, color='gray', linestyle=':', alpha=0.5)
276
ax1.set_xlabel('Residence Time $\\tau$ (min)', fontsize=11)
277
ax1.set_ylabel('Conversion $X_A$', fontsize=11)
278
ax1.set_title('PFR vs CSTR: Isothermal First-Order', fontsize=12)
279
ax1.legend(fontsize=10)
280
ax1.grid(True, alpha=0.3)
281
ax1.set_xlim(0, 50)
282
283
# Non-isothermal PFR
284
ax2_temp = ax2.twinx()
285
ax2.plot(V_range, X_A_noniso, 'b-', linewidth=2, label='Conversion')
286
ax2_temp.plot(V_range, T_profile, 'r--', linewidth=2, label='Temperature')
287
ax2.set_xlabel('Reactor Volume (L)', fontsize=11)
288
ax2.set_ylabel('Conversion $X_A$', fontsize=11, color='b')
289
ax2_temp.set_ylabel('Temperature (K)', fontsize=11, color='r')
290
ax2.set_title('Non-Isothermal PFR with Cooling', fontsize=12)
291
ax2.tick_params(axis='y', labelcolor='b')
292
ax2_temp.tick_params(axis='y', labelcolor='r')
293
ax2.grid(True, alpha=0.3)
294
295
# Combine legends
296
lines1, labels1 = ax2.get_legend_handles_labels()
297
lines2, labels2 = ax2_temp.get_legend_handles_labels()
298
ax2.legend(lines1 + lines2, labels1 + labels2, fontsize=10, loc='center right')
299
300
plt.tight_layout()
301
plt.savefig('reaction_engineering_plot3.pdf', dpi=150, bbox_inches='tight')
302
plt.close()
303
304
# Calculate volumes for 90% conversion
305
V_pfr_90 = (F_A0 / k_pfr) * np.log(1 / 0.1)
306
V_cstr_90 = (0.9 / (k_pfr * 0.1)) * Q_pfr
307
volume_ratio = V_cstr_90 / V_pfr_90
308
T_max = np.max(T_profile)
309
T_rise = T_max - T_inlet
310
\end{pycode}
311
312
\begin{figure}[H]
313
\centering
314
\includegraphics[width=0.95\textwidth]{reaction_engineering_plot3.pdf}
315
\caption{PFR analysis showing superior performance over CSTR for positive-order reactions. For 90\% conversion, PFR requires $V = \py{f'{V_pfr_90:.1f}'}$ L while CSTR needs $\py{f'{V_cstr_90:.1f}'}$ L, a $\py{f'{volume_ratio:.1f}'}$× difference. The non-isothermal case demonstrates temperature rise of $\py{f'{T_rise:.1f}'}$ K due to exothermic reaction ($\Delta H_R = -50$ kJ/mol), requiring active cooling to prevent thermal runaway.}
316
\end{figure}
317
318
\section{Arrhenius Temperature Dependence}
319
320
The Arrhenius equation describes the temperature dependence of the rate constant:
321
\begin{equation}
322
k(T) = A \exp\left(-\frac{E_a}{RT}\right)
323
\end{equation}
324
325
where $A$ is the pre-exponential factor, $E_a$ is the activation energy, $R$ is the gas constant, and $T$ is absolute temperature.
326
327
Taking the logarithm yields a linear form:
328
\begin{equation}
329
\ln k = \ln A - \frac{E_a}{R} \cdot \frac{1}{T}
330
\end{equation}
331
332
This enables determination of $E_a$ from the slope of an Arrhenius plot ($\ln k$ vs. $1/T$).
333
334
\begin{pycode}
335
# Arrhenius temperature dependence analysis
336
A_arr = 1e10 # pre-exponential factor (1/min)
337
Ea_arr = 75000 # activation energy (J/mol)
338
R_const = 8.314 # J/(mol·K)
339
340
# Temperature range
341
T_range_C = np.linspace(0, 100, 200)
342
T_range_K = T_range_C + 273.15
343
344
# Calculate rate constants
345
k_values = A_arr * np.exp(-Ea_arr / (R_const * T_range_K))
346
347
# Reference temperatures
348
T_ref = 298.15 # 25°C
349
T_high = 373.15 # 100°C
350
k_ref = A_arr * np.exp(-Ea_arr / (R_const * T_ref))
351
k_high = A_arr * np.exp(-Ea_arr / (R_const * T_high))
352
k_ratio = k_high / k_ref
353
354
# Arrhenius plot data for parameter estimation
355
T_expt = np.array([273, 298, 323, 348, 373]) # K
356
k_expt = A_arr * np.exp(-Ea_arr / (R_const * T_expt))
357
# Add some noise to simulate experimental data
358
np.random.seed(42)
359
k_expt_noisy = k_expt * (1 + 0.05 * np.random.randn(len(k_expt)))
360
361
# Linear regression for Ea determination
362
inv_T = 1 / T_expt
363
ln_k = np.log(k_expt_noisy)
364
coeffs = np.polyfit(inv_T, ln_k, 1)
365
Ea_fitted = -coeffs[0] * R_const
366
A_fitted = np.exp(coeffs[1])
367
ln_k_fit = np.polyval(coeffs, inv_T)
368
369
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
370
371
# Rate constant vs temperature
372
ax1.semilogy(T_range_C, k_values, 'b-', linewidth=2)
373
ax1.plot([T_ref-273.15, T_high-273.15], [k_ref, k_high], 'ro', markersize=8, label='Reference points')
374
ax1.set_xlabel('Temperature (°C)', fontsize=11)
375
ax1.set_ylabel('Rate Constant $k$ (min$^{-1}$)', fontsize=11)
376
ax1.set_title('Arrhenius Temperature Dependence', fontsize=12)
377
ax1.legend(fontsize=10)
378
ax1.grid(True, alpha=0.3, which='both')
379
380
# Arrhenius plot for parameter estimation
381
ax2.plot(inv_T * 1000, ln_k, 'o', markersize=8, label='Experimental data')
382
ax2.plot(inv_T * 1000, ln_k_fit, 'r--', linewidth=2, label=f'Fit: $E_a$ = {Ea_fitted/1000:.1f} kJ/mol')
383
ax2.set_xlabel('1000/T (K$^{-1}$)', fontsize=11)
384
ax2.set_ylabel('$\\ln(k)$', fontsize=11)
385
ax2.set_title('Arrhenius Plot for Parameter Estimation', fontsize=12)
386
ax2.legend(fontsize=10)
387
ax2.grid(True, alpha=0.3)
388
389
plt.tight_layout()
390
plt.savefig('reaction_engineering_plot4.pdf', dpi=150, bbox_inches='tight')
391
plt.close()
392
393
# Calculate reaction time sensitivity
394
X_target_arr = 0.90
395
t_25C = -np.log(1 - X_target_arr) / k_ref
396
t_50C = -np.log(1 - X_target_arr) / (A_arr * np.exp(-Ea_arr / (R_const * 323.15)))
397
time_reduction = (t_25C - t_50C) / t_25C * 100
398
\end{pycode}
399
400
\begin{figure}[H]
401
\centering
402
\includegraphics[width=0.95\textwidth]{reaction_engineering_plot4.pdf}
403
\caption{Arrhenius analysis showing exponential temperature dependence of reaction rate. With $E_a = \py{f'{Ea_arr/1000:.0f}'}$ kJ/mol, the rate constant increases $\py{f'{k_ratio:.1f}'}$× from 25°C to 100°C. For batch operation achieving 90\% conversion, increasing temperature from 25°C to 50°C reduces reaction time by $\py{f'{time_reduction:.1f}'}$\%, demonstrating the strong coupling between kinetics and thermal management in reactor design.}
404
\end{figure}
405
406
\section{Levenspiel Plots for Reactor Comparison}
407
408
The Levenspiel plot displays $1/(-r_A)$ versus conversion $X_A$, enabling graphical reactor design and comparison \cite{Levenspiel1999}. The area under the curve represents the required reactor volume:
409
410
For PFR: $V = F_{A0} \int_0^{X_A} \frac{dX_A}{-r_A}$ (area under curve)
411
412
For CSTR: $V = F_{A0} \frac{X_A}{-r_A}$ (area of rectangle)
413
414
This graphical method reveals that PFRs always require less volume than CSTRs for positive-order reactions.
415
416
\begin{pycode}
417
# Levenspiel plots for different reaction orders
418
F_A0_lev = 10.0 # molar flow rate (mol/min)
419
C_A0_lev = 1.0 # inlet concentration (mol/L)
420
X_vals = np.linspace(0.01, 0.95, 200)
421
422
# First-order reaction
423
k1_lev = 0.1 # 1/min
424
C_A_first = C_A0_lev * (1 - X_vals)
425
r_A_first = -k1_lev * C_A_first
426
inv_r_A_first = -1 / r_A_first
427
428
# Second-order reaction
429
k2_lev = 0.15 # L/(mol·min)
430
C_A_second = C_A0_lev * (1 - X_vals)
431
r_A_second = -k2_lev * C_A_second**2
432
inv_r_A_second = -1 / r_A_second
433
434
# Zero-order reaction
435
k0_lev = 0.1 # mol/(L·min)
436
r_A_zero = -k0_lev
437
inv_r_A_zero = -1 / r_A_zero * np.ones_like(X_vals)
438
439
# Calculate volumes for X = 0.80
440
X_design = 0.80
441
idx_design = np.argmin(np.abs(X_vals - X_design))
442
443
# PFR volumes (integration)
444
V_pfr_first = F_A0_lev * np.trapz(inv_r_A_first[:idx_design], X_vals[:idx_design])
445
V_pfr_second = F_A0_lev * np.trapz(inv_r_A_second[:idx_design], X_vals[:idx_design])
446
447
# CSTR volumes (rectangle)
448
V_cstr_first = F_A0_lev * X_design * inv_r_A_first[idx_design]
449
V_cstr_second = F_A0_lev * X_design * inv_r_A_second[idx_design]
450
451
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
452
453
# Levenspiel plot
454
ax1.plot(X_vals, inv_r_A_zero, 'g-', linewidth=2, label='Zero-order')
455
ax1.plot(X_vals, inv_r_A_first, 'b-', linewidth=2, label='First-order')
456
ax1.plot(X_vals, inv_r_A_second, 'r-', linewidth=2, label='Second-order')
457
ax1.axvline(x=X_design, color='gray', linestyle=':', alpha=0.5)
458
ax1.set_xlabel('Conversion $X_A$', fontsize=11)
459
ax1.set_ylabel('$-1/r_A$ (min·L/mol)', fontsize=11)
460
ax1.set_title('Levenspiel Plot for Reactor Comparison', fontsize=12)
461
ax1.legend(fontsize=10)
462
ax1.grid(True, alpha=0.3)
463
ax1.set_ylim(0, 80)
464
465
# Volume comparison
466
reactor_types = ['PFR\n(1st)', 'CSTR\n(1st)', 'PFR\n(2nd)', 'CSTR\n(2nd)']
467
volumes = [V_pfr_first, V_cstr_first, V_pfr_second, V_cstr_second]
468
colors = ['blue', 'lightblue', 'red', 'lightcoral']
469
470
bars = ax2.bar(reactor_types, volumes, color=colors, alpha=0.7, edgecolor='black')
471
ax2.set_ylabel('Required Volume (L)', fontsize=11)
472
ax2.set_title(f'Reactor Volume for $X_A = {X_design}$', fontsize=12)
473
ax2.grid(True, alpha=0.3, axis='y')
474
475
# Add value labels on bars
476
for bar, vol in zip(bars, volumes):
477
height = bar.get_height()
478
ax2.text(bar.get_x() + bar.get_width()/2., height,
479
f'{vol:.1f}', ha='center', va='bottom', fontsize=10)
480
481
plt.tight_layout()
482
plt.savefig('reaction_engineering_plot5.pdf', dpi=150, bbox_inches='tight')
483
plt.close()
484
485
# Calculate efficiency ratios
486
pfr_cstr_ratio_first = V_cstr_first / V_pfr_first
487
pfr_cstr_ratio_second = V_cstr_second / V_pfr_second
488
\end{pycode}
489
490
\begin{figure}[H]
491
\centering
492
\includegraphics[width=0.95\textwidth]{reaction_engineering_plot5.pdf}
493
\caption{Levenspiel plot demonstrating graphical reactor design method. The area under each curve represents PFR volume, while CSTR volume corresponds to the rectangular area. For first-order kinetics at $X_A = \py{X_design}$, CSTR requires $\py{f'{pfr_cstr_ratio_first:.2f}'}$× more volume than PFR. Second-order reactions show even greater disparity ($\py{f'{pfr_cstr_ratio_second:.2f}'}$×), while zero-order reactions perform identically in both configurations.}
494
\end{figure}
495
496
\section{Reactor Performance Optimization}
497
498
The optimal reactor configuration depends on multiple factors:
499
\begin{itemize}
500
\item \textbf{Reaction order}: PFR advantage increases with positive reaction order
501
\item \textbf{Conversion target}: Higher conversions favor PFR over CSTR
502
\item \textbf{Heat management}: Exothermic reactions may require staged cooling
503
\item \textbf{Mixing requirements}: Fast reactions benefit from CSTR back-mixing
504
\item \textbf{Capital vs operating costs}: Multiple small CSTRs vs single large PFR
505
\end{itemize}
506
507
\begin{pycode}
508
# Comprehensive reactor performance comparison
509
conversion_targets = np.array([0.50, 0.70, 0.80, 0.90, 0.95])
510
k_opt = 0.1 # rate constant (1/min)
511
Q_opt = 10.0 # flow rate (L/min)
512
C_A0_opt = 1.0 # inlet concentration (mol/L)
513
F_A0_opt = Q_opt * C_A0_opt
514
515
# Calculate required volumes for each configuration
516
V_pfr_opt = []
517
V_cstr_1_opt = []
518
V_cstr_3_opt = []
519
520
for X in conversion_targets:
521
# PFR
522
V_pfr = (F_A0_opt / k_opt) * np.log(1 / (1 - X))
523
V_pfr_opt.append(V_pfr)
524
525
# Single CSTR
526
V_cstr = (F_A0_opt * X) / (k_opt * (1 - X))
527
V_cstr_1_opt.append(V_cstr)
528
529
# 3 CSTRs in series
530
def eq_3cstr(tau):
531
return 1 - 1/(1 + k_opt*tau/3)**3 - X
532
tau_3 = brentq(eq_3cstr, 0, 100)
533
V_cstr_3_opt.append(tau_3 * Q_opt)
534
535
V_pfr_opt = np.array(V_pfr_opt)
536
V_cstr_1_opt = np.array(V_cstr_1_opt)
537
V_cstr_3_opt = np.array(V_cstr_3_opt)
538
539
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
540
541
# Volume comparison
542
ax1.plot(conversion_targets * 100, V_pfr_opt, 'b-o', linewidth=2, markersize=6, label='PFR')
543
ax1.plot(conversion_targets * 100, V_cstr_1_opt, 'r--s', linewidth=2, markersize=6, label='Single CSTR')
544
ax1.plot(conversion_targets * 100, V_cstr_3_opt, 'g-.^', linewidth=2, markersize=6, label='3 CSTRs in series')
545
ax1.set_xlabel('Conversion (\\%)', fontsize=11)
546
ax1.set_ylabel('Required Volume (L)', fontsize=11)
547
ax1.set_title('Reactor Volume vs Conversion', fontsize=12)
548
ax1.legend(fontsize=10)
549
ax1.grid(True, alpha=0.3)
550
551
# Efficiency ratios (CSTR/PFR)
552
ratio_cstr_1 = V_cstr_1_opt / V_pfr_opt
553
ratio_cstr_3 = V_cstr_3_opt / V_pfr_opt
554
555
ax2.plot(conversion_targets * 100, ratio_cstr_1, 'r--s', linewidth=2, markersize=6, label='Single CSTR / PFR')
556
ax2.plot(conversion_targets * 100, ratio_cstr_3, 'g-.^', linewidth=2, markersize=6, label='3 CSTRs / PFR')
557
ax2.axhline(y=1.0, color='b', linestyle='-', alpha=0.5, label='PFR baseline')
558
ax2.set_xlabel('Conversion (\\%)', fontsize=11)
559
ax2.set_ylabel('Volume Ratio (relative to PFR)', fontsize=11)
560
ax2.set_title('Reactor Efficiency Comparison', fontsize=12)
561
ax2.legend(fontsize=10)
562
ax2.grid(True, alpha=0.3)
563
564
plt.tight_layout()
565
plt.savefig('reaction_engineering_plot6.pdf', dpi=150, bbox_inches='tight')
566
plt.close()
567
568
# Store key optimization metrics
569
V_90_pfr = V_pfr_opt[-2]
570
V_90_cstr1 = V_cstr_1_opt[-2]
571
V_90_cstr3 = V_cstr_3_opt[-2]
572
savings_3cstr = (V_90_cstr1 - V_90_cstr3) / V_90_cstr1 * 100
573
\end{pycode}
574
575
\begin{figure}[H]
576
\centering
577
\includegraphics[width=0.95\textwidth]{reaction_engineering_plot6.pdf}
578
\caption{Reactor optimization analysis across conversion targets. The efficiency gap between CSTR and PFR widens dramatically at high conversions - at 90\% conversion, single CSTR requires $\py{f'{V_90_cstr1:.1f}'}$ L versus $\py{f'{V_90_pfr:.1f}'}$ L for PFR. Staging with 3 CSTRs in series reduces volume to $\py{f'{V_90_cstr3:.1f}'}$ L, achieving $\py{f'{savings_3cstr:.1f}'}$\% savings while preserving mixing benefits for heat management and fast reactions.}
579
\end{figure}
580
581
\section{Results Summary}
582
583
\begin{pycode}
584
# Compile key results from all analyses
585
results_data = [
586
['Batch (1st-order)', f'{t_90_first:.1f}', 'min', 'Time for 90\\% conversion'],
587
['Batch (2nd-order)', f'{t_90_second:.1f}', 'min', 'Time for 90\\% conversion'],
588
['CSTR (single)', f'{tau_single:.1f}', 'min', 'Residence time for 90\\%'],
589
['CSTR staging reduction', f'{reduction_pct:.1f}', '\\%', '3 stages vs single'],
590
['PFR volume (90\\%)', f'{V_pfr_90:.1f}', 'L', 'First-order reaction'],
591
['CSTR/PFR ratio', f'{volume_ratio:.1f}', '--', 'At 90\\% conversion'],
592
['Arrhenius $E_a$', f'{Ea_arr/1000:.0f}', 'kJ/mol', 'Activation energy'],
593
['$k$ ratio (25-100°C)', f'{k_ratio:.1f}', '--', 'Rate constant increase'],
594
['Time savings (25-50°C)', f'{time_reduction:.1f}', '\\%', 'Batch operation'],
595
]
596
597
print(r'\begin{table}[H]')
598
print(r'\centering')
599
print(r'\caption{Summary of Key Reactor Design Results}')
600
print(r'\begin{tabular}{@{}llll@{}}')
601
print(r'\toprule')
602
print(r'Parameter & Value & Units & Description \\')
603
print(r'\midrule')
604
for row in results_data:
605
print(f"{row[0]} & {row[1]} & {row[2]} & {row[3]} \\\\")
606
print(r'\bottomrule')
607
print(r'\end{tabular}')
608
print(r'\end{table}')
609
\end{pycode}
610
611
\section{Conclusions}
612
613
This comprehensive computational analysis of chemical reactor design demonstrates several fundamental principles:
614
615
\textbf{Reactor Configuration}: For first-order irreversible reactions at 90\% conversion, PFR achieves residence time of $\tau = \py{f'{V_pfr_90/Q_pfr:.1f}'}$ min, while single CSTR requires $\tau = \py{f'{tau_single:.1f}'}$ min - a $\py{f'{volume_ratio:.1f}'}$× difference. CSTR staging (3 reactors in series) reduces this gap by $\py{f'{reduction_pct:.1f}'}$\%, approaching PFR efficiency while maintaining mixing advantages.
616
617
\textbf{Reaction Order Effects}: Levenspiel analysis reveals that higher-order reactions show greater disparity between reactor types. Second-order reactions require $\py{f'{pfr_cstr_ratio_second:.2f}'}$× more CSTR volume than PFR at $X_A = \py{X_design}$, while zero-order kinetics show no preference.
618
619
\textbf{Temperature Management}: Arrhenius behavior ($E_a = \py{f'{Ea_arr/1000:.0f}'}$ kJ/mol) demonstrates that increasing temperature from 25°C to 50°C reduces batch time by $\py{f'{time_reduction:.1f}'}$\%. Non-isothermal PFR analysis shows temperature rise of $\py{f'{T_rise:.1f}'}$ K for exothermic reactions, requiring active cooling to prevent thermal runaway and maintain selectivity.
620
621
\textbf{Design Optimization}: The optimal configuration balances capital costs (reactor volume), operating costs (temperature control), and process requirements (conversion, selectivity). Staged CSTR systems offer a practical compromise, achieving $\py{f'{savings_3cstr:.1f}'}$\% volume reduction versus single CSTR while preserving thermal management flexibility for fast exothermic reactions.
622
623
These numerical methods provide essential tools for reactor scale-up, process intensification, and economic optimization in chemical manufacturing \cite{Fogler2016, Schmidt2005}.
624
625
\begin{thebibliography}{99}
626
627
\bibitem{Fogler2016}
628
Fogler, H. S. (2016). \textit{Elements of Chemical Reaction Engineering} (5th ed.). Prentice Hall.
629
630
\bibitem{Levenspiel1999}
631
Levenspiel, O. (1999). \textit{Chemical Reaction Engineering} (3rd ed.). John Wiley \& Sons.
632
633
\bibitem{Smith2005}
634
Smith, J. M., Van Ness, H. C., \& Abbott, M. M. (2005). \textit{Introduction to Chemical Engineering Thermodynamics} (7th ed.). McGraw-Hill.
635
636
\bibitem{Scott2006}
637
Scott, D. M. (2006). \textit{Industrial Process Systems}. Springer.
638
639
\bibitem{Schmidt2005}
640
Schmidt, L. D. (2005). \textit{The Engineering of Chemical Reactions} (2nd ed.). Oxford University Press.
641
642
\bibitem{Aris1989}
643
Aris, R. (1989). \textit{Elementary Chemical Reactor Analysis}. Butterworth-Heinemann.
644
645
\bibitem{Davis2003}
646
Davis, M. E., \& Davis, R. J. (2003). \textit{Fundamentals of Chemical Reaction Engineering}. McGraw-Hill.
647
648
\bibitem{Froment2011}
649
Froment, G. F., Bischoff, K. B., \& De Wilde, J. (2011). \textit{Chemical Reactor Analysis and Design} (3rd ed.). John Wiley \& Sons.
650
651
\bibitem{Carberry2001}
652
Carberry, J. J. (2001). \textit{Chemical and Catalytic Reaction Engineering}. Dover Publications.
653
654
\bibitem{Hill1977}
655
Hill, C. G. (1977). \textit{An Introduction to Chemical Engineering Kinetics and Reactor Design}. John Wiley \& Sons.
656
657
\bibitem{Walas1991}
658
Walas, S. M. (1991). \textit{Modeling with Differential Equations in Chemical Engineering}. Butterworth-Heinemann.
659
660
\bibitem{Denbigh1981}
661
Denbigh, K. G., \& Turner, J. C. R. (1981). \textit{Chemical Reactor Theory: An Introduction} (3rd ed.). Cambridge University Press.
662
663
\bibitem{Holland1975}
664
Holland, C. D., \& Anthony, R. G. (1975). \textit{Fundamentals of Chemical Reaction Engineering}. Prentice Hall.
665
666
\bibitem{Westerterp1984}
667
Westerterp, K. R., Van Swaaij, W. P. M., \& Beenackers, A. A. C. M. (1984). \textit{Chemical Reactor Design and Operation} (2nd ed.). John Wiley \& Sons.
668
669
\bibitem{Nauman2008}
670
Nauman, E. B. (2008). \textit{Chemical Reactor Design, Optimization, and Scaleup} (2nd ed.). John Wiley \& Sons.
671
672
\bibitem{Rawlings2002}
673
Rawlings, J. B., \& Ekerdt, J. G. (2002). \textit{Chemical Reactor Analysis and Design Fundamentals}. Nob Hill Publishing.
674
675
\bibitem{Missen1999}
676
Missen, R. W., Mims, C. A., \& Saville, B. A. (1999). \textit{Introduction to Chemical Reaction Engineering and Kinetics}. John Wiley \& Sons.
677
678
\bibitem{Butt2000}
679
Butt, J. B. (2000). \textit{Reaction Kinetics and Reactor Design} (2nd ed.). Marcel Dekker.
680
681
\bibitem{Trambouze2004}
682
Trambouze, P., Van Landeghem, H., \& Wauquier, J. P. (2004). \textit{Chemical Reactors: Design, Engineering, Operation}. Editions Technip.
683
684
\bibitem{Ancheyta2017}
685
Ancheyta, J. (2017). \textit{Chemical Reaction Kinetics: Concepts, Methods and Case Studies}. John Wiley \& Sons.
686
687
\end{thebibliography}
688
689
\end{document}
690
691