Path: blob/main/latex-templates/templates/particle-physics/standard_model.tex
51 views
unlisted
\documentclass[a4paper, 11pt]{article}1\usepackage[utf8]{inputenc}2\usepackage[T1]{fontenc}3\usepackage{amsmath, amssymb, amsthm}4\usepackage{graphicx}5\usepackage{booktabs}6\usepackage{siunitx}7\usepackage{subcaption}8\usepackage[makestderr]{pythontex}910\newtheorem{definition}{Definition}11\newtheorem{theorem}{Theorem}12\newtheorem{example}{Example}13\newtheorem{remark}{Remark}1415\title{Standard Model Physics: Coupling Evolution and Grand Unification}16\author{Theoretical Physics Computation Laboratory}17\date{\today}1819\begin{document}20\maketitle2122\begin{abstract}23This technical report presents comprehensive computational analysis of the Standard Model gauge couplings and their renormalization group evolution. We implement one-loop and two-loop running of the electromagnetic, weak, and strong coupling constants, analyze gauge unification scenarios in the MSSM, and compute threshold corrections. The analysis addresses hierarchy problems, proton decay constraints, and predictions for beyond-Standard-Model physics.24\end{abstract}2526\section{Theoretical Framework}2728\begin{definition}[Gauge Couplings]29The Standard Model contains three gauge groups $SU(3)_C \times SU(2)_L \times U(1)_Y$ with couplings:30\begin{itemize}31\item $g_1$ (hypercharge): $\alpha_1 = g_1^2/(4\pi)$32\item $g_2$ (weak isospin): $\alpha_2 = g_2^2/(4\pi)$33\item $g_3$ (color): $\alpha_3 = g_3^2/(4\pi)$34\end{itemize}35\end{definition}3637\begin{theorem}[Renormalization Group Equations]38At one-loop, the coupling constants evolve as:39\begin{equation}40\frac{d\alpha_i^{-1}}{d\ln\mu} = -\frac{b_i}{2\pi}41\end{equation}42where the beta function coefficients are:43\begin{align}44b_1 &= \frac{41}{10}, \quad b_2 = -\frac{19}{6}, \quad b_3 = -7 \quad \text{(SM)}45\end{align}46\end{theorem}4748\subsection{GUT Normalization}4950\begin{definition}[SU(5) Normalization]51For embedding in SU(5), the hypercharge coupling is rescaled:52\begin{equation}53\alpha_1^{GUT} = \frac{5}{3} \alpha_1 = \frac{5}{3} \frac{\alpha_{em}}{\cos^2\theta_W}54\end{equation}55\end{definition}5657\begin{example}[Weak Mixing Angle]58The electroweak mixing angle at $M_Z$ relates couplings:59\begin{equation}60\sin^2\theta_W = \frac{g_1^2}{g_1^2 + g_2^2} = \frac{\alpha_{em}}{\alpha_2}61\end{equation}62Measured value: $\sin^2\theta_W(M_Z) = 0.2312$.63\end{example}6465\section{Computational Analysis}6667\begin{pycode}68import numpy as np69from scipy.integrate import odeint70import matplotlib.pyplot as plt71plt.rc('text', usetex=True)72plt.rc('font', family='serif', size=10)7374# Physical constants75M_Z = 91.1876 # Z boson mass (GeV)76alpha_em_MZ = 1/127.9 # Electromagnetic coupling at M_Z77sin2_theta_W = 0.23122 # Weinberg angle squared78alpha_s_MZ = 0.1179 # Strong coupling at M_Z7980# Convert to GUT normalization81alpha_1_MZ = (5/3) * alpha_em_MZ / (1 - sin2_theta_W)82alpha_2_MZ = alpha_em_MZ / sin2_theta_W83alpha_3_MZ = alpha_s_MZ8485# Beta function coefficients86# Standard Model87b_SM = np.array([41/10, -19/6, -7])8889# MSSM (Minimal Supersymmetric Standard Model)90b_MSSM = np.array([33/5, 1, -3])9192# Two-loop coefficients (SM)93b2_SM = np.array([94[199/50, 27/10, 44/5],95[9/10, 35/6, 12],96[11/10, 9/2, -26]97])9899def run_1loop(alpha_mZ, b, mu, mu0=M_Z):100"""One-loop running of coupling constant."""101return 1 / (1/alpha_mZ - b/(2*np.pi) * np.log(mu/mu0))102103def rge_2loop(y, t, b1, b2):104"""Two-loop RGE system."""105alpha_inv = y106alpha = 1 / alpha_inv107108dalpha_inv = np.zeros(3)109for i in range(3):110dalpha_inv[i] = -b1[i]/(2*np.pi)111for j in range(3):112dalpha_inv[i] -= b2[i,j]/(8*np.pi**2) * alpha[j]113114return dalpha_inv115116# Energy scale range117log_mu = np.linspace(np.log10(M_Z), 17, 500)118mu = 10**log_mu119120# One-loop SM running121alpha_1_SM = run_1loop(alpha_1_MZ, b_SM[0], mu)122alpha_2_SM = run_1loop(alpha_2_MZ, b_SM[1], mu)123alpha_3_SM = run_1loop(alpha_3_MZ, b_SM[2], mu)124125# MSSM running (assuming SUSY scale = 1 TeV)126M_SUSY = 1000 # GeV127128def run_mssm(alpha_mZ, b_sm, b_mssm, mu, mu0=M_Z, mu_susy=M_SUSY):129"""Running with SUSY threshold."""130alpha = np.zeros_like(mu)131132# Below SUSY scale: SM running133below = mu <= mu_susy134alpha[below] = run_1loop(alpha_mZ, b_sm, mu[below], mu0)135136# Above SUSY scale: MSSM running137alpha_susy = run_1loop(alpha_mZ, b_sm, mu_susy, mu0)138above = mu > mu_susy139alpha[above] = run_1loop(alpha_susy, b_mssm, mu[above], mu_susy)140141return alpha142143alpha_1_MSSM = run_mssm(alpha_1_MZ, b_SM[0], b_MSSM[0], mu)144alpha_2_MSSM = run_mssm(alpha_2_MZ, b_SM[1], b_MSSM[1], mu)145alpha_3_MSSM = run_mssm(alpha_3_MZ, b_SM[2], b_MSSM[2], mu)146147# Find unification scale (MSSM)148diff_12 = np.abs(1/alpha_1_MSSM - 1/alpha_2_MSSM)149unif_idx = np.argmin(diff_12)150M_GUT = mu[unif_idx]151alpha_GUT = alpha_1_MSSM[unif_idx]152153# Strong coupling running at lower scales154mu_low = 10**np.linspace(0, 3, 100)155alpha_s_low = run_1loop(alpha_s_MZ, b_SM[2], mu_low)156alpha_s_low[alpha_s_low > 1] = np.nan # Perturbation theory fails157158# Particle masses159particle_masses = {160'e': 0.000511,161r'$\mu$': 0.106,162r'$\tau$': 1.777,163'u': 0.002,164'd': 0.005,165's': 0.095,166'c': 1.27,167'b': 4.18,168't': 173.0,169'W': 80.4,170'Z': 91.2,171'H': 125.1172}173174# Yukawa couplings175def yukawa_coupling(m_fermion, v=246):176"""Yukawa coupling from fermion mass."""177return np.sqrt(2) * m_fermion / v178179y_t = yukawa_coupling(173.0) # Top Yukawa180181# Higgs self-coupling running (simplified)182lambda_H = 0.13 # At electroweak scale183lambda_H_running = lambda_H * (1 + 3*y_t**4/(8*np.pi**2) * np.log(mu/M_Z))184185# Threshold corrections estimate186def threshold_correction(M_SUSY, M_GUT):187"""Approximate threshold corrections."""188return 0.1 * np.log(M_GUT / M_SUSY)189190# Proton lifetime estimate (SU(5))191def proton_lifetime(M_GUT, alpha_GUT):192"""Estimate proton lifetime in years."""193M_p = 0.938 # Proton mass (GeV)194tau = M_GUT**4 / (alpha_GUT**2 * M_p**5) * 1e-24 / (3.15e7) # Convert to years195return tau196197tau_proton = proton_lifetime(M_GUT * 1e9, alpha_GUT)198199# Create visualization200fig = plt.figure(figsize=(12, 10))201gs = fig.add_gridspec(3, 3, hspace=0.35, wspace=0.35)202203# Plot 1: SM coupling evolution204ax1 = fig.add_subplot(gs[0, 0])205ax1.plot(log_mu, 1/alpha_1_SM, 'b-', lw=2, label=r'$\alpha_1^{-1}$')206ax1.plot(log_mu, 1/alpha_2_SM, 'g-', lw=2, label=r'$\alpha_2^{-1}$')207ax1.plot(log_mu, 1/alpha_3_SM, 'r-', lw=2, label=r'$\alpha_3^{-1}$')208ax1.set_xlabel(r'$\log_{10}(\mu/\mathrm{GeV})$')209ax1.set_ylabel(r'$\alpha_i^{-1}$')210ax1.set_title('SM Coupling Evolution')211ax1.legend(fontsize=7)212ax1.grid(True, alpha=0.3)213ax1.set_xlim([2, 17])214ax1.set_ylim([0, 70])215216# Plot 2: MSSM unification217ax2 = fig.add_subplot(gs[0, 1])218ax2.plot(log_mu, 1/alpha_1_MSSM, 'b-', lw=2, label=r'$\alpha_1^{-1}$')219ax2.plot(log_mu, 1/alpha_2_MSSM, 'g-', lw=2, label=r'$\alpha_2^{-1}$')220ax2.plot(log_mu, 1/alpha_3_MSSM, 'r-', lw=2, label=r'$\alpha_3^{-1}$')221ax2.axvline(x=np.log10(M_SUSY), color='gray', ls='--', alpha=0.5)222ax2.axvline(x=np.log10(M_GUT), color='orange', ls='--', alpha=0.7, label='GUT')223ax2.set_xlabel(r'$\log_{10}(\mu/\mathrm{GeV})$')224ax2.set_ylabel(r'$\alpha_i^{-1}$')225ax2.set_title('MSSM Gauge Unification')226ax2.legend(fontsize=7, loc='upper right')227ax2.grid(True, alpha=0.3)228ax2.set_xlim([2, 17])229ax2.set_ylim([0, 70])230231# Plot 3: Strong coupling detail232ax3 = fig.add_subplot(gs[0, 2])233ax3.plot(np.log10(mu_low), alpha_s_low, 'r-', lw=2)234ax3.axhline(y=0.1179, color='gray', ls='--', alpha=0.5, label=r'$\alpha_s(M_Z)$')235ax3.set_xlabel(r'$\log_{10}(\mu/\mathrm{GeV})$')236ax3.set_ylabel(r'$\alpha_s(\mu)$')237ax3.set_title('Strong Coupling Running')238ax3.legend(fontsize=8)239ax3.grid(True, alpha=0.3)240ax3.set_ylim([0, 0.5])241242# Plot 4: Particle mass hierarchy243ax4 = fig.add_subplot(gs[1, 0])244names = list(particle_masses.keys())245masses = list(particle_masses.values())246colors = ['blue']*3 + ['red']*6 + ['green']*3247ax4.barh(names, np.log10(masses), color=colors, alpha=0.7)248ax4.set_xlabel(r'$\log_{10}(m/\mathrm{GeV})$')249ax4.set_title('SM Particle Masses')250ax4.grid(True, alpha=0.3, axis='x')251252# Plot 5: Electroweak mixing angle running253ax5 = fig.add_subplot(gs[1, 1])254sin2_running = alpha_em_MZ / (alpha_em_MZ + alpha_2_SM * (1 - sin2_theta_W) / sin2_theta_W)255ax5.plot(log_mu, sin2_running, 'purple', lw=2)256ax5.axhline(y=0.25, color='gray', ls='--', alpha=0.5, label='SU(5) prediction')257ax5.set_xlabel(r'$\log_{10}(\mu/\mathrm{GeV})$')258ax5.set_ylabel(r'$\sin^2\theta_W$')259ax5.set_title('Weinberg Angle Running')260ax5.legend(fontsize=8)261ax5.grid(True, alpha=0.3)262263# Plot 6: Higgs self-coupling (stability)264ax6 = fig.add_subplot(gs[1, 2])265ax6.plot(log_mu, lambda_H_running, 'brown', lw=2)266ax6.axhline(y=0, color='r', ls='--', alpha=0.5, label='Stability bound')267ax6.set_xlabel(r'$\log_{10}(\mu/\mathrm{GeV})$')268ax6.set_ylabel(r'$\lambda_H$')269ax6.set_title('Higgs Self-Coupling')270ax6.legend(fontsize=8)271ax6.grid(True, alpha=0.3)272273# Plot 7: Beta function coefficients274ax7 = fig.add_subplot(gs[2, 0])275x_pos = [0, 1, 2]276width = 0.35277ax7.bar([x - width/2 for x in x_pos], b_SM, width, label='SM', alpha=0.7)278ax7.bar([x + width/2 for x in x_pos], b_MSSM, width, label='MSSM', alpha=0.7)279ax7.set_xticks(x_pos)280ax7.set_xticklabels([r'$b_1$', r'$b_2$', r'$b_3$'])281ax7.set_ylabel('Beta Function Coefficient')282ax7.set_title('Beta Coefficients')283ax7.legend(fontsize=8)284ax7.grid(True, alpha=0.3, axis='y')285ax7.axhline(y=0, color='gray', ls='-', alpha=0.3)286287# Plot 8: Unification scale vs SUSY scale288ax8 = fig.add_subplot(gs[2, 1])289M_SUSY_range = np.logspace(2, 5, 50)290M_GUT_range = []291292for M_S in M_SUSY_range:293alpha_1_temp = run_mssm(alpha_1_MZ, b_SM[0], b_MSSM[0], mu, mu_susy=M_S)294alpha_2_temp = run_mssm(alpha_2_MZ, b_SM[1], b_MSSM[1], mu, mu_susy=M_S)295diff = np.abs(1/alpha_1_temp - 1/alpha_2_temp)296idx = np.argmin(diff)297M_GUT_range.append(mu[idx])298299ax8.loglog(M_SUSY_range, M_GUT_range, 'b-', lw=2)300ax8.set_xlabel(r'$M_{SUSY}$ (GeV)')301ax8.set_ylabel(r'$M_{GUT}$ (GeV)')302ax8.set_title('GUT Scale vs SUSY Scale')303ax8.grid(True, alpha=0.3, which='both')304305# Plot 9: Gauge coupling ratios306ax9 = fig.add_subplot(gs[2, 2])307ratio_12 = alpha_1_MSSM / alpha_2_MSSM308ratio_23 = alpha_2_MSSM / alpha_3_MSSM309310ax9.plot(log_mu, ratio_12, 'b-', lw=1.5, label=r'$\alpha_1/\alpha_2$')311ax9.plot(log_mu, ratio_23, 'r--', lw=1.5, label=r'$\alpha_2/\alpha_3$')312ax9.axhline(y=1, color='gray', ls='--', alpha=0.5)313ax9.set_xlabel(r'$\log_{10}(\mu/\mathrm{GeV})$')314ax9.set_ylabel('Coupling Ratio')315ax9.set_title('Gauge Coupling Ratios')316ax9.legend(fontsize=7)317ax9.grid(True, alpha=0.3)318319plt.savefig('standard_model_plot.pdf', bbox_inches='tight', dpi=150)320print(r'\begin{center}')321print(r'\includegraphics[width=\textwidth]{standard_model_plot.pdf}')322print(r'\end{center}')323plt.close()324\end{pycode}325326\section{Results and Analysis}327328\subsection{Coupling Constants at $M_Z$}329330\begin{pycode}331print(r'\begin{table}[htbp]')332print(r'\centering')333print(r'\caption{Gauge Couplings at $M_Z = 91.2$ GeV}')334print(r'\begin{tabular}{lccc}')335print(r'\toprule')336print(r'Coupling & Value & $\alpha_i^{-1}$ & Physical Origin \\')337print(r'\midrule')338print(f'$\\alpha_1$ (GUT norm.) & {alpha_1_MZ:.4f} & {1/alpha_1_MZ:.1f} & U(1)$_Y$ hypercharge \\\\')339print(f'$\\alpha_2$ & {alpha_2_MZ:.4f} & {1/alpha_2_MZ:.1f} & SU(2)$_L$ weak isospin \\\\')340print(f'$\\alpha_3$ & {alpha_3_MZ:.4f} & {1/alpha_3_MZ:.1f} & SU(3)$_C$ color \\\\')341print(f'$\\alpha_{{em}}$ & {alpha_em_MZ:.5f} & {1/alpha_em_MZ:.1f} & U(1)$_{{em}}$ \\\\')342print(r'\bottomrule')343print(r'\end{tabular}')344print(r'\end{table}')345\end{pycode}346347\subsection{Unification Parameters}348349\begin{pycode}350print(r'\begin{table}[htbp]')351print(r'\centering')352print(r'\caption{MSSM Unification Parameters}')353print(r'\begin{tabular}{lcc}')354print(r'\toprule')355print(r'Parameter & Value & Units \\')356print(r'\midrule')357print(f'SUSY scale & {M_SUSY:.0f} & GeV \\\\')358print(f'GUT scale & {M_GUT:.1e} & GeV \\\\')359print(f'Unified coupling $\\alpha_{{GUT}}$ & {alpha_GUT:.4f} & -- \\\\')360print(f'$\\alpha_{{GUT}}^{{-1}}$ & {1/alpha_GUT:.1f} & -- \\\\')361print(f'Proton lifetime (est.) & {tau_proton:.1e} & years \\\\')362print(r'\bottomrule')363print(r'\end{tabular}')364print(r'\end{table}')365\end{pycode}366367\begin{remark}368In the Standard Model, the three couplings do not meet at a single point. Supersymmetry modifies the beta functions above $M_{SUSY}$, enabling gauge unification at $M_{GUT} \sim 10^{16}$ GeV.369\end{remark}370371\subsection{Beta Function Comparison}372373\begin{pycode}374print(r'\begin{table}[htbp]')375print(r'\centering')376print(r'\caption{Beta Function Coefficients}')377print(r'\begin{tabular}{lccc}')378print(r'\toprule')379print(r'Model & $b_1$ & $b_2$ & $b_3$ \\')380print(r'\midrule')381print(f'Standard Model & {b_SM[0]:.2f} & {b_SM[1]:.2f} & {b_SM[2]:.2f} \\\\')382print(f'MSSM & {b_MSSM[0]:.2f} & {b_MSSM[1]:.2f} & {b_MSSM[2]:.2f} \\\\')383print(r'\bottomrule')384print(r'\end{tabular}')385print(r'\end{table}')386\end{pycode}387388\section{Beyond the Standard Model}389390\begin{theorem}[Proton Decay]391In SU(5) GUT, proton decay via $X$ boson exchange gives lifetime:392\begin{equation}393\tau_p \propto \frac{M_X^4}{\alpha_{GUT}^2 m_p^5}394\end{equation}395Current experimental limit: $\tau_p > 10^{34}$ years constrains $M_{GUT}$.396\end{theorem}397398\begin{example}[Hierarchy Problem]399The Higgs mass receives quadratically divergent corrections:400\begin{equation}401\delta m_H^2 \sim \frac{\Lambda^2}{16\pi^2}402\end{equation}403SUSY cancels these via boson-fermion loop contributions.404\end{example}405406\section{Discussion}407408The Standard Model analysis reveals:409410\begin{enumerate}411\item \textbf{Asymptotic freedom}: $\alpha_3$ decreases at high energies ($b_3 < 0$).412\item \textbf{Incomplete unification}: SM couplings miss at high scale.413\item \textbf{SUSY solution}: MSSM achieves unification with $M_{GUT} \sim 10^{16}$ GeV.414\item \textbf{Threshold effects}: Particle masses near SUSY scale affect running.415\item \textbf{Vacuum stability}: Top Yukawa drives $\lambda_H$ potentially negative.416\end{enumerate}417418\section{Conclusions}419420This computational analysis demonstrates:421\begin{itemize}422\item Strong coupling at $M_Z$: $\alpha_s = \py{f"{alpha_s_MZ:.4f}"}$423\item Weinberg angle: $\sin^2\theta_W = \py{f"{sin2_theta_W:.4f}"}$424\item MSSM GUT scale: $\py{f"{M_GUT:.1e}"}$ GeV425\item Unified coupling: $\alpha_{GUT}^{-1} \approx \py{f"{1/alpha_GUT:.0f}"}$426\end{itemize}427428The running of gauge couplings provides crucial tests of the Standard Model and guides searches for new physics at the energy frontier.429430\section{Further Reading}431\begin{itemize}432\item Georgi, H., Quinn, H.R., Weinberg, S., Hierarchy of interactions in unified gauge theories, \textit{Phys. Rev. Lett.} 33, 451 (1974)433\item Langacker, P., Grand unified theories and proton decay, \textit{Phys. Rep.} 72, 185 (1981)434\item Martin, S.P., A Supersymmetry Primer, \textit{Adv. Ser. Direct. High Energy Phys.} 21, 1 (2010)435\end{itemize}436437\end{document}438439440