Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Ok-landscape
GitHub Repository: Ok-landscape/computational-pipeline
Path: blob/main/notebooks/published/ant_colony_optimization/ant_colony_optimization_posts.txt
51 views
unlisted
1
# Social Media Posts for Ant Colony Optimization
2
3
================================================================================
4
## SHORT-FORM POSTS
5
================================================================================
6
7
### Twitter/X (280 chars)
8
--------------------------------------------------------------------------------
9
Ants solve the Traveling Salesman Problem better than most algorithms! ACO uses pheromone trails to find optimal routes - shorter paths get reinforced over time.
10
11
25 cities, 100 iterations = near-optimal tour found.
12
13
#Python #MachineLearning #Optimization #ArtificialIntelligence
14
15
--------------------------------------------------------------------------------
16
17
### Bluesky (300 chars)
18
--------------------------------------------------------------------------------
19
Implemented Ant Colony Optimization to solve the Traveling Salesman Problem.
20
21
The math is elegant: ants choose paths based on pheromone intensity (τ) and distance heuristics (η), with probability p = [τ^α · η^β] / Σ[τ^α · η^β].
22
23
Swarm intelligence finds near-optimal routes through collective behavior.
24
25
--------------------------------------------------------------------------------
26
27
### Threads (500 chars)
28
--------------------------------------------------------------------------------
29
Ever wonder how ants find the shortest path to food? They leave pheromone trails!
30
31
I implemented this as an optimization algorithm called ACO (Ant Colony Optimization) to solve the classic Traveling Salesman Problem.
32
33
The key insight: shorter paths get traversed more often → more pheromone deposits → more ants follow that path. It's a beautiful feedback loop.
34
35
With 20 ants and 100 iterations on 25 cities, the algorithm converged to a near-optimal solution. Nature really figured this out first!
36
37
#Python #Algorithms #SwarmIntelligence
38
39
--------------------------------------------------------------------------------
40
41
### Mastodon (500 chars)
42
--------------------------------------------------------------------------------
43
Built an Ant Colony Optimization (ACO) solver for the Traveling Salesman Problem.
44
45
Core equations:
46
- Transition probability: p_ij = [τ_ij^α · η_ij^β] / Σ[τ^α · η^β]
47
- Pheromone update: τ ← (1-ρ)·τ + Σ(Q/L_k)
48
49
Where τ = pheromone, η = 1/distance, ρ = evaporation rate, L_k = tour length.
50
51
Parameters used: α=1.0, β=2.0, ρ=0.1, 20 ants, 100 iterations on 25 cities.
52
53
The pheromone matrix visualization shows emergent structure beautifully.
54
55
#Python #Optimization #ComputerScience #Algorithms
56
57
--------------------------------------------------------------------------------
58
59
================================================================================
60
## LONG-FORM POSTS
61
================================================================================
62
63
### Reddit (r/learnpython or r/science)
64
--------------------------------------------------------------------------------
65
**Title:** I implemented Ant Colony Optimization in Python - here's how swarm intelligence solves the Traveling Salesman Problem
66
67
**Body:**
68
69
**ELI5 Version:** Imagine you're an ant looking for food. You wander randomly, but when you find something good, you leave a scent trail on your way home. Other ants smell this trail and follow it. The more ants that use a path, the stronger it smells. Over time, the shortest paths end up smelling the strongest because ants can walk them faster and more often.
70
71
**The Algorithm:**
72
73
Ant Colony Optimization (ACO) turns this biological behavior into math:
74
75
1. **Transition Probability**: Each ant at city i chooses next city j with probability proportional to [τ_ij^α · η_ij^β], where τ is pheromone and η = 1/distance
76
77
2. **Pheromone Update**: After all ants complete tours, pheromones evaporate by factor (1-ρ), then each ant deposits Q/L_k on its path (L_k = tour length)
78
79
**Key Parameters:**
80
- α (alpha): How much ants trust pheromones
81
- β (beta): How much ants prefer shorter edges
82
- ρ (rho): Evaporation rate - prevents premature convergence
83
84
**Results:**
85
Running 20 ants for 100 iterations on 25 random cities, the algorithm found a near-optimal tour. The convergence plot shows rapid improvement early on, then fine-tuning.
86
87
**What I Learned:**
88
- The balance between α and β controls exploration vs exploitation
89
- Too high evaporation → lose good solutions; too low → get stuck
90
- No single ant finds the answer - it emerges from collective behavior
91
92
View and run the full interactive notebook: https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/ant_colony_optimization.ipynb
93
94
Happy to answer questions about the implementation!
95
96
--------------------------------------------------------------------------------
97
98
### Facebook (500 chars)
99
--------------------------------------------------------------------------------
100
Just coded something really cool - an algorithm inspired by how ants find food!
101
102
Ant Colony Optimization solves the famous "Traveling Salesman Problem" (finding the shortest route through multiple cities) by simulating ants leaving pheromone trails.
103
104
Shorter paths get more traffic → stronger scent → more ants follow. It's basically how nature invented GPS!
105
106
With 20 virtual ants and 100 rounds, it found a great route through 25 cities.
107
108
Check out the interactive notebook: https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/ant_colony_optimization.ipynb
109
110
--------------------------------------------------------------------------------
111
112
### LinkedIn (1000 chars)
113
--------------------------------------------------------------------------------
114
Exploring Swarm Intelligence: Implementing Ant Colony Optimization for Combinatorial Optimization
115
116
I recently implemented Ant Colony Optimization (ACO) - a metaheuristic algorithm inspired by foraging behavior in ant colonies - to solve the Traveling Salesman Problem.
117
118
Key Technical Details:
119
120
The algorithm uses a probabilistic state transition rule where an ant at node i selects node j based on:
121
p_ij ∝ τ_ij^α · η_ij^β
122
123
Where:
124
- τ_ij: pheromone intensity (learned information)
125
- η_ij: heuristic value (1/distance)
126
- α, β: relative influence parameters
127
128
Pheromones are updated via: τ ← (1-ρ)·τ + Σ(Q/L_k)
129
130
This creates a positive feedback loop where better solutions are reinforced while evaporation allows the system to escape local optima.
131
132
Results: 20 agents over 100 iterations achieved convergence on a 25-city problem, demonstrating the power of distributed, stigmergic computation.
133
134
Applications include vehicle routing, network optimization, scheduling, and protein folding.
135
136
View the full implementation: https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/ant_colony_optimization.ipynb
137
138
#Optimization #MachineLearning #Python #Algorithms #SwarmIntelligence
139
140
--------------------------------------------------------------------------------
141
142
### Instagram (500 chars)
143
--------------------------------------------------------------------------------
144
Nature-inspired optimization 🐜
145
146
Built an algorithm based on how ants find food!
147
148
The concept:
149
→ Ants leave pheromone trails
150
→ Shorter paths = more traffic = stronger scent
151
→ Colony converges on optimal routes
152
153
Applied it to the Traveling Salesman Problem (finding the shortest route through 25 cities).
154
155
The plot shows:
156
• Top left: Algorithm convergence
157
• Top right: Pheromone intensity matrix
158
• Bottom left: Best tour found
159
• Bottom right: Emergent pheromone trails
160
161
Sometimes the best algorithms come from watching insects.
162
163
#Python #Coding #DataScience #Algorithms #SwarmIntelligence #Optimization #Programming #Science #Math #AntColony
164
165
--------------------------------------------------------------------------------
166
167
================================================================================
168
## NOTES
169
================================================================================
170
171
All LaTeX converted to Unicode:
172
- τ (tau) for pheromone
173
- η (eta) for heuristic
174
- α (alpha), β (beta), ρ (rho) for parameters
175
- Σ for summation
176
- → for arrows
177
- Superscripts where possible (², ³)
178
- Fractions written as a/b format
179
- ∝ for "proportional to"
180
181