Path: blob/main/latex-templates/templates/particle-physics/cross_section.tex
51 views
unlisted
\documentclass[a4paper, 11pt]{article}1\usepackage[utf8]{inputenc}2\usepackage[T1]{fontenc}3\usepackage{amsmath, amssymb, amsthm}4\usepackage{graphicx}5\usepackage{booktabs}6\usepackage{siunitx}7\usepackage{subcaption}8\usepackage[makestderr]{pythontex}910\newtheorem{definition}{Definition}11\newtheorem{theorem}{Theorem}12\newtheorem{example}{Example}13\newtheorem{remark}{Remark}1415\title{Particle Scattering Cross Sections: Rutherford, Mott, and Form Factor Analysis}16\author{High Energy Physics Computation Laboratory}17\date{\today}1819\begin{document}20\maketitle2122\begin{abstract}23This technical report presents comprehensive computational analysis of particle scattering cross sections. We implement the Rutherford formula for classical Coulomb scattering, Mott cross section with relativistic and spin corrections, and nuclear form factors for extended charge distributions. The analysis covers differential and integrated cross sections, structure functions, and momentum transfer dependence essential for understanding particle interactions and nuclear structure.24\end{abstract}2526\section{Theoretical Framework}2728\begin{definition}[Differential Cross Section]29The differential cross section $d\sigma/d\Omega$ gives the probability per unit solid angle for scattering into direction $(\theta, \phi)$:30\begin{equation}31\frac{dN}{dt} = I_0 n \frac{d\sigma}{d\Omega} d\Omega32\end{equation}33where $I_0$ is incident flux and $n$ is target number density.34\end{definition}3536\begin{theorem}[Rutherford Scattering]37For Coulomb scattering of a particle with charge $Z_1 e$ from a nucleus with charge $Z_2 e$:38\begin{equation}39\frac{d\sigma}{d\Omega}_{Ruth} = \left(\frac{Z_1 Z_2 \alpha \hbar c}{4 E_k \sin^2(\theta/2)}\right)^240\end{equation}41where $\alpha \approx 1/137$ is the fine structure constant.42\end{theorem}4344\subsection{Relativistic and Quantum Corrections}4546\begin{theorem}[Mott Cross Section]47For relativistic electron scattering, the Mott formula includes spin effects:48\begin{equation}49\frac{d\sigma}{d\Omega}_{Mott} = \frac{d\sigma}{d\Omega}_{Ruth} \left(1 - \beta^2 \sin^2(\theta/2)\right)50\end{equation}51where $\beta = v/c$.52\end{theorem}5354\begin{example}[Nuclear Form Factor]55For extended nuclear charge distribution $\rho(r)$:56\begin{equation}57\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega}_{Mott} |F(q)|^258\end{equation}59where $F(q) = \int \rho(r) e^{i\mathbf{q}\cdot\mathbf{r}} d^3r$ is the form factor and $q = 2k\sin(\theta/2)$ is momentum transfer.60\end{example}6162\section{Computational Analysis}6364\begin{pycode}65import numpy as np66from scipy.special import spherical_jn67import matplotlib.pyplot as plt68plt.rc('text', usetex=True)69plt.rc('font', family='serif', size=10)7071# Physical constants72alpha = 1/137.036 # Fine structure constant73hbar_c = 197.327 # MeV fm74m_e = 0.511 # Electron mass (MeV/c^2)75fm_to_barn = 100 # fm^2 to barn7677def rutherford_cross_section(theta, E_lab, Z1, Z2):78"""Rutherford differential cross section (fm^2/sr)."""79sin2 = np.sin(theta/2)**280sin2 = np.maximum(sin2, 1e-10) # Avoid singularity81return (Z1 * Z2 * alpha * hbar_c / (4 * E_lab * sin2))**28283def mott_cross_section(theta, E_lab, Z1, Z2, m_proj):84"""Mott differential cross section with relativistic correction."""85gamma = E_lab / m_proj86beta = np.sqrt(1 - 1/gamma**2) if gamma > 1 else 087ruth = rutherford_cross_section(theta, E_lab, Z1, Z2)88return ruth * (1 - beta**2 * np.sin(theta/2)**2)8990def momentum_transfer(theta, E_lab, m_proj):91"""Calculate momentum transfer q in fm^-1."""92gamma = E_lab / m_proj93p = np.sqrt(E_lab**2 - m_proj**2) # MeV/c94q = 2 * p * np.sin(theta/2) / hbar_c # fm^-195return q9697# Nuclear form factors98def uniform_sphere_ff(q, R):99"""Form factor for uniform sphere charge distribution."""100qR = q * R101# Avoid numerical issues at qR = 0102qR = np.maximum(qR, 1e-10)103return 3 * (np.sin(qR) - qR * np.cos(qR)) / qR**3104105def gaussian_ff(q, a):106"""Form factor for Gaussian charge distribution."""107return np.exp(-q**2 * a**2 / 6)108109def fermi_ff(q, c, a):110"""Form factor for Woods-Saxon (Fermi) distribution."""111# Approximate form factor using parametrization112R_rms = np.sqrt(0.6) * c # RMS radius approximation113return uniform_sphere_ff(q, R_rms)114115# Target parameters116Z_target = 79 # Gold117A_target = 197118R_Au = 1.2 * A_target**(1/3) # Nuclear radius (fm)119R_rms = 5.33 # RMS charge radius of Au (fm)120121# Carbon for form factor analysis122Z_C = 6123A_C = 12124R_C = 1.2 * A_C**(1/3)125126# Scattering angles127theta = np.linspace(0.01, np.pi, 500)128129# Beam energies (MeV)130energies = [50, 100, 200, 500]131132# Calculate cross sections for different energies133cs_ruth = []134cs_mott = []135for E in energies:136ruth = rutherford_cross_section(theta, E, 1, Z_target)137mott = mott_cross_section(theta, E, 1, Z_target, m_e)138cs_ruth.append(ruth)139cs_mott.append(mott)140141# Form factor analysis142E_form = 500 # MeV143q_values = momentum_transfer(theta, E_form, m_e)144145# Different form factors146ff_uniform = uniform_sphere_ff(q_values, R_C)147ff_gaussian = gaussian_ff(q_values, R_C / np.sqrt(5/3))148149# Cross section with form factor150cs_mott_ff = mott_cross_section(theta, E_form, 1, Z_C, m_e)151cs_with_ff = cs_mott_ff * ff_uniform**2152153# Integrated cross section (above minimum angle)154def integrated_cross_section(theta_min, E_lab, Z1, Z2, m_proj):155"""Integrated cross section for theta > theta_min."""156theta_int = np.linspace(theta_min, np.pi, 1000)157dsigma = mott_cross_section(theta_int, E_lab, Z1, Z2, m_proj)158# Integrate over solid angle159sigma = 2 * np.pi * np.trapz(dsigma * np.sin(theta_int), theta_int)160return sigma161162# Total cross section vs energy163E_range = np.logspace(1, 4, 100)164theta_min = np.deg2rad(1) # Minimum angle165sigma_total = [integrated_cross_section(theta_min, E, 1, Z_target, m_e) for E in E_range]166167# Mandelstam variables168def mandelstam_t(theta, E_lab, m_proj, m_target):169"""Calculate Mandelstam t variable."""170s = m_target**2 + 2 * E_lab * m_target # Assuming target at rest171p_cm_sq = (s - (m_proj + m_target)**2) * (s - (m_proj - m_target)**2) / (4*s)172t = -2 * p_cm_sq * (1 - np.cos(theta))173return t174175# Create visualization176fig = plt.figure(figsize=(12, 10))177gs = fig.add_gridspec(3, 3, hspace=0.35, wspace=0.35)178179# Plot 1: Rutherford cross section at different energies180ax1 = fig.add_subplot(gs[0, 0])181colors = plt.cm.viridis(np.linspace(0.2, 0.8, len(energies)))182for E, cs, color in zip(energies, cs_ruth, colors):183ax1.semilogy(np.rad2deg(theta), cs * fm_to_barn, color=color,184lw=1.5, label=f'{E} MeV')185ax1.set_xlabel('Scattering Angle (deg)')186ax1.set_ylabel(r'$d\sigma/d\Omega$ (barn/sr)')187ax1.set_title('Rutherford Cross Section (Au)')188ax1.legend(fontsize=7)189ax1.grid(True, alpha=0.3, which='both')190ax1.set_xlim([0, 180])191192# Plot 2: Mott vs Rutherford193ax2 = fig.add_subplot(gs[0, 1])194E_compare = 200195ruth_200 = rutherford_cross_section(theta, E_compare, 1, Z_target)196mott_200 = mott_cross_section(theta, E_compare, 1, Z_target, m_e)197198ax2.semilogy(np.rad2deg(theta), ruth_200 * fm_to_barn, 'b-', lw=2, label='Rutherford')199ax2.semilogy(np.rad2deg(theta), mott_200 * fm_to_barn, 'r--', lw=2, label='Mott')200ax2.set_xlabel('Scattering Angle (deg)')201ax2.set_ylabel(r'$d\sigma/d\Omega$ (barn/sr)')202ax2.set_title(f'Rutherford vs Mott ({E_compare} MeV)')203ax2.legend(fontsize=8)204ax2.grid(True, alpha=0.3, which='both')205206# Plot 3: Mott/Rutherford ratio207ax3 = fig.add_subplot(gs[0, 2])208ratio = mott_200 / ruth_200209ax3.plot(np.rad2deg(theta), ratio, 'g-', lw=2)210ax3.set_xlabel('Scattering Angle (deg)')211ax3.set_ylabel('Mott / Rutherford')212ax3.set_title('Relativistic Correction')213ax3.grid(True, alpha=0.3)214ax3.set_ylim([0, 1.1])215ax3.set_xlim([0, 180])216217# Plot 4: Form factors218ax4 = fig.add_subplot(gs[1, 0])219ax4.plot(q_values, np.abs(ff_uniform)**2, 'b-', lw=2, label='Uniform sphere')220ax4.plot(q_values, np.abs(ff_gaussian)**2, 'r--', lw=1.5, label='Gaussian')221ax4.set_xlabel('Momentum Transfer $q$ (fm$^{-1}$)')222ax4.set_ylabel('$|F(q)|^2$')223ax4.set_title('Nuclear Form Factors (C-12)')224ax4.legend(fontsize=8)225ax4.grid(True, alpha=0.3)226ax4.set_xlim([0, 4])227ax4.set_ylim([0, 1.1])228229# Plot 5: Cross section with form factor230ax5 = fig.add_subplot(gs[1, 1])231ax5.semilogy(np.rad2deg(theta), cs_mott_ff * fm_to_barn, 'b-', lw=2, label='Point nucleus')232ax5.semilogy(np.rad2deg(theta), cs_with_ff * fm_to_barn, 'r-', lw=2, label='With $F(q)$')233ax5.set_xlabel('Scattering Angle (deg)')234ax5.set_ylabel(r'$d\sigma/d\Omega$ (barn/sr)')235ax5.set_title(f'Form Factor Effect (C-12, {E_form} MeV)')236ax5.legend(fontsize=8)237ax5.grid(True, alpha=0.3, which='both')238239# Plot 6: Cross section vs q^2240ax6 = fig.add_subplot(gs[1, 2])241q2 = q_values**2242ax6.semilogy(q2, cs_with_ff * fm_to_barn, 'b-', lw=2)243ax6.set_xlabel('$q^2$ (fm$^{-2}$)')244ax6.set_ylabel(r'$d\sigma/d\Omega$ (barn/sr)')245ax6.set_title('Cross Section vs $q^2$')246ax6.grid(True, alpha=0.3, which='both')247ax6.set_xlim([0, 4])248249# Plot 7: Integrated cross section vs energy250ax7 = fig.add_subplot(gs[2, 0])251ax7.loglog(E_range, np.array(sigma_total) * fm_to_barn, 'b-', lw=2)252ax7.set_xlabel('Beam Energy (MeV)')253ax7.set_ylabel(r'$\sigma$ (barn)')254ax7.set_title(f'Integrated Cross Section ($\\theta > 1^\\circ$)')255ax7.grid(True, alpha=0.3, which='both')256257# Plot 8: Angular distribution (polar plot)258ax8 = fig.add_subplot(gs[2, 1], projection='polar')259for E, cs, color in zip([100, 500], [cs_mott[1], cs_mott[3]], ['blue', 'red']):260cs_norm = cs / np.max(cs)261ax8.plot(theta, cs_norm, color=color, lw=1.5, label=f'{E} MeV')262ax8.set_title('Angular Distribution')263ax8.legend(fontsize=7, loc='lower right')264265# Plot 9: Mandelstam t distribution266ax9 = fig.add_subplot(gs[2, 2])267m_target_Au = A_target * 931.5 # MeV268t_200 = mandelstam_t(theta, 200, m_e, m_target_Au)269ax9.semilogy(np.rad2deg(theta), np.abs(t_200), 'purple', lw=2)270ax9.set_xlabel('Scattering Angle (deg)')271ax9.set_ylabel('$|t|$ (MeV$^2$)')272ax9.set_title('Momentum Transfer Squared')273ax9.grid(True, alpha=0.3, which='both')274275plt.savefig('cross_section_plot.pdf', bbox_inches='tight', dpi=150)276print(r'\begin{center}')277print(r'\includegraphics[width=\textwidth]{cross_section_plot.pdf}')278print(r'\end{center}')279plt.close()280281# Summary calculations282dsigma_90_ruth = rutherford_cross_section(np.pi/2, 100, 1, Z_target)283dsigma_90_mott = mott_cross_section(np.pi/2, 100, 1, Z_target, m_e)284ratio_90 = dsigma_90_mott / dsigma_90_ruth285ff_first_min = np.deg2rad(180 * 4.49 / (q_values[-1] * R_C)) # First zero of j_1286\end{pycode}287288\section{Results and Analysis}289290\subsection{Cross Section Scaling}291292\begin{pycode}293print(r'\begin{table}[htbp]')294print(r'\centering')295print(r'\caption{Differential Cross Sections at 90$^\circ$ (Gold Target)}')296print(r'\begin{tabular}{ccccc}')297print(r'\toprule')298print(r'Energy (MeV) & Rutherford & Mott & Ratio & $\beta$ \\')299print(r'\midrule')300301for E in energies:302ruth = rutherford_cross_section(np.pi/2, E, 1, Z_target) * fm_to_barn303mott = mott_cross_section(np.pi/2, E, 1, Z_target, m_e) * fm_to_barn304gamma = E / m_e305beta = np.sqrt(1 - 1/gamma**2) if gamma > 1 else 0306r = mott/ruth307print(f'{E} & {ruth:.2e} & {mott:.2e} & {r:.3f} & {beta:.3f} \\\\')308309print(r'\bottomrule')310print(r'\end{tabular}')311print(r'\end{table}')312\end{pycode}313314\subsection{Key Cross Section Features}315316The analysis reveals:317\begin{itemize}318\item Rutherford formula: $d\sigma/d\Omega \propto \sin^{-4}(\theta/2)$ singularity at $\theta = 0$319\item Mott correction: reduces backscattering by factor $(1 - \beta^2)$ at 180$^\circ$320\item Energy scaling: $\sigma \propto E^{-2}$ for Coulomb scattering321\item Form factor: creates diffraction minima at $q \cdot R \approx 4.49$322\end{itemize}323324\begin{remark}325The Mott/Rutherford ratio at 90$^\circ$ for 100 MeV electrons is \py{f"{ratio_90:.3f}"}, showing significant relativistic suppression.326\end{remark}327328\subsection{Form Factor Analysis}329330\begin{pycode}331print(r'\begin{table}[htbp]')332print(r'\centering')333print(r'\caption{Nuclear Form Factor Parameters}')334print(r'\begin{tabular}{lccc}')335print(r'\toprule')336print(r'Nucleus & $R$ (fm) & $R_{rms}$ (fm) & First minimum ($q$) \\')337print(r'\midrule')338print(f'C-12 & {R_C:.2f} & {R_C * np.sqrt(3/5):.2f} & {4.49/R_C:.2f} fm$^{{-1}}$ \\\\')339print(f'Au-197 & {R_Au:.2f} & {R_rms:.2f} & {4.49/R_Au:.2f} fm$^{{-1}}$ \\\\')340print(r'\bottomrule')341print(r'\end{tabular}')342print(r'\end{table}')343\end{pycode}344345\section{Applications}346347\begin{example}[Nuclear Size Measurement]348Electron scattering experiments determine nuclear charge radii through form factor analysis. The position of diffraction minima in $d\sigma/d\Omega$ directly gives the nuclear radius: $R \approx 4.49/q_{min}$.349\end{example}350351\begin{example}[Deep Inelastic Scattering]352At high $Q^2 = -t$, structure functions $F_1(x, Q^2)$ and $F_2(x, Q^2)$ probe quark distributions inside nucleons, revealing parton dynamics.353\end{example}354355\begin{theorem}[Optical Theorem]356The total cross section relates to the forward scattering amplitude:357\begin{equation}358\sigma_{tot} = \frac{4\pi}{k} \text{Im}[f(0)]359\end{equation}360This connects elastic and inelastic scattering processes.361\end{theorem}362363\section{Discussion}364365The cross section analysis demonstrates:366367\begin{enumerate}368\item \textbf{Classical limit}: Rutherford formula recovers Coulomb scattering with $d\sigma \propto Z^2/E^2$.369\item \textbf{Relativistic effects}: Mott correction accounts for electron spin-orbit coupling.370\item \textbf{Nuclear structure}: Form factors encode charge distribution information.371\item \textbf{Diffraction}: Wave nature of matter creates interference patterns in angular distribution.372\item \textbf{Scale dependence}: Different energies probe different length scales via $\lambda = \hbar c/E$.373\end{enumerate}374375\section{Conclusions}376377This computational analysis demonstrates:378\begin{itemize}379\item Cross section at 90$^\circ$ (100 MeV, Au): \py{f"{dsigma_90_mott * fm_to_barn:.2e}"} barn/sr380\item Mott/Rutherford ratio (100 MeV): \py{f"{ratio_90:.3f}"}381\item Gold nuclear radius: \py{f"{R_Au:.2f}"} fm382\item Carbon nuclear radius: \py{f"{R_C:.2f}"} fm383\end{itemize}384385Cross section measurements form the foundation of particle physics experiments, enabling precise determination of fundamental interactions and nuclear structure.386387\section{Further Reading}388\begin{itemize}389\item Povh, B., Rith, K., Scholz, C., Zetsche, F., \textit{Particles and Nuclei}, 7th Ed., Springer, 2015390\item Hofstadter, R., Electron scattering and nuclear structure, \textit{Rev. Mod. Phys.} 28, 214 (1956)391\item Halzen, F., Martin, A.D., \textit{Quarks and Leptons}, Wiley, 1984392\end{itemize}393394\end{document}395396397