Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Ok-landscape
GitHub Repository: Ok-landscape/computational-pipeline
Path: blob/main/notebooks/published/autoencoder/autoencoder_posts.txt
51 views
unlisted
1
# Social Media Posts: Autoencoder
2
# Neural Network for Unsupervised Representation Learning
3
4
================================================================================
5
## SHORT-FORM POSTS
6
================================================================================
7
8
### Twitter/X (280 chars)
9
--------------------------------------------------------------------------------
10
Built an autoencoder from scratch with NumPy! Compressed 2D spiral data into 1D latent space - that's 2x compression while preserving structure.
11
12
z = σ(Wₑx + bₑ)
13
x̂ = σ(Wₐz + bₐ)
14
15
#Python #MachineLearning #NeuralNetworks #DataScience
16
17
--------------------------------------------------------------------------------
18
19
### Bluesky (300 chars)
20
--------------------------------------------------------------------------------
21
Implemented a simple autoencoder: 2D → 1D → 2D compression using gradient descent.
22
23
The encoder maps x → z = σ(Wₑx + bₑ), decoder reconstructs x̂ = σ(Wₐz + bₐ).
24
25
Trained on spiral data, the 1D latent space naturally captures position along the curve. Pure NumPy implementation.
26
27
#MachineLearning #Python
28
29
--------------------------------------------------------------------------------
30
31
### Threads (500 chars)
32
--------------------------------------------------------------------------------
33
Ever wondered how neural networks learn to compress data?
34
35
I built an autoencoder from scratch - a network that learns to squeeze data through a bottleneck and reconstruct it.
36
37
The magic: 2D data → 1D latent code → 2D reconstruction
38
39
Loss function: L = Σᵢ(xᵢ - x̂ᵢ)²
40
41
Key insight: Even a single number (1D) can capture the essential structure of 2D spiral data. The latent code naturally orders points along the spiral's path.
42
43
No TensorFlow, no PyTorch - just NumPy and backpropagation!
44
45
#MachineLearning #Python #DeepLearning
46
47
--------------------------------------------------------------------------------
48
49
### Mastodon (500 chars)
50
--------------------------------------------------------------------------------
51
New notebook: Autoencoder implementation from scratch
52
53
Architecture: encoder f_φ maps x → z, decoder g_θ reconstructs x̂
54
55
Encoder: z = σ(Wₑx + bₑ)
56
Decoder: x̂ = σ(Wₐz + bₐ)
57
Loss: L = ||x - x̂||² = Σᵢ(xᵢ - x̂ᵢ)²
58
59
Implemented full backprop with gradients:
60
δ_out = (x̂ - x) ⊙ σ'(Wₐz + bₐ)
61
δ_hidden = (Wₐᵀδ_out) ⊙ σ'(Wₑx + bₑ)
62
63
2D spiral → 1D latent → 2D reconstruction
64
Compression ratio: 2x
65
66
Code uses Xavier initialization and sigmoid activations.
67
68
#Python #MachineLearning #NeuralNetworks
69
70
--------------------------------------------------------------------------------
71
72
================================================================================
73
## LONG-FORM POSTS
74
================================================================================
75
76
### Reddit (r/learnpython or r/MachineLearning)
77
--------------------------------------------------------------------------------
78
**Title:** Built an Autoencoder from Scratch with NumPy - Full Backpropagation Implementation
79
80
**Body:**
81
82
I created a complete autoencoder implementation using only NumPy to understand how these networks actually learn. No frameworks, just math and code.
83
84
**What's an Autoencoder?**
85
86
Think of it as a neural network that learns to compress and decompress data. It has two parts:
87
- Encoder: Squeezes your data into a smaller representation
88
- Decoder: Reconstructs the original from that compressed version
89
90
**The Math (simplified):**
91
92
Encoder: z = σ(Wₑ · x + bₑ)
93
Decoder: x̂ = σ(Wₐ · z + bₐ)
94
Loss: L = average of (x - x̂)²
95
96
The network learns by minimizing reconstruction error using gradient descent.
97
98
**What I Built:**
99
100
- 2D input → 1D latent space → 2D output
101
- That's 2x compression!
102
- Trained on spiral data with noise
103
104
**Key Findings:**
105
106
1. Even a 1D bottleneck captures meaningful structure
107
2. The latent code naturally orders data along the spiral
108
3. Reconstruction error varies spatially - some regions compress better
109
110
**What I Learned:**
111
112
The backpropagation gradients flow backward through the network:
113
- Output gradient: δ_out = (x̂ - x) ⊙ σ'(pre-activation)
114
- Hidden gradient: δ_hidden = (Wₐᵀ · δ_out) ⊙ σ'(pre-activation)
115
116
Xavier initialization really helps with training stability.
117
118
The notebook includes full visualizations: loss curves, reconstruction comparisons, latent space distributions, and the learned decoder manifold.
119
120
**Interactive Notebook:**
121
https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/autoencoder.ipynb
122
123
Questions welcome! Happy to explain any part of the implementation.
124
125
--------------------------------------------------------------------------------
126
127
### Facebook (500 chars)
128
--------------------------------------------------------------------------------
129
Just built something cool: a neural network that learns to compress and reconstruct data automatically!
130
131
It's called an autoencoder - it squeezes 2D data into a single number, then reconstructs the original. Like extreme zip compression, but learned by the network itself.
132
133
The fascinating part? That single number captures the essential structure of the data. The network figured out the most efficient way to represent it.
134
135
Pure Python + NumPy, no fancy frameworks!
136
137
Check out the interactive notebook:
138
https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/autoencoder.ipynb
139
140
--------------------------------------------------------------------------------
141
142
### LinkedIn (1000 chars)
143
--------------------------------------------------------------------------------
144
Exploring Unsupervised Representation Learning: Autoencoder Implementation
145
146
I recently completed a from-scratch implementation of an autoencoder neural network to deepen my understanding of unsupervised learning fundamentals.
147
148
**Technical Approach:**
149
150
Built the complete training pipeline using NumPy:
151
- Forward propagation through encoder/decoder
152
- MSE loss computation: L = ||x - x̂||²
153
- Full backpropagation with gradient descent
154
- Xavier weight initialization for training stability
155
156
**Architecture:**
157
Input (2D) → Encoder → Latent (1D) → Decoder → Output (2D)
158
159
**Key Results:**
160
- Achieved 2x compression ratio
161
- Network learned to order data by position along spiral manifold
162
- Visualized reconstruction error spatially across the dataset
163
164
**Skills Demonstrated:**
165
- Neural network architecture design
166
- Gradient computation and backpropagation
167
- Numerical optimization
168
- Scientific visualization with matplotlib
169
170
This foundational work connects to advanced architectures like VAEs and denoising autoencoders used in modern generative AI.
171
172
Full implementation with visualizations:
173
https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/autoencoder.ipynb
174
175
#MachineLearning #DeepLearning #Python #DataScience #NeuralNetworks #UnsupervisedLearning
176
177
--------------------------------------------------------------------------------
178
179
### Instagram (500 chars)
180
--------------------------------------------------------------------------------
181
Neural networks that teach themselves to compress data ✨
182
183
This is an autoencoder - a network that learns to squeeze information through a bottleneck and reconstruct it.
184
185
2D spiral data → 1D latent code → 2D reconstruction
186
187
The plot shows:
188
📉 Training loss dropping
189
🔴🔵 Original vs reconstructed points
190
🌈 How reconstruction error varies
191
📊 What the latent space learned
192
193
The coolest part: The network discovered the spiral structure on its own. That single latent number captures where each point sits along the curve.
194
195
Built from scratch with Python & NumPy!
196
197
#MachineLearning #Python #DataScience #NeuralNetworks #DeepLearning #CodingLife #LearnToCode
198
199
--------------------------------------------------------------------------------
200
201