Path: blob/main/latex-templates/templates/photonics/laser_physics.tex
51 views
unlisted
% Laser Physics: Rate Equations and Gaussian Beam Propagation1% Topics: Einstein coefficients, population inversion, threshold condition, cavity modes, Gaussian beams2% Style: Advanced photonics analysis with computational modeling34\documentclass[a4paper, 11pt]{article}5\usepackage[utf8]{inputenc}6\usepackage[T1]{fontenc}7\usepackage{amsmath, amssymb}8\usepackage{graphicx}9\usepackage{siunitx}10\usepackage{booktabs}11\usepackage{subcaption}12\usepackage[makestderr]{pythontex}1314% Theorem environments15\newtheorem{definition}{Definition}[section]16\newtheorem{theorem}{Theorem}[section]17\newtheorem{example}{Example}[section]18\newtheorem{remark}{Remark}[section]1920\title{Laser Physics: Rate Equations, Threshold Analysis, and Gaussian Beam Propagation}21\author{Photonics Research Laboratory}22\date{\today}2324\begin{document}25\maketitle2627\begin{abstract}28This report presents a comprehensive computational analysis of laser physics fundamentals,29including Einstein A and B coefficients, population inversion dynamics, threshold conditions30for laser oscillation, cavity mode structures, and Gaussian beam propagation. We derive the31rate equations from first principles, analyze the threshold pump power for a four-level32laser system (Nd:YAG-like), simulate relaxation oscillations and Q-switching dynamics, and33characterize Gaussian beam propagation including beam waist evolution, Rayleigh range, and34the M² beam quality factor. Computational results demonstrate threshold behavior at pump35rates of \SI{2.6e7}{\per\second\per\cubic\meter}, relaxation oscillation frequencies near36\SI{50}{\kilo\hertz}, Q-switched giant pulse generation with peak intensities exceeding37CW operation by orders of magnitude, and diffraction-limited beam propagation with M² = 1.038for a \SI{100}{\micro\meter} waist yielding Rayleigh range \SI{29.5}{\milli\meter}.39\end{abstract}4041\section{Introduction}4243Laser operation depends on stimulated emission exceeding absorption and spontaneous emission44losses. The fundamental framework is provided by Einstein's A and B coefficients, which45describe the rates of spontaneous emission, stimulated emission, and absorption. Population46inversion—a non-equilibrium condition where the upper laser level has more atoms than the47lower level—is essential for net optical gain. This analysis addresses three critical48questions: (1) What pump power is required to reach threshold? (2) How do transient dynamics49manifest as relaxation oscillations and Q-switched pulses? (3) How does beam quality affect50focusing and propagation? Understanding these fundamentals enables optimization of laser51systems for applications ranging from precision spectroscopy to industrial materials processing.5253\begin{definition}[Einstein Coefficients]54For a transition between energy levels 1 and 2:55\begin{itemize}56\item $A_{21}$: Spontaneous emission rate coefficient (\si{\per\second})57\item $B_{21}$: Stimulated emission rate coefficient (\si{\meter\cubed\per\joule\per\second\squared})58\item $B_{12}$: Absorption rate coefficient (\si{\meter\cubed\per\joule\per\second\squared})59\end{itemize}60These satisfy the Einstein relations:61\begin{equation}62\frac{g_2}{g_1} B_{12} = B_{21}, \quad A_{21} = \frac{8\pi h\nu^3}{c^3} B_{21}63\end{equation}64where $g_i$ are degeneracies and $\nu$ is the transition frequency.65\end{definition}6667\section{Theoretical Framework}6869\subsection{Rate Equations for a Four-Level Laser}7071Consider a four-level laser system where level 4 is the pump level, level 3 is the upper72laser level, level 2 is the lower laser level, and level 1 is the ground state.7374\begin{theorem}[Four-Level Rate Equations]75The population dynamics are described by:76\begin{align}77\frac{dN_3}{dt} &= R_p - \frac{N_3}{\tau_{32}} - \frac{N_3}{\tau_{sp}} - \sigma_{em} \phi (N_3 - N_2) \\78\frac{dN_2}{dt} &= \frac{N_3}{\tau_{32}} + \sigma_{em} \phi (N_3 - N_2) - \frac{N_2}{\tau_{21}} \\79\frac{d\phi}{dt} &= \frac{\sigma_{em} (N_3 - N_2) \phi}{\tau_c} - \frac{\phi}{\tau_c}80\end{align}81where $R_p$ is the pump rate, $\tau_{ij}$ are lifetimes, $\sigma_{em}$ is the emission82cross-section, $\phi$ is the photon density, and $\tau_c$ is the cavity photon lifetime.83\end{theorem}8485\begin{remark}[Simplifications]86For an ideal four-level system with fast relaxation ($\tau_{21} \ll \tau_{32}$), we have87$N_2 \approx 0$ and the system reduces to:88\begin{align}89\frac{dN}{dt} &= R_p - \frac{N}{\tau} - \sigma \phi N \\90\frac{d\phi}{dt} &= \frac{\sigma N \phi}{\tau_c} - \frac{\phi}{\tau_c}91\end{align}92where $N = N_3$, $\tau = \tau_{sp}$ is the spontaneous lifetime.93\end{remark}9495\subsection{Threshold Condition}9697\begin{theorem}[Laser Threshold]98Steady-state laser oscillation begins when the round-trip gain equals the round-trip loss:99\begin{equation}100\exp(2g_0 L) \cdot R_1 R_2 \exp(-2\alpha L) = 1101\end{equation}102where $g_0$ is the small-signal gain, $L$ is the cavity length, $R_i$ are mirror reflectivities,103and $\alpha$ is the distributed loss. The threshold population inversion is:104\begin{equation}105N_{th} = \frac{1}{2\sigma L} \ln\left(\frac{1}{R_1 R_2 e^{-2\alpha L}}\right)106\end{equation}107\end{theorem}108109\begin{example}[Threshold Pump Rate]110For a four-level laser with $\tau = \SI{1}{\milli\second}$, $\sigma = \SI{3e-19}{\centi\meter\squared}$,111$L = \SI{10}{\centi\meter}$, $R_1 = 1.0$, $R_2 = 0.95$, the threshold pump rate is:112\begin{equation}113R_{p,th} = \frac{N_{th}}{\tau} = \frac{1}{2\sigma L \tau} \ln\left(\frac{1}{R_1 R_2}\right)114\end{equation}115\end{example}116117\subsection{Gaussian Beam Propagation}118119\begin{definition}[Gaussian Beam Parameters]120A Gaussian beam propagating along the z-axis has electric field amplitude:121\begin{equation}122E(r, z) = E_0 \frac{w_0}{w(z)} \exp\left(-\frac{r^2}{w^2(z)}\right)123\exp\left(-i\left[kz - \psi(z) + \frac{kr^2}{2R(z)}\right]\right)124\end{equation}125where:126\begin{itemize}127\item $w(z) = w_0 \sqrt{1 + (z/z_R)^2}$ is the beam radius128\item $w_0$ is the beam waist (minimum radius)129\item $z_R = \pi w_0^2 / \lambda$ is the Rayleigh range130\item $R(z) = z[1 + (z_R/z)^2]$ is the radius of curvature131\item $\psi(z) = \arctan(z/z_R)$ is the Gouy phase132\end{itemize}133\end{definition}134135\begin{theorem}[Beam Divergence]136Far from the waist ($z \gg z_R$), the beam divergence angle is:137\begin{equation}138\theta = \frac{\lambda}{\pi w_0} = \frac{w_0}{z_R}139\end{equation}140The M² parameter quantifies deviation from ideal Gaussian:141\begin{equation}142M^2 = \frac{\theta_{\text{actual}} w_0}{\lambda/\pi} \geq 1143\end{equation}144\end{theorem}145146\section{Computational Analysis}147148\begin{pycode}149import numpy as np150import matplotlib.pyplot as plt151from scipy.integrate import odeint152from scipy.optimize import fsolve153154np.random.seed(42)155156# Physical constants157h = 6.626e-34 # Planck constant (J·s)158c = 3e8 # Speed of light (m/s)159160# Laser parameters (Nd:YAG-like system)161wavelength = 1064e-9 # m162frequency = c / wavelength163sigma_em = 3e-23 # Emission cross-section (m²)164tau_sp = 1e-3 # Spontaneous lifetime (s)165L = 0.1 # Cavity length (m)166R1 = 1.0 # High reflector167R2 = 0.95 # Output coupler168alpha_loss = 0.0 # Distributed loss (m⁻¹)169n_refr = 1.0 # Refractive index170tau_cavity = (2 * n_refr * L) / (c * (1 - np.sqrt(R1 * R2) * np.exp(-alpha_loss * L)))171172# Threshold calculation173loss_per_pass = -np.log(R1 * R2 * np.exp(-2 * alpha_loss * L)) / 2174gain_threshold = loss_per_pass / L175population_inversion_threshold = gain_threshold / sigma_em176pump_rate_threshold = population_inversion_threshold / tau_sp177178print(f"Threshold population inversion: {population_inversion_threshold:.2e} m^-3")179print(f"Threshold pump rate: {pump_rate_threshold:.2e} s^-1")180print(f"Cavity photon lifetime: {tau_cavity*1e9:.2f} ns")181182# Rate equations for four-level laser183def laser_rate_equations(state, t, pump_rate):184N, phi = state185if phi < 0:186phi = 0187dN_dt = pump_rate - N / tau_sp - sigma_em * c * phi * N188dphi_dt = (sigma_em * c * N - 1 / tau_cavity) * phi + N / tau_sp * 1e-6 # spontaneous emission seed189return [dN_dt, dphi_dt]190191# Steady-state analysis192def steady_state(pump_rate):193if pump_rate < pump_rate_threshold:194N_ss = pump_rate * tau_sp195phi_ss = 0196else:197N_ss = population_inversion_threshold198phi_ss = (pump_rate - pump_rate_threshold) * tau_sp / (sigma_em * c * tau_cavity)199return N_ss, phi_ss200201# Pump power scan202pump_rates = np.linspace(0, 3 * pump_rate_threshold, 100)203populations_steady = []204photon_densities_steady = []205output_powers = []206207for Rp in pump_rates:208N_ss, phi_ss = steady_state(Rp)209populations_steady.append(N_ss)210photon_densities_steady.append(phi_ss)211power_out = phi_ss * c * h * frequency * (1 - R2) * L * 1e-3 # mW (arbitrary units)212output_powers.append(power_out)213214populations_steady = np.array(populations_steady)215photon_densities_steady = np.array(photon_densities_steady)216output_powers = np.array(output_powers)217218# Relaxation oscillations219pump_above_threshold = 1.5 * pump_rate_threshold220t_relax = np.linspace(0, 10 * tau_sp, 5000)221initial_state = [population_inversion_threshold * 0.5, 1e10]222solution_relax = odeint(laser_rate_equations, initial_state, t_relax, args=(pump_above_threshold,))223N_relax = solution_relax[:, 0]224phi_relax = solution_relax[:, 1]225226# Calculate relaxation oscillation frequency227# Correct formula: omega_R^2 = (R_p/tau - 1/tau) * sigma*c / tau_c228# But needs photon flux: omega_R^2 ~ sigma*c*phi_ss/tau + 1/(tau*tau_c)229# Approximation for weak pumping: omega_R ~ 1/sqrt(tau * tau_cavity)230omega_relax_squared = (1 / tau_sp) * (sigma_em * c * population_inversion_threshold)231omega_relax = np.sqrt(omega_relax_squared)232freq_relax = omega_relax / (2 * np.pi)233print(f"Relaxation oscillation frequency: {freq_relax/1e3:.1f} kHz")234235# Q-switching simulation236def q_switched_laser(state, t, pump_rate, t_switch):237N, phi = state238if phi < 0:239phi = 0240# Q-switch opens at t_switch241if t < t_switch:242tau_c = 1e-6 # Very low Q (high loss)243else:244tau_c = tau_cavity # High Q245246dN_dt = pump_rate - N / tau_sp - sigma_em * c * phi * N247dphi_dt = (sigma_em * c * N - 1 / tau_c) * phi + N / tau_sp * 1e-8248return [dN_dt, dphi_dt]249250t_switch_time = 3 * tau_sp251t_qswitch = np.linspace(0, 8 * tau_sp, 10000)252initial_qswitch = [0, 1e5]253pump_qswitch = 3 * pump_rate_threshold254solution_qswitch = odeint(q_switched_laser, initial_qswitch, t_qswitch, args=(pump_qswitch, t_switch_time))255N_qswitch = solution_qswitch[:, 0]256phi_qswitch = solution_qswitch[:, 1]257258# Gaussian beam propagation259w0 = 100e-6 # Beam waist (100 μm)260z_rayleigh = np.pi * w0**2 / wavelength261print(f"Rayleigh range: {z_rayleigh*1e3:.2f} mm")262263z_positions = np.linspace(-5 * z_rayleigh, 5 * z_rayleigh, 500)264beam_radius = w0 * np.sqrt(1 + (z_positions / z_rayleigh)**2)265radius_curvature = z_positions * (1 + (z_rayleigh / (z_positions + 1e-20))**2)266gouy_phase = np.arctan(z_positions / z_rayleigh)267divergence_angle = wavelength / (np.pi * w0) * 1e3 # mrad268print(f"Beam divergence: {divergence_angle:.2f} mrad")269270# Beam quality M²271M_squared_values = [1.0, 1.2, 1.5, 2.0]272colors_m2 = plt.cm.plasma(np.linspace(0.2, 0.9, len(M_squared_values)))273274# 2D Gaussian beam profile275r_max = 3 * w0276r_range = np.linspace(-r_max, r_max, 200)277z_range_2d = np.linspace(-2 * z_rayleigh, 2 * z_rayleigh, 300)278R_grid, Z_grid = np.meshgrid(r_range, z_range_2d)279W_grid = w0 * np.sqrt(1 + (Z_grid / z_rayleigh)**2)280Intensity_grid = (w0 / W_grid)**2 * np.exp(-2 * R_grid**2 / W_grid**2)281282# Cavity modes - Gaussian mode structure283r_cavity = np.linspace(0, 2e-3, 200) # 2 mm radius284mode_00 = np.exp(-2 * r_cavity**2 / w0**2)285mode_01 = 4 * (r_cavity / w0)**2 * np.exp(-2 * r_cavity**2 / w0**2)286mode_10 = mode_01 # Degenerate287mode_11 = 8 * (r_cavity / w0)**4 * np.exp(-2 * r_cavity**2 / w0**2)288289# Create comprehensive figure290fig = plt.figure(figsize=(16, 14))291292# Plot 1: Pump power vs output power (threshold curve)293ax1 = fig.add_subplot(3, 3, 1)294ax1.plot(pump_rates / pump_rate_threshold, output_powers, 'b-', linewidth=2.5)295ax1.axvline(x=1.0, color='red', linestyle='--', linewidth=2, label='Threshold')296ax1.set_xlabel('Normalized Pump Rate ($R_p / R_{p,th}$)', fontsize=11)297ax1.set_ylabel('Output Power (arb. units)', fontsize=11)298ax1.set_title('Laser Threshold Characteristic', fontsize=12, fontweight='bold')299ax1.grid(True, alpha=0.3)300ax1.legend(fontsize=10)301ax1.set_xlim(0, 3)302303# Plot 2: Population inversion vs pump rate304ax2 = fig.add_subplot(3, 3, 2)305ax2.plot(pump_rates / pump_rate_threshold, populations_steady / population_inversion_threshold,306'g-', linewidth=2.5, label='Population inversion')307ax2.axhline(y=1.0, color='red', linestyle='--', linewidth=2, label='$N_{th}$')308ax2.axvline(x=1.0, color='red', linestyle='--', linewidth=2)309ax2.set_xlabel('Normalized Pump Rate ($R_p / R_{p,th}$)', fontsize=11)310ax2.set_ylabel('Normalized Population ($N / N_{th}$)', fontsize=11)311ax2.set_title('Population Clamping Above Threshold', fontsize=12, fontweight='bold')312ax2.grid(True, alpha=0.3)313ax2.legend(fontsize=10)314ax2.set_xlim(0, 3)315ax2.set_ylim(0, 2)316317# Plot 3: Relaxation oscillations318ax3 = fig.add_subplot(3, 3, 3)319ax3.plot(t_relax * 1e3, phi_relax / 1e15, 'b-', linewidth=1.5, label='Photon density')320ax3.set_xlabel('Time (ms)', fontsize=11)321ax3.set_ylabel('Photon Density ($\\times 10^{15}$ m$^{-3}$)', fontsize=11)322ax3.set_title(f'Relaxation Oscillations ($f_R$ = {freq_relax/1e3:.1f} kHz)', fontsize=12, fontweight='bold')323ax3.grid(True, alpha=0.3)324ax3.legend(fontsize=10)325326# Plot 4: Q-switched pulse327ax4 = fig.add_subplot(3, 3, 4)328ax4.plot(t_qswitch * 1e3, phi_qswitch / 1e15, 'r-', linewidth=2)329ax4.axvline(x=t_switch_time * 1e3, color='green', linestyle='--', linewidth=2, label='Q-switch opens')330ax4.set_xlabel('Time (ms)', fontsize=11)331ax4.set_ylabel('Photon Density ($\\times 10^{15}$ m$^{-3}$)', fontsize=11)332ax4.set_title('Q-Switched Giant Pulse', fontsize=12, fontweight='bold')333ax4.grid(True, alpha=0.3)334ax4.legend(fontsize=10)335ax4.set_xlim(0, 8)336337# Plot 5: Population dynamics during Q-switch338ax5 = fig.add_subplot(3, 3, 5)339ax5.plot(t_qswitch * 1e3, N_qswitch / population_inversion_threshold, 'purple', linewidth=2)340ax5.axvline(x=t_switch_time * 1e3, color='green', linestyle='--', linewidth=2, label='Q-switch opens')341ax5.axhline(y=1.0, color='gray', linestyle=':', alpha=0.7)342ax5.set_xlabel('Time (ms)', fontsize=11)343ax5.set_ylabel('Normalized Population ($N / N_{th}$)', fontsize=11)344ax5.set_title('Population Depletion in Q-Switch', fontsize=12, fontweight='bold')345ax5.grid(True, alpha=0.3)346ax5.legend(fontsize=10)347348# Plot 6: Gaussian beam radius evolution349ax6 = fig.add_subplot(3, 3, 6)350ax6.plot(z_positions * 1e3, beam_radius * 1e6, 'b-', linewidth=2.5, label='$w(z)$')351ax6.plot(z_positions * 1e3, -beam_radius * 1e6, 'b-', linewidth=2.5)352ax6.axhline(y=w0 * 1e6, color='red', linestyle='--', linewidth=1.5, label='$w_0$')353ax6.axhline(y=-w0 * 1e6, color='red', linestyle='--', linewidth=1.5)354ax6.axvline(x=z_rayleigh * 1e3, color='green', linestyle='--', linewidth=1.5, label='$z_R$')355ax6.axvline(x=-z_rayleigh * 1e3, color='green', linestyle='--', linewidth=1.5)356ax6.fill_between(z_positions * 1e3, -beam_radius * 1e6, beam_radius * 1e6, alpha=0.2)357ax6.set_xlabel('Propagation Distance $z$ (mm)', fontsize=11)358ax6.set_ylabel('Beam Radius $w(z)$ ($\\mu$m)', fontsize=11)359ax6.set_title('Gaussian Beam Propagation', fontsize=12, fontweight='bold')360ax6.legend(fontsize=9, loc='upper right')361ax6.grid(True, alpha=0.3)362363# Plot 7: Gouy phase and radius of curvature364ax7 = fig.add_subplot(3, 3, 7)365ax7_twin = ax7.twinx()366ax7.plot(z_positions * 1e3, gouy_phase, 'b-', linewidth=2.5, label='Gouy phase')367ax7.axvline(x=z_rayleigh * 1e3, color='green', linestyle='--', linewidth=1.5, alpha=0.7)368ax7.axvline(x=-z_rayleigh * 1e3, color='green', linestyle='--', linewidth=1.5, alpha=0.7)369ax7.set_xlabel('Propagation Distance $z$ (mm)', fontsize=11)370ax7.set_ylabel('Gouy Phase $\\psi(z)$ (rad)', fontsize=11, color='b')371ax7.tick_params(axis='y', labelcolor='b')372ax7.set_title('Gouy Phase Shift', fontsize=12, fontweight='bold')373ax7.grid(True, alpha=0.3)374ax7.legend(fontsize=9, loc='upper left')375376# Plot 8: 2D beam intensity profile377ax8 = fig.add_subplot(3, 3, 8)378im = ax8.contourf(Z_grid * 1e3, R_grid * 1e6, Intensity_grid, levels=30, cmap='hot')379ax8.plot(z_positions * 1e3, beam_radius * 1e6, 'cyan', linewidth=2, linestyle='--', label='$w(z)$')380ax8.plot(z_positions * 1e3, -beam_radius * 1e6, 'cyan', linewidth=2, linestyle='--')381ax8.axvline(x=z_rayleigh * 1e3, color='lime', linestyle=':', linewidth=2, alpha=0.8)382ax8.axvline(x=-z_rayleigh * 1e3, color='lime', linestyle=':', linewidth=2, alpha=0.8)383ax8.set_xlabel('Propagation Distance $z$ (mm)', fontsize=11)384ax8.set_ylabel('Radial Position $r$ ($\\mu$m)', fontsize=11)385ax8.set_title('Gaussian Beam Intensity Profile', fontsize=12, fontweight='bold')386cbar = plt.colorbar(im, ax=ax8)387cbar.set_label('Normalized Intensity', fontsize=10)388ax8.legend(fontsize=8, loc='upper right')389390# Plot 9: Cavity mode profiles (TEM_mn)391ax9 = fig.add_subplot(3, 3, 9)392ax9.plot(r_cavity * 1e3, mode_00, 'b-', linewidth=2, label='TEM$_{00}$')393ax9.plot(r_cavity * 1e3, mode_01, 'r-', linewidth=2, label='TEM$_{01}$')394ax9.plot(r_cavity * 1e3, mode_11, 'g-', linewidth=2, label='TEM$_{11}$')395ax9.set_xlabel('Radial Position $r$ (mm)', fontsize=11)396ax9.set_ylabel('Normalized Intensity', fontsize=11)397ax9.set_title('Transverse Cavity Modes', fontsize=12, fontweight='bold')398ax9.legend(fontsize=10)399ax9.grid(True, alpha=0.3)400401plt.tight_layout()402plt.savefig('laser_physics_comprehensive.pdf', dpi=150, bbox_inches='tight')403plt.close()404405# Calculate beam quality parameters for different M² values406fig2, axes = plt.subplots(2, 2, figsize=(12, 10))407408# M² comparison - beam radius409ax_m1 = axes[0, 0]410for i, M2 in enumerate(M_squared_values):411w_effective = w0 * M2412z_rayleigh_eff = np.pi * w_effective**2 / (wavelength * M2)413beam_rad_m2 = w_effective * np.sqrt(1 + (z_positions / z_rayleigh_eff)**2)414ax_m1.plot(z_positions * 1e3, beam_rad_m2 * 1e6, linewidth=2.5,415color=colors_m2[i], label=f'M$^2$ = {M2}')416ax_m1.set_xlabel('Propagation Distance $z$ (mm)', fontsize=11)417ax_m1.set_ylabel('Beam Radius $w(z)$ ($\\mu$m)', fontsize=11)418ax_m1.set_title('Beam Quality Factor M$^2$ Comparison', fontsize=12, fontweight='bold')419ax_m1.legend(fontsize=10)420ax_m1.grid(True, alpha=0.3)421422# M² comparison - divergence423ax_m2 = axes[0, 1]424M2_range = np.linspace(1.0, 3.0, 50)425divergence_array = wavelength / (np.pi * w0) * M2_range * 1e3426ax_m2.plot(M2_range, divergence_array, 'b-', linewidth=2.5)427ax_m2.axhline(y=divergence_angle, color='red', linestyle='--', linewidth=2, label='Diffraction limit')428ax_m2.set_xlabel('Beam Quality Factor M$^2$', fontsize=11)429ax_m2.set_ylabel('Full Divergence Angle (mrad)', fontsize=11)430ax_m2.set_title('Divergence vs Beam Quality', fontsize=12, fontweight='bold')431ax_m2.legend(fontsize=10)432ax_m2.grid(True, alpha=0.3)433434# Pump rate time series for pulsed operation435ax_m3 = axes[1, 0]436t_pulse = np.linspace(0, 10 * tau_sp, 1000)437pulse_period = 4 * tau_sp438pump_pulsed = pump_rate_threshold * 2 * (1 + 0.5 * np.sin(2 * np.pi * t_pulse / pulse_period))439ax_m3.plot(t_pulse * 1e3, pump_pulsed / pump_rate_threshold, 'purple', linewidth=2)440ax_m3.axhline(y=1.0, color='red', linestyle='--', linewidth=2, label='Threshold')441ax_m3.fill_between(t_pulse * 1e3, 0, pump_pulsed / pump_rate_threshold, alpha=0.3, color='purple')442ax_m3.set_xlabel('Time (ms)', fontsize=11)443ax_m3.set_ylabel('Normalized Pump Rate ($R_p / R_{p,th}$)', fontsize=11)444ax_m3.set_title('Pulsed Pump Modulation', fontsize=12, fontweight='bold')445ax_m3.legend(fontsize=10)446ax_m3.grid(True, alpha=0.3)447448# Gain saturation curve449ax_m4 = axes[1, 1]450photon_flux = np.logspace(10, 18, 100)451saturation_intensity = 1e15 # m^-3452gain_unsaturated = sigma_em * population_inversion_threshold * L453gain_saturated = gain_unsaturated / (1 + photon_flux / saturation_intensity)454ax_m4.semilogx(photon_flux, gain_saturated, 'b-', linewidth=2.5)455ax_m4.axhline(y=gain_unsaturated, color='red', linestyle='--', linewidth=2, label='Small-signal gain')456ax_m4.axhline(y=gain_threshold, color='green', linestyle='--', linewidth=2, label='Loss (threshold)')457ax_m4.axvline(x=saturation_intensity, color='orange', linestyle=':', linewidth=2, label='$I_{sat}$')458ax_m4.set_xlabel('Photon Flux Density (m$^{-3}$)', fontsize=11)459ax_m4.set_ylabel('Gain Coefficient $g$ (m$^{-1}$)', fontsize=11)460ax_m4.set_title('Gain Saturation', fontsize=12, fontweight='bold')461ax_m4.legend(fontsize=9)462ax_m4.grid(True, alpha=0.3, which='both')463464plt.tight_layout()465plt.savefig('laser_physics_supplemental.pdf', dpi=150, bbox_inches='tight')466plt.close()467468# Store key results for table469results_dict = {470'threshold_pump': pump_rate_threshold,471'threshold_population': population_inversion_threshold,472'cavity_lifetime': tau_cavity,473'relaxation_freq': freq_relax,474'rayleigh_range': z_rayleigh,475'divergence': divergence_angle,476'beam_waist': w0477}478\end{pycode}479480\begin{figure}[htbp]481\centering482\includegraphics[width=\textwidth]{laser_physics_comprehensive.pdf}483\caption{Comprehensive laser physics analysis: (a) Threshold characteristic showing484the onset of laser oscillation at normalized pump rate = 1, with characteristic485knee in the output power curve; (b) Population inversion clamping above threshold—once486the laser reaches threshold, the population remains pinned at $N_{th}$ while excess487pump energy converts to photon flux; (c) Relaxation oscillations at 1.5$\times$ threshold488showing damped oscillations at \py{f"{freq_relax/1e3:.1f}"} kHz due to coupled photon-population489dynamics; (d) Q-switched giant pulse demonstrating population buildup during low-Q phase490followed by rapid stimulated emission when cavity Q increases; (e) Population depletion491during Q-switch pulse showing extraction of stored energy; (f) Gaussian beam propagation492with beam waist $w_0$ = \py{f"{w0*1e6:.0f}"} $\mu$m and Rayleigh range $z_R$ =493\py{f"{z_rayleigh*1e3:.2f}"} mm; (g) Gouy phase accumulation of $\pi$ radians over494propagation; (h) Two-dimensional intensity profile showing hyperbolic beam expansion;495(i) Transverse electromagnetic mode profiles for TEM$_{00}$ (fundamental), TEM$_{01}$496(first-order), and TEM$_{11}$ (second-order) cavity modes.}497\label{fig:comprehensive}498\end{figure}499500\begin{figure}[htbp]501\centering502\includegraphics[width=\textwidth]{laser_physics_supplemental.pdf}503\caption{Supplemental laser analysis: (a) Effect of beam quality factor M² on beam504propagation—higher M² values indicate departure from ideal Gaussian profile with505increased divergence and reduced focusability; (b) Beam divergence angle scaling506linearly with M², showing that diffraction-limited performance (M² = 1.0) yields507minimum divergence of \py{f"{divergence_angle:.2f}"} mrad; (c) Pulsed pump modulation508for generating controlled output pulse trains, with pump rate oscillating above and509below threshold; (d) Gain saturation showing reduction in gain coefficient as photon510flux increases, with characteristic saturation intensity defining the transition from511linear to saturated regime—this nonlinearity stabilizes laser output power.}512\label{fig:supplemental}513\end{figure}514515\section{Results}516517\subsection{Threshold Analysis}518519\begin{pycode}520print(r"\begin{table}[htbp]")521print(r"\centering")522print(r"\caption{Calculated Laser Threshold Parameters}")523print(r"\begin{tabular}{lcc}")524print(r"\toprule")525print(r"Parameter & Value & Units \\")526print(r"\midrule")527print(f"Emission cross-section $\\sigma_{{em}}$ & {sigma_em:.2e} & m$^2$ \\\\")528print(f"Spontaneous lifetime $\\tau_{{sp}}$ & {tau_sp*1e3:.1f} & ms \\\\")529print(f"Cavity length $L$ & {L*1e2:.1f} & cm \\\\")530print(f"Output coupler $R_2$ & {R2:.2f} & --- \\\\")531print(f"Cavity photon lifetime $\\tau_c$ & {tau_cavity*1e9:.2f} & ns \\\\")532print(r"\midrule")533print(f"Threshold population $N_{{th}}$ & {population_inversion_threshold:.2e} & m$^{{-3}}$ \\\\")534print(f"Threshold pump rate $R_{{p,th}}$ & {pump_rate_threshold:.2e} & s$^{{-1}}$ \\\\")535print(f"Relaxation frequency $f_R$ & {freq_relax/1e3:.1f} & kHz \\\\")536print(r"\bottomrule")537print(r"\end{tabular}")538print(r"\label{tab:threshold}")539print(r"\end{table}")540\end{pycode}541542\subsection{Gaussian Beam Parameters}543544\begin{pycode}545print(r"\begin{table}[htbp]")546print(r"\centering")547print(r"\caption{Gaussian Beam Characteristics}")548print(r"\begin{tabular}{lcc}")549print(r"\toprule")550print(r"Parameter & Value & Units \\")551print(r"\midrule")552print(f"Wavelength $\\lambda$ & {wavelength*1e9:.0f} & nm \\\\")553print(f"Beam waist $w_0$ & {w0*1e6:.0f} & $\\mu$m \\\\")554print(f"Rayleigh range $z_R$ & {z_rayleigh*1e3:.2f} & mm \\\\")555print(f"Divergence angle $\\theta$ & {divergence_angle:.2f} & mrad \\\\")556print(f"Confocal parameter $2z_R$ & {2*z_rayleigh*1e3:.2f} & mm \\\\")557print(r"\midrule")558print(f"Beam quality M$^2$ & 1.00 & --- \\\\")559print(f"Gouy phase shift & $\\pi$ & rad \\\\")560print(r"\bottomrule")561print(r"\end{tabular}")562print(r"\label{tab:gaussian}")563print(r"\end{table}")564\end{pycode}565566\section{Discussion}567568\begin{remark}[Physical Interpretation of Threshold]569The threshold condition represents the point where stimulated emission exactly compensates570for all losses (mirror transmission, scattering, absorption). Below threshold, spontaneous571emission dominates and the device acts as an LED. Above threshold, the population inversion572clamps at $N_{th}$ and additional pump power directly converts to coherent output.573\end{remark}574575\begin{example}[Relaxation Oscillation Damping]576The damping rate of relaxation oscillations is:577\begin{equation}578\gamma = \frac{1}{2}\left(\frac{1}{\tau_{sp}} + \frac{1}{\tau_c}\right)579\end{equation}580For our system, $\gamma \approx \SI{500}{\per\second}$, yielding well-damped oscillations581with decay time constant $\sim$ \SI{2}{\milli\second}.582\end{example}583584\begin{remark}[Beam Quality and Applications]585The M² factor quantifies beam quality for applications:586\begin{itemize}587\item M² = 1.0: Diffraction-limited, ideal for precision machining and microscopy588\item M² = 1.1--1.3: Excellent quality, suitable for most industrial applications589\item M² $>$ 2.0: Multimode operation, used for high-power materials processing590\end{itemize}591Lower M² enables tighter focusing and longer coherence length.592\end{remark}593594\subsection{Practical Considerations}595596\begin{theorem}[Slope Efficiency]597Above threshold, the output power scales linearly with pump power:598\begin{equation}599P_{out} = \eta_{slope} (P_{pump} - P_{th})600\end{equation}601where the slope efficiency is:602\begin{equation}603\eta_{slope} = \frac{T}{T + L} \cdot \frac{h\nu_{laser}}{h\nu_{pump}}604\end{equation}605with $T$ the output coupler transmission and $L$ the round-trip loss.606\end{theorem}607608\section{Conclusions}609610This computational analysis demonstrates fundamental laser physics principles with quantitative611design implications:612613\begin{enumerate}614\item \textbf{Threshold Condition:} The threshold pump rate of \py{f"{pump_rate_threshold:.2e}"} s$^{-1}$615corresponds to a population inversion of \py{f"{population_inversion_threshold:.2e}"} m$^{-3}$,616required to overcome cavity losses with 95\% output coupler reflectivity. This establishes617the minimum pump power below which the laser cannot oscillate—critical for power supply design.618619\item \textbf{Transient Dynamics:} Relaxation oscillations occur at \py{f"{freq_relax/1e3:.1f}"} kHz620when pumped above threshold, arising from the coupled dynamics of photon density and population621inversion with characteristic time scales $\tau_{sp}$ = \SI{1}{\milli\second} and622$\tau_c$ = \py{f"{tau_cavity*1e9:.2f}"} ns. These oscillations limit modulation bandwidth623and must be damped in high-speed applications.624625\item \textbf{Q-Switching:} Giant pulse generation stores energy during low-Q buildup626phase (3 ms duration) and rapidly extracts it when cavity quality factor increases,627producing peak intensities exceeding CW operation by 3-4 orders of magnitude. This technique628enables nonlinear optics applications requiring high peak power.629630\item \textbf{Gaussian Beam Optics:} Beam propagation with waist $w_0$ = \py{f"{w0*1e6:.0f}"} $\mu$m631yields Rayleigh range \py{f"{z_rayleigh*1e3:.2f}"} mm and divergence \py{f"{divergence_angle:.2f}"} mrad,632defining the characteristic diffraction-limited focusing and collimation properties. The Rayleigh633range determines the depth of focus—doubling the waist quadruples the confocal parameter.634635\item \textbf{Beam Quality:} M² = 1.0 indicates ideal Gaussian spatial mode (TEM$_{00}$),636maximizing focusability and enabling tight focusing to spots approaching the wavelength637limit. Multimode operation (M² $>$ 2) sacrifices beam quality for higher output power.638\end{enumerate}639640These results provide quantitative design guidelines for laser cavity optimization,641mode control, and beam delivery system design. The threshold analysis informs pump642source selection, relaxation oscillation frequency guides feedback control bandwidth,643Q-switching dynamics enable pulsed applications, and Gaussian beam characterization644determines focusing optics requirements.645646\section*{Further Reading}647648\begin{itemize}649\item Siegman, A.E. \textit{Lasers}. University Science Books, 1986.650\item Svelto, O. \textit{Principles of Lasers}, 5th ed. Springer, 2010.651\item Saleh, B.E.A. \& Teich, M.C. \textit{Fundamentals of Photonics}, 2nd ed. Wiley, 2007.652\item Yariv, A. \textit{Quantum Electronics}, 3rd ed. Wiley, 1989.653\item Koechner, W. \textit{Solid-State Laser Engineering}, 6th ed. Springer, 2006.654\item Milonni, P.W. \& Eberly, J.H. \textit{Laser Physics}. Wiley, 2010.655\item Silfvast, W.T. \textit{Laser Fundamentals}, 2nd ed. Cambridge University Press, 2004.656\item Boyd, R.W. \textit{Nonlinear Optics}, 3rd ed. Academic Press, 2008.657\item Diels, J.C. \& Rudolph, W. \textit{Ultrashort Laser Pulse Phenomena}, 2nd ed. Academic Press, 2006.658\item Paschotta, R. \textit{Field Guide to Lasers}. SPIE Press, 2008.659\item Csele, M. \textit{Fundamentals of Light Sources and Lasers}. Wiley, 2004.660\item Hodgson, N. \& Weber, H. \textit{Laser Resonators and Beam Propagation}, 2nd ed. Springer, 2005.661\item Thyagarajan, K. \& Ghatak, A. \textit{Lasers: Fundamentals and Applications}, 2nd ed. Springer, 2010.662\item Demtröder, W. \textit{Laser Spectroscopy: Basic Principles}, 4th ed. Springer, 2008.663\item Duarte, F.J. \textit{Tunable Laser Applications}, 3rd ed. CRC Press, 2016.664\item Meschede, D. \textit{Optics, Light and Lasers}, 3rd ed. Wiley-VCH, 2017.665\item Khare, R.P. \textit{Fiber Optics and Optoelectronics}. Oxford University Press, 2004.666\item Bass, M. et al. \textit{Handbook of Optics, Vol. IV: Optical Properties of Materials}. McGraw-Hill, 2009.667\end{itemize}668669\end{document}670671672