Path: blob/main/latex-templates/templates/chemistry/reaction_kinetics.tex
51 views
unlisted
% Reaction Kinetics Template1% Topics: Rate laws, Arrhenius equation, reaction mechanisms, catalysis2% Style: Research article with experimental data analysis34\documentclass[a4paper, 11pt]{article}5\usepackage[utf8]{inputenc}6\usepackage[T1]{fontenc}7\usepackage{amsmath, amssymb}8\usepackage{graphicx}9\usepackage{siunitx}10\usepackage{booktabs}11\usepackage{subcaption}12\usepackage[makestderr]{pythontex}1314% Theorem environments15\newtheorem{definition}{Definition}[section]16\newtheorem{theorem}{Theorem}[section]17\newtheorem{example}{Example}[section]18\newtheorem{remark}{Remark}[section]1920\title{Chemical Reaction Kinetics: Rate Laws, Mechanisms, and Catalysis}21\author{Physical Chemistry Laboratory}22\date{\today}2324\begin{document}25\maketitle2627\begin{abstract}28This study presents a comprehensive analysis of chemical reaction kinetics, examining29rate laws for reactions of different orders, temperature dependence through the30Arrhenius equation, and the effects of catalysis on reaction rates. We analyze31experimental concentration-time data to determine rate constants, activation energies,32and pre-exponential factors. Computational analysis demonstrates the integrated rate33laws, half-life relationships, and mechanistic interpretation of kinetic data.34\end{abstract}3536\section{Introduction}3738Chemical kinetics describes the rates of chemical reactions and the factors that affect39them. Understanding reaction kinetics is essential for reaction mechanism elucidation,40industrial process optimization, and pharmaceutical drug stability studies.4142\begin{definition}[Rate Law]43For a reaction $aA + bB \rightarrow$ products, the rate law has the general form:44\begin{equation}45\text{Rate} = -\frac{1}{a}\frac{d[A]}{dt} = k[A]^m[B]^n46\end{equation}47where $k$ is the rate constant, and $m$, $n$ are the reaction orders.48\end{definition}4950\section{Theoretical Framework}5152\subsection{Integrated Rate Laws}5354\begin{theorem}[Integrated Rate Laws]55For a reaction $A \rightarrow$ products with initial concentration $[A]_0$:56\begin{itemize}57\item \textbf{Zero-order}: $[A] = [A]_0 - kt$, \quad $t_{1/2} = \frac{[A]_0}{2k}$58\item \textbf{First-order}: $\ln[A] = \ln[A]_0 - kt$, \quad $t_{1/2} = \frac{\ln 2}{k}$59\item \textbf{Second-order}: $\frac{1}{[A]} = \frac{1}{[A]_0} + kt$, \quad $t_{1/2} = \frac{1}{k[A]_0}$60\end{itemize}61\end{theorem}6263\subsection{Temperature Dependence}6465\begin{definition}[Arrhenius Equation]66The temperature dependence of rate constants is described by:67\begin{equation}68k = A e^{-E_a/RT}69\end{equation}70where $A$ is the pre-exponential factor, $E_a$ is the activation energy, $R$ is the gas71constant, and $T$ is absolute temperature. The linearized form is:72\begin{equation}73\ln k = \ln A - \frac{E_a}{R} \cdot \frac{1}{T}74\end{equation}75\end{definition}7677\begin{theorem}[Eyring Equation]78Transition state theory gives:79\begin{equation}80k = \frac{k_B T}{h} e^{-\Delta G^\ddagger/RT} = \frac{k_B T}{h} e^{\Delta S^\ddagger/R} e^{-\Delta H^\ddagger/RT}81\end{equation}82where $\Delta G^\ddagger$, $\Delta H^\ddagger$, and $\Delta S^\ddagger$ are the activation parameters.83\end{theorem}8485\subsection{Catalysis}8687\begin{definition}[Catalytic Effect]88A catalyst provides an alternative reaction pathway with lower activation energy $E_a^{cat} < E_a^{uncat}$.89The rate enhancement factor is:90\begin{equation}91\frac{k_{cat}}{k_{uncat}} = e^{(E_a^{uncat} - E_a^{cat})/RT}92\end{equation}93\end{definition}9495\begin{remark}[Enzyme Catalysis]96Enzymes are biological catalysts that follow Michaelis-Menten kinetics:97\begin{equation}98v = \frac{V_{max}[S]}{K_m + [S]}99\end{equation}100\end{remark}101102\section{Computational Analysis}103104\begin{pycode}105import numpy as np106import matplotlib.pyplot as plt107from scipy.optimize import curve_fit108from scipy.stats import linregress109110np.random.seed(42)111112# Integrated rate laws113def zero_order(t, A0, k):114return np.maximum(A0 - k * t, 0)115116def first_order(t, A0, k):117return A0 * np.exp(-k * t)118119def second_order(t, A0, k):120return A0 / (1 + A0 * k * t)121122# True parameters123A0_true = 1.0 # mol/L124k_zero = 0.02 # mol/(L·s)125k_first = 0.05 # 1/s126k_second = 0.1 # L/(mol·s)127128# Time array129t = np.linspace(0, 50, 100)130131# Generate concentration data with noise132noise = 0.02133conc_zero = zero_order(t, A0_true, k_zero) * (1 + noise * np.random.randn(len(t)))134conc_first = first_order(t, A0_true, k_first) * (1 + noise * np.random.randn(len(t)))135conc_second = second_order(t, A0_true, k_second) * (1 + noise * np.random.randn(len(t)))136conc_zero = np.maximum(conc_zero, 0.01)137conc_first = np.maximum(conc_first, 0.01)138conc_second = np.maximum(conc_second, 0.01)139140# Fit first-order data141ln_conc = np.log(conc_first)142slope_first, intercept_first, r_first, _, _ = linregress(t, ln_conc)143k_first_fit = -slope_first144A0_first_fit = np.exp(intercept_first)145146# Fit second-order data147inv_conc = 1 / conc_second148slope_second, intercept_second, r_second, _, _ = linregress(t, inv_conc)149k_second_fit = slope_second150A0_second_fit = 1 / intercept_second151152# Arrhenius analysis153T = np.array([280, 290, 300, 310, 320, 330, 340]) # K154Ea_true = 50000 # J/mol155A_true = 1e10 # 1/s156R = 8.314 # J/(mol·K)157k_arr = A_true * np.exp(-Ea_true / (R * T))158k_arr_exp = k_arr * (1 + 0.05 * np.random.randn(len(T)))159160# Arrhenius fit161inv_T = 1 / T162ln_k = np.log(k_arr_exp)163slope_arr, intercept_arr, r_arr, _, _ = linregress(inv_T, ln_k)164Ea_fit = -slope_arr * R165A_fit = np.exp(intercept_arr)166167# Catalysis comparison168Ea_uncat = 75000 # J/mol169Ea_cat = 45000 # J/mol170T_cat = np.linspace(250, 400, 100)171k_uncat = 1e13 * np.exp(-Ea_uncat / (R * T_cat))172k_cat = 1e13 * np.exp(-Ea_cat / (R * T_cat))173enhancement = k_cat / k_uncat174175# Half-life comparison176t_range = np.linspace(0, 100, 500)177half_lives = []178for order, k in [(0, k_zero), (1, k_first), (2, k_second)]:179if order == 0:180t_half = A0_true / (2 * k)181elif order == 1:182t_half = np.log(2) / k183else:184t_half = 1 / (k * A0_true)185half_lives.append(t_half)186187# Create figure188fig = plt.figure(figsize=(14, 12))189190# Plot 1: Concentration vs time for different orders191ax1 = fig.add_subplot(3, 3, 1)192ax1.plot(t, conc_zero, 'b-', linewidth=2, label='Zero-order')193ax1.plot(t, conc_first, 'g-', linewidth=2, label='First-order')194ax1.plot(t, conc_second, 'r-', linewidth=2, label='Second-order')195ax1.set_xlabel('Time (s)')196ax1.set_ylabel('[A] (mol/L)')197ax1.set_title('Concentration vs Time')198ax1.legend(fontsize=8)199ax1.set_ylim([0, 1.2])200201# Plot 2: First-order linearization202ax2 = fig.add_subplot(3, 3, 2)203ax2.scatter(t, ln_conc, s=20, c='green', edgecolor='black', alpha=0.7)204ax2.plot(t, slope_first * t + intercept_first, 'r-', linewidth=2)205ax2.set_xlabel('Time (s)')206ax2.set_ylabel('ln[A]')207ax2.set_title(f'First-Order Plot ($R^2 = {r_first**2:.4f}$)')208209# Plot 3: Second-order linearization210ax3 = fig.add_subplot(3, 3, 3)211ax3.scatter(t, inv_conc, s=20, c='red', edgecolor='black', alpha=0.7)212ax3.plot(t, slope_second * t + intercept_second, 'b-', linewidth=2)213ax3.set_xlabel('Time (s)')214ax3.set_ylabel('1/[A] (L/mol)')215ax3.set_title(f'Second-Order Plot ($R^2 = {r_second**2:.4f}$)')216217# Plot 4: Arrhenius plot218ax4 = fig.add_subplot(3, 3, 4)219ax4.scatter(1000/T, ln_k, s=60, c='blue', edgecolor='black')220inv_T_fine = np.linspace(1000/350, 1000/270, 100)221ax4.plot(inv_T_fine, slope_arr * inv_T_fine/1000 + intercept_arr, 'r-', linewidth=2)222ax4.set_xlabel('1000/T (K$^{-1}$)')223ax4.set_ylabel('ln k')224ax4.set_title('Arrhenius Plot')225226# Plot 5: Rate constant vs temperature227ax5 = fig.add_subplot(3, 3, 5)228ax5.semilogy(T, k_arr_exp, 'bo', markersize=8)229T_fine = np.linspace(275, 345, 100)230ax5.semilogy(T_fine, A_fit * np.exp(-Ea_fit / (R * T_fine)), 'r-', linewidth=2)231ax5.set_xlabel('Temperature (K)')232ax5.set_ylabel('k (s$^{-1}$)')233ax5.set_title('Rate Constant vs Temperature')234235# Plot 6: Catalysis effect236ax6 = fig.add_subplot(3, 3, 6)237ax6.semilogy(T_cat, k_uncat, 'b-', linewidth=2, label='Uncatalyzed')238ax6.semilogy(T_cat, k_cat, 'r-', linewidth=2, label='Catalyzed')239ax6.set_xlabel('Temperature (K)')240ax6.set_ylabel('k (s$^{-1}$)')241ax6.set_title('Effect of Catalysis')242ax6.legend(fontsize=8)243244# Plot 7: Rate enhancement factor245ax7 = fig.add_subplot(3, 3, 7)246ax7.semilogy(T_cat, enhancement, 'purple', linewidth=2)247ax7.set_xlabel('Temperature (K)')248ax7.set_ylabel('$k_{cat}/k_{uncat}$')249ax7.set_title('Rate Enhancement Factor')250251# Plot 8: Half-life comparison252ax8 = fig.add_subplot(3, 3, 8)253A0_range = np.linspace(0.1, 2.0, 100)254t_half_zero = A0_range / (2 * k_zero)255t_half_first = np.log(2) / k_first * np.ones_like(A0_range)256t_half_second = 1 / (k_second * A0_range)257ax8.plot(A0_range, t_half_zero, 'b-', linewidth=2, label='Zero-order')258ax8.plot(A0_range, t_half_first, 'g-', linewidth=2, label='First-order')259ax8.plot(A0_range, t_half_second, 'r-', linewidth=2, label='Second-order')260ax8.set_xlabel('$[A]_0$ (mol/L)')261ax8.set_ylabel('$t_{1/2}$ (s)')262ax8.set_title('Half-Life vs Initial Concentration')263ax8.legend(fontsize=8)264ax8.set_ylim([0, 50])265266# Plot 9: Energy diagram267ax9 = fig.add_subplot(3, 3, 9)268reaction_coord = np.linspace(0, 1, 100)269# Gaussian-like barrier270E_react = 0271E_prod = -30272E_ts_uncat = 50273E_ts_cat = 30274E_uncat = E_react + (E_ts_uncat - E_react) * np.exp(-((reaction_coord - 0.4)**2) / 0.02)275E_uncat[reaction_coord > 0.5] = E_ts_uncat - (E_ts_uncat - E_prod) * (reaction_coord[reaction_coord > 0.5] - 0.4) / 0.6276E_cat = E_react + (E_ts_cat - E_react) * np.exp(-((reaction_coord - 0.4)**2) / 0.02)277E_cat[reaction_coord > 0.5] = E_ts_cat - (E_ts_cat - E_prod) * (reaction_coord[reaction_coord > 0.5] - 0.4) / 0.6278ax9.plot(reaction_coord, E_uncat, 'b-', linewidth=2, label='Uncatalyzed')279ax9.plot(reaction_coord, E_cat, 'r--', linewidth=2, label='Catalyzed')280ax9.axhline(y=0, color='gray', linestyle=':', alpha=0.5)281ax9.set_xlabel('Reaction Coordinate')282ax9.set_ylabel('Energy (kJ/mol)')283ax9.set_title('Energy Diagram')284ax9.legend(fontsize=8)285286plt.tight_layout()287plt.savefig('reaction_kinetics_analysis.pdf', dpi=150, bbox_inches='tight')288plt.close()289\end{pycode}290291\begin{figure}[htbp]292\centering293\includegraphics[width=\textwidth]{reaction_kinetics_analysis.pdf}294\caption{Reaction kinetics analysis: (a) Concentration decay for different reaction orders;295(b-c) Linearization plots for first and second-order reactions; (d-e) Arrhenius analysis296for temperature dependence; (f-g) Catalysis effects on rate constants; (h) Half-life297dependence on initial concentration; (i) Potential energy diagram with and without catalyst.}298\label{fig:kinetics}299\end{figure}300301\section{Results}302303\subsection{Kinetic Parameters}304305\begin{pycode}306print(r"\begin{table}[htbp]")307print(r"\centering")308print(r"\caption{Fitted Rate Constants and Kinetic Parameters}")309print(r"\begin{tabular}{lccc}")310print(r"\toprule")311print(r"Parameter & True Value & Fitted Value & Units \\")312print(r"\midrule")313print(f"$k_{{first}}$ & {k_first} & {k_first_fit:.4f} & s$^{{-1}}$ \\\\")314print(f"$k_{{second}}$ & {k_second} & {k_second_fit:.4f} & L mol$^{{-1}}$ s$^{{-1}}$ \\\\")315print(f"$E_a$ & {Ea_true/1000:.1f} & {Ea_fit/1000:.1f} & kJ/mol \\\\")316print(f"$A$ & {A_true:.2e} & {A_fit:.2e} & s$^{{-1}}$ \\\\")317print(r"\bottomrule")318print(r"\end{tabular}")319print(r"\label{tab:parameters}")320print(r"\end{table}")321\end{pycode}322323\subsection{Half-Lives}324325\begin{pycode}326print(r"\begin{table}[htbp]")327print(r"\centering")328print(r"\caption{Half-Lives for Different Reaction Orders}")329print(r"\begin{tabular}{lccc}")330print(r"\toprule")331print(r"Order & Formula & Value (s) & Dependence on $[A]_0$ \\")332print(r"\midrule")333print(f"Zero & $[A]_0/(2k)$ & {half_lives[0]:.1f} & Proportional \\\\")334print(f"First & $\\ln 2/k$ & {half_lives[1]:.1f} & Independent \\\\")335print(f"Second & $1/(k[A]_0)$ & {half_lives[2]:.1f} & Inversely proportional \\\\")336print(r"\bottomrule")337print(r"\end{tabular}")338print(r"\label{tab:halflives}")339print(r"\end{table}")340\end{pycode}341342\section{Discussion}343344\begin{example}[Determining Reaction Order]345The reaction order is determined by finding which linearization plot gives the best fit:346\begin{itemize}347\item Zero-order: $[A]$ vs $t$ is linear348\item First-order: $\ln[A]$ vs $t$ is linear349\item Second-order: $1/[A]$ vs $t$ is linear350\end{itemize}351The first-order plot has $R^2 = \py{f"{r_first**2:.4f}"}$ for the first-order data.352\end{example}353354\begin{remark}[Activation Energy Interpretation]355The fitted activation energy of $\py{f"{Ea_fit/1000:.1f}"}$ kJ/mol indicates:356\begin{itemize}357\item $E_a < 40$ kJ/mol: Diffusion-controlled reaction358\item $40 < E_a < 120$ kJ/mol: Typical chemical reaction359\item $E_a > 120$ kJ/mol: High barrier, slow reaction360\end{itemize}361\end{remark}362363\begin{example}[Catalytic Enhancement]364At 300 K, the rate enhancement due to catalysis is:365\begin{equation}366\frac{k_{cat}}{k_{uncat}} = e^{(75000 - 45000)/(8.314 \times 300)} = \py{f"{np.exp(30000/(8.314*300)):.0f}"}367\end{equation}368This enormous enhancement explains the importance of catalysts in industrial chemistry.369\end{example}370371\section{Conclusions}372373This analysis demonstrates the fundamental principles of chemical kinetics:374\begin{enumerate}375\item First-order rate constant: $k = \py{f"{k_first_fit:.4f}"}$ s$^{-1}$ with $t_{1/2} = \py{f"{half_lives[1]:.1f}"}$ s376\item Activation energy from Arrhenius plot: $E_a = \py{f"{Ea_fit/1000:.1f}"}$ kJ/mol377\item Catalysis reduces activation energy by $\py{f"{(Ea_uncat-Ea_cat)/1000:.0f}"}$ kJ/mol378\item Half-life dependence on $[A]_0$ distinguishes reaction orders379\item Linearization methods enable determination of rate laws from experimental data380\end{enumerate}381382\section*{Further Reading}383384\begin{itemize}385\item Atkins, P. \& de Paula, J. \textit{Physical Chemistry}, 11th ed. Oxford, 2018.386\item Houston, P.L. \textit{Chemical Kinetics and Reaction Dynamics}. Dover, 2006.387\item Steinfeld, J.I. et al. \textit{Chemical Kinetics and Dynamics}, 2nd ed. Prentice Hall, 1998.388\end{itemize}389390\end{document}391392393