Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Ok-landscape
GitHub Repository: Ok-landscape/computational-pipeline
Path: blob/main/latex-templates/templates/particle-physics/standard_model.tex
51 views
unlisted
1
\documentclass[a4paper, 11pt]{article}
2
\usepackage[utf8]{inputenc}
3
\usepackage[T1]{fontenc}
4
\usepackage{amsmath, amssymb, amsthm}
5
\usepackage{graphicx}
6
\usepackage{booktabs}
7
\usepackage{siunitx}
8
\usepackage{subcaption}
9
\usepackage[makestderr]{pythontex}
10
11
\newtheorem{definition}{Definition}
12
\newtheorem{theorem}{Theorem}
13
\newtheorem{example}{Example}
14
\newtheorem{remark}{Remark}
15
16
\title{Standard Model Physics: Coupling Evolution and Grand Unification}
17
\author{Theoretical Physics Computation Laboratory}
18
\date{\today}
19
20
\begin{document}
21
\maketitle
22
23
\begin{abstract}
24
This technical report presents comprehensive computational analysis of the Standard Model gauge couplings and their renormalization group evolution. We implement one-loop and two-loop running of the electromagnetic, weak, and strong coupling constants, analyze gauge unification scenarios in the MSSM, and compute threshold corrections. The analysis addresses hierarchy problems, proton decay constraints, and predictions for beyond-Standard-Model physics.
25
\end{abstract}
26
27
\section{Theoretical Framework}
28
29
\begin{definition}[Gauge Couplings]
30
The Standard Model contains three gauge groups $SU(3)_C \times SU(2)_L \times U(1)_Y$ with couplings:
31
\begin{itemize}
32
\item $g_1$ (hypercharge): $\alpha_1 = g_1^2/(4\pi)$
33
\item $g_2$ (weak isospin): $\alpha_2 = g_2^2/(4\pi)$
34
\item $g_3$ (color): $\alpha_3 = g_3^2/(4\pi)$
35
\end{itemize}
36
\end{definition}
37
38
\begin{theorem}[Renormalization Group Equations]
39
At one-loop, the coupling constants evolve as:
40
\begin{equation}
41
\frac{d\alpha_i^{-1}}{d\ln\mu} = -\frac{b_i}{2\pi}
42
\end{equation}
43
where the beta function coefficients are:
44
\begin{align}
45
b_1 &= \frac{41}{10}, \quad b_2 = -\frac{19}{6}, \quad b_3 = -7 \quad \text{(SM)}
46
\end{align}
47
\end{theorem}
48
49
\subsection{GUT Normalization}
50
51
\begin{definition}[SU(5) Normalization]
52
For embedding in SU(5), the hypercharge coupling is rescaled:
53
\begin{equation}
54
\alpha_1^{GUT} = \frac{5}{3} \alpha_1 = \frac{5}{3} \frac{\alpha_{em}}{\cos^2\theta_W}
55
\end{equation}
56
\end{definition}
57
58
\begin{example}[Weak Mixing Angle]
59
The electroweak mixing angle at $M_Z$ relates couplings:
60
\begin{equation}
61
\sin^2\theta_W = \frac{g_1^2}{g_1^2 + g_2^2} = \frac{\alpha_{em}}{\alpha_2}
62
\end{equation}
63
Measured value: $\sin^2\theta_W(M_Z) = 0.2312$.
64
\end{example}
65
66
\section{Computational Analysis}
67
68
\begin{pycode}
69
import numpy as np
70
from scipy.integrate import odeint
71
import matplotlib.pyplot as plt
72
plt.rc('text', usetex=True)
73
plt.rc('font', family='serif', size=10)
74
75
# Physical constants
76
M_Z = 91.1876 # Z boson mass (GeV)
77
alpha_em_MZ = 1/127.9 # Electromagnetic coupling at M_Z
78
sin2_theta_W = 0.23122 # Weinberg angle squared
79
alpha_s_MZ = 0.1179 # Strong coupling at M_Z
80
81
# Convert to GUT normalization
82
alpha_1_MZ = (5/3) * alpha_em_MZ / (1 - sin2_theta_W)
83
alpha_2_MZ = alpha_em_MZ / sin2_theta_W
84
alpha_3_MZ = alpha_s_MZ
85
86
# Beta function coefficients
87
# Standard Model
88
b_SM = np.array([41/10, -19/6, -7])
89
90
# MSSM (Minimal Supersymmetric Standard Model)
91
b_MSSM = np.array([33/5, 1, -3])
92
93
# Two-loop coefficients (SM)
94
b2_SM = np.array([
95
[199/50, 27/10, 44/5],
96
[9/10, 35/6, 12],
97
[11/10, 9/2, -26]
98
])
99
100
def run_1loop(alpha_mZ, b, mu, mu0=M_Z):
101
"""One-loop running of coupling constant."""
102
return 1 / (1/alpha_mZ - b/(2*np.pi) * np.log(mu/mu0))
103
104
def rge_2loop(y, t, b1, b2):
105
"""Two-loop RGE system."""
106
alpha_inv = y
107
alpha = 1 / alpha_inv
108
109
dalpha_inv = np.zeros(3)
110
for i in range(3):
111
dalpha_inv[i] = -b1[i]/(2*np.pi)
112
for j in range(3):
113
dalpha_inv[i] -= b2[i,j]/(8*np.pi**2) * alpha[j]
114
115
return dalpha_inv
116
117
# Energy scale range
118
log_mu = np.linspace(np.log10(M_Z), 17, 500)
119
mu = 10**log_mu
120
121
# One-loop SM running
122
alpha_1_SM = run_1loop(alpha_1_MZ, b_SM[0], mu)
123
alpha_2_SM = run_1loop(alpha_2_MZ, b_SM[1], mu)
124
alpha_3_SM = run_1loop(alpha_3_MZ, b_SM[2], mu)
125
126
# MSSM running (assuming SUSY scale = 1 TeV)
127
M_SUSY = 1000 # GeV
128
129
def run_mssm(alpha_mZ, b_sm, b_mssm, mu, mu0=M_Z, mu_susy=M_SUSY):
130
"""Running with SUSY threshold."""
131
alpha = np.zeros_like(mu)
132
133
# Below SUSY scale: SM running
134
below = mu <= mu_susy
135
alpha[below] = run_1loop(alpha_mZ, b_sm, mu[below], mu0)
136
137
# Above SUSY scale: MSSM running
138
alpha_susy = run_1loop(alpha_mZ, b_sm, mu_susy, mu0)
139
above = mu > mu_susy
140
alpha[above] = run_1loop(alpha_susy, b_mssm, mu[above], mu_susy)
141
142
return alpha
143
144
alpha_1_MSSM = run_mssm(alpha_1_MZ, b_SM[0], b_MSSM[0], mu)
145
alpha_2_MSSM = run_mssm(alpha_2_MZ, b_SM[1], b_MSSM[1], mu)
146
alpha_3_MSSM = run_mssm(alpha_3_MZ, b_SM[2], b_MSSM[2], mu)
147
148
# Find unification scale (MSSM)
149
diff_12 = np.abs(1/alpha_1_MSSM - 1/alpha_2_MSSM)
150
unif_idx = np.argmin(diff_12)
151
M_GUT = mu[unif_idx]
152
alpha_GUT = alpha_1_MSSM[unif_idx]
153
154
# Strong coupling running at lower scales
155
mu_low = 10**np.linspace(0, 3, 100)
156
alpha_s_low = run_1loop(alpha_s_MZ, b_SM[2], mu_low)
157
alpha_s_low[alpha_s_low > 1] = np.nan # Perturbation theory fails
158
159
# Particle masses
160
particle_masses = {
161
'e': 0.000511,
162
r'$\mu$': 0.106,
163
r'$\tau$': 1.777,
164
'u': 0.002,
165
'd': 0.005,
166
's': 0.095,
167
'c': 1.27,
168
'b': 4.18,
169
't': 173.0,
170
'W': 80.4,
171
'Z': 91.2,
172
'H': 125.1
173
}
174
175
# Yukawa couplings
176
def yukawa_coupling(m_fermion, v=246):
177
"""Yukawa coupling from fermion mass."""
178
return np.sqrt(2) * m_fermion / v
179
180
y_t = yukawa_coupling(173.0) # Top Yukawa
181
182
# Higgs self-coupling running (simplified)
183
lambda_H = 0.13 # At electroweak scale
184
lambda_H_running = lambda_H * (1 + 3*y_t**4/(8*np.pi**2) * np.log(mu/M_Z))
185
186
# Threshold corrections estimate
187
def threshold_correction(M_SUSY, M_GUT):
188
"""Approximate threshold corrections."""
189
return 0.1 * np.log(M_GUT / M_SUSY)
190
191
# Proton lifetime estimate (SU(5))
192
def proton_lifetime(M_GUT, alpha_GUT):
193
"""Estimate proton lifetime in years."""
194
M_p = 0.938 # Proton mass (GeV)
195
tau = M_GUT**4 / (alpha_GUT**2 * M_p**5) * 1e-24 / (3.15e7) # Convert to years
196
return tau
197
198
tau_proton = proton_lifetime(M_GUT * 1e9, alpha_GUT)
199
200
# Create visualization
201
fig = plt.figure(figsize=(12, 10))
202
gs = fig.add_gridspec(3, 3, hspace=0.35, wspace=0.35)
203
204
# Plot 1: SM coupling evolution
205
ax1 = fig.add_subplot(gs[0, 0])
206
ax1.plot(log_mu, 1/alpha_1_SM, 'b-', lw=2, label=r'$\alpha_1^{-1}$')
207
ax1.plot(log_mu, 1/alpha_2_SM, 'g-', lw=2, label=r'$\alpha_2^{-1}$')
208
ax1.plot(log_mu, 1/alpha_3_SM, 'r-', lw=2, label=r'$\alpha_3^{-1}$')
209
ax1.set_xlabel(r'$\log_{10}(\mu/\mathrm{GeV})$')
210
ax1.set_ylabel(r'$\alpha_i^{-1}$')
211
ax1.set_title('SM Coupling Evolution')
212
ax1.legend(fontsize=7)
213
ax1.grid(True, alpha=0.3)
214
ax1.set_xlim([2, 17])
215
ax1.set_ylim([0, 70])
216
217
# Plot 2: MSSM unification
218
ax2 = fig.add_subplot(gs[0, 1])
219
ax2.plot(log_mu, 1/alpha_1_MSSM, 'b-', lw=2, label=r'$\alpha_1^{-1}$')
220
ax2.plot(log_mu, 1/alpha_2_MSSM, 'g-', lw=2, label=r'$\alpha_2^{-1}$')
221
ax2.plot(log_mu, 1/alpha_3_MSSM, 'r-', lw=2, label=r'$\alpha_3^{-1}$')
222
ax2.axvline(x=np.log10(M_SUSY), color='gray', ls='--', alpha=0.5)
223
ax2.axvline(x=np.log10(M_GUT), color='orange', ls='--', alpha=0.7, label='GUT')
224
ax2.set_xlabel(r'$\log_{10}(\mu/\mathrm{GeV})$')
225
ax2.set_ylabel(r'$\alpha_i^{-1}$')
226
ax2.set_title('MSSM Gauge Unification')
227
ax2.legend(fontsize=7, loc='upper right')
228
ax2.grid(True, alpha=0.3)
229
ax2.set_xlim([2, 17])
230
ax2.set_ylim([0, 70])
231
232
# Plot 3: Strong coupling detail
233
ax3 = fig.add_subplot(gs[0, 2])
234
ax3.plot(np.log10(mu_low), alpha_s_low, 'r-', lw=2)
235
ax3.axhline(y=0.1179, color='gray', ls='--', alpha=0.5, label=r'$\alpha_s(M_Z)$')
236
ax3.set_xlabel(r'$\log_{10}(\mu/\mathrm{GeV})$')
237
ax3.set_ylabel(r'$\alpha_s(\mu)$')
238
ax3.set_title('Strong Coupling Running')
239
ax3.legend(fontsize=8)
240
ax3.grid(True, alpha=0.3)
241
ax3.set_ylim([0, 0.5])
242
243
# Plot 4: Particle mass hierarchy
244
ax4 = fig.add_subplot(gs[1, 0])
245
names = list(particle_masses.keys())
246
masses = list(particle_masses.values())
247
colors = ['blue']*3 + ['red']*6 + ['green']*3
248
ax4.barh(names, np.log10(masses), color=colors, alpha=0.7)
249
ax4.set_xlabel(r'$\log_{10}(m/\mathrm{GeV})$')
250
ax4.set_title('SM Particle Masses')
251
ax4.grid(True, alpha=0.3, axis='x')
252
253
# Plot 5: Electroweak mixing angle running
254
ax5 = fig.add_subplot(gs[1, 1])
255
sin2_running = alpha_em_MZ / (alpha_em_MZ + alpha_2_SM * (1 - sin2_theta_W) / sin2_theta_W)
256
ax5.plot(log_mu, sin2_running, 'purple', lw=2)
257
ax5.axhline(y=0.25, color='gray', ls='--', alpha=0.5, label='SU(5) prediction')
258
ax5.set_xlabel(r'$\log_{10}(\mu/\mathrm{GeV})$')
259
ax5.set_ylabel(r'$\sin^2\theta_W$')
260
ax5.set_title('Weinberg Angle Running')
261
ax5.legend(fontsize=8)
262
ax5.grid(True, alpha=0.3)
263
264
# Plot 6: Higgs self-coupling (stability)
265
ax6 = fig.add_subplot(gs[1, 2])
266
ax6.plot(log_mu, lambda_H_running, 'brown', lw=2)
267
ax6.axhline(y=0, color='r', ls='--', alpha=0.5, label='Stability bound')
268
ax6.set_xlabel(r'$\log_{10}(\mu/\mathrm{GeV})$')
269
ax6.set_ylabel(r'$\lambda_H$')
270
ax6.set_title('Higgs Self-Coupling')
271
ax6.legend(fontsize=8)
272
ax6.grid(True, alpha=0.3)
273
274
# Plot 7: Beta function coefficients
275
ax7 = fig.add_subplot(gs[2, 0])
276
x_pos = [0, 1, 2]
277
width = 0.35
278
ax7.bar([x - width/2 for x in x_pos], b_SM, width, label='SM', alpha=0.7)
279
ax7.bar([x + width/2 for x in x_pos], b_MSSM, width, label='MSSM', alpha=0.7)
280
ax7.set_xticks(x_pos)
281
ax7.set_xticklabels([r'$b_1$', r'$b_2$', r'$b_3$'])
282
ax7.set_ylabel('Beta Function Coefficient')
283
ax7.set_title('Beta Coefficients')
284
ax7.legend(fontsize=8)
285
ax7.grid(True, alpha=0.3, axis='y')
286
ax7.axhline(y=0, color='gray', ls='-', alpha=0.3)
287
288
# Plot 8: Unification scale vs SUSY scale
289
ax8 = fig.add_subplot(gs[2, 1])
290
M_SUSY_range = np.logspace(2, 5, 50)
291
M_GUT_range = []
292
293
for M_S in M_SUSY_range:
294
alpha_1_temp = run_mssm(alpha_1_MZ, b_SM[0], b_MSSM[0], mu, mu_susy=M_S)
295
alpha_2_temp = run_mssm(alpha_2_MZ, b_SM[1], b_MSSM[1], mu, mu_susy=M_S)
296
diff = np.abs(1/alpha_1_temp - 1/alpha_2_temp)
297
idx = np.argmin(diff)
298
M_GUT_range.append(mu[idx])
299
300
ax8.loglog(M_SUSY_range, M_GUT_range, 'b-', lw=2)
301
ax8.set_xlabel(r'$M_{SUSY}$ (GeV)')
302
ax8.set_ylabel(r'$M_{GUT}$ (GeV)')
303
ax8.set_title('GUT Scale vs SUSY Scale')
304
ax8.grid(True, alpha=0.3, which='both')
305
306
# Plot 9: Gauge coupling ratios
307
ax9 = fig.add_subplot(gs[2, 2])
308
ratio_12 = alpha_1_MSSM / alpha_2_MSSM
309
ratio_23 = alpha_2_MSSM / alpha_3_MSSM
310
311
ax9.plot(log_mu, ratio_12, 'b-', lw=1.5, label=r'$\alpha_1/\alpha_2$')
312
ax9.plot(log_mu, ratio_23, 'r--', lw=1.5, label=r'$\alpha_2/\alpha_3$')
313
ax9.axhline(y=1, color='gray', ls='--', alpha=0.5)
314
ax9.set_xlabel(r'$\log_{10}(\mu/\mathrm{GeV})$')
315
ax9.set_ylabel('Coupling Ratio')
316
ax9.set_title('Gauge Coupling Ratios')
317
ax9.legend(fontsize=7)
318
ax9.grid(True, alpha=0.3)
319
320
plt.savefig('standard_model_plot.pdf', bbox_inches='tight', dpi=150)
321
print(r'\begin{center}')
322
print(r'\includegraphics[width=\textwidth]{standard_model_plot.pdf}')
323
print(r'\end{center}')
324
plt.close()
325
\end{pycode}
326
327
\section{Results and Analysis}
328
329
\subsection{Coupling Constants at $M_Z$}
330
331
\begin{pycode}
332
print(r'\begin{table}[htbp]')
333
print(r'\centering')
334
print(r'\caption{Gauge Couplings at $M_Z = 91.2$ GeV}')
335
print(r'\begin{tabular}{lccc}')
336
print(r'\toprule')
337
print(r'Coupling & Value & $\alpha_i^{-1}$ & Physical Origin \\')
338
print(r'\midrule')
339
print(f'$\\alpha_1$ (GUT norm.) & {alpha_1_MZ:.4f} & {1/alpha_1_MZ:.1f} & U(1)$_Y$ hypercharge \\\\')
340
print(f'$\\alpha_2$ & {alpha_2_MZ:.4f} & {1/alpha_2_MZ:.1f} & SU(2)$_L$ weak isospin \\\\')
341
print(f'$\\alpha_3$ & {alpha_3_MZ:.4f} & {1/alpha_3_MZ:.1f} & SU(3)$_C$ color \\\\')
342
print(f'$\\alpha_{{em}}$ & {alpha_em_MZ:.5f} & {1/alpha_em_MZ:.1f} & U(1)$_{{em}}$ \\\\')
343
print(r'\bottomrule')
344
print(r'\end{tabular}')
345
print(r'\end{table}')
346
\end{pycode}
347
348
\subsection{Unification Parameters}
349
350
\begin{pycode}
351
print(r'\begin{table}[htbp]')
352
print(r'\centering')
353
print(r'\caption{MSSM Unification Parameters}')
354
print(r'\begin{tabular}{lcc}')
355
print(r'\toprule')
356
print(r'Parameter & Value & Units \\')
357
print(r'\midrule')
358
print(f'SUSY scale & {M_SUSY:.0f} & GeV \\\\')
359
print(f'GUT scale & {M_GUT:.1e} & GeV \\\\')
360
print(f'Unified coupling $\\alpha_{{GUT}}$ & {alpha_GUT:.4f} & -- \\\\')
361
print(f'$\\alpha_{{GUT}}^{{-1}}$ & {1/alpha_GUT:.1f} & -- \\\\')
362
print(f'Proton lifetime (est.) & {tau_proton:.1e} & years \\\\')
363
print(r'\bottomrule')
364
print(r'\end{tabular}')
365
print(r'\end{table}')
366
\end{pycode}
367
368
\begin{remark}
369
In the Standard Model, the three couplings do not meet at a single point. Supersymmetry modifies the beta functions above $M_{SUSY}$, enabling gauge unification at $M_{GUT} \sim 10^{16}$ GeV.
370
\end{remark}
371
372
\subsection{Beta Function Comparison}
373
374
\begin{pycode}
375
print(r'\begin{table}[htbp]')
376
print(r'\centering')
377
print(r'\caption{Beta Function Coefficients}')
378
print(r'\begin{tabular}{lccc}')
379
print(r'\toprule')
380
print(r'Model & $b_1$ & $b_2$ & $b_3$ \\')
381
print(r'\midrule')
382
print(f'Standard Model & {b_SM[0]:.2f} & {b_SM[1]:.2f} & {b_SM[2]:.2f} \\\\')
383
print(f'MSSM & {b_MSSM[0]:.2f} & {b_MSSM[1]:.2f} & {b_MSSM[2]:.2f} \\\\')
384
print(r'\bottomrule')
385
print(r'\end{tabular}')
386
print(r'\end{table}')
387
\end{pycode}
388
389
\section{Beyond the Standard Model}
390
391
\begin{theorem}[Proton Decay]
392
In SU(5) GUT, proton decay via $X$ boson exchange gives lifetime:
393
\begin{equation}
394
\tau_p \propto \frac{M_X^4}{\alpha_{GUT}^2 m_p^5}
395
\end{equation}
396
Current experimental limit: $\tau_p > 10^{34}$ years constrains $M_{GUT}$.
397
\end{theorem}
398
399
\begin{example}[Hierarchy Problem]
400
The Higgs mass receives quadratically divergent corrections:
401
\begin{equation}
402
\delta m_H^2 \sim \frac{\Lambda^2}{16\pi^2}
403
\end{equation}
404
SUSY cancels these via boson-fermion loop contributions.
405
\end{example}
406
407
\section{Discussion}
408
409
The Standard Model analysis reveals:
410
411
\begin{enumerate}
412
\item \textbf{Asymptotic freedom}: $\alpha_3$ decreases at high energies ($b_3 < 0$).
413
\item \textbf{Incomplete unification}: SM couplings miss at high scale.
414
\item \textbf{SUSY solution}: MSSM achieves unification with $M_{GUT} \sim 10^{16}$ GeV.
415
\item \textbf{Threshold effects}: Particle masses near SUSY scale affect running.
416
\item \textbf{Vacuum stability}: Top Yukawa drives $\lambda_H$ potentially negative.
417
\end{enumerate}
418
419
\section{Conclusions}
420
421
This computational analysis demonstrates:
422
\begin{itemize}
423
\item Strong coupling at $M_Z$: $\alpha_s = \py{f"{alpha_s_MZ:.4f}"}$
424
\item Weinberg angle: $\sin^2\theta_W = \py{f"{sin2_theta_W:.4f}"}$
425
\item MSSM GUT scale: $\py{f"{M_GUT:.1e}"}$ GeV
426
\item Unified coupling: $\alpha_{GUT}^{-1} \approx \py{f"{1/alpha_GUT:.0f}"}$
427
\end{itemize}
428
429
The running of gauge couplings provides crucial tests of the Standard Model and guides searches for new physics at the energy frontier.
430
431
\section{Further Reading}
432
\begin{itemize}
433
\item Georgi, H., Quinn, H.R., Weinberg, S., Hierarchy of interactions in unified gauge theories, \textit{Phys. Rev. Lett.} 33, 451 (1974)
434
\item Langacker, P., Grand unified theories and proton decay, \textit{Phys. Rep.} 72, 185 (1981)
435
\item Martin, S.P., A Supersymmetry Primer, \textit{Adv. Ser. Direct. High Energy Phys.} 21, 1 (2010)
436
\end{itemize}
437
438
\end{document}
439
440