Path: blob/main/notebooks/published/autoencoder/autoencoder_posts.txt
51 views
unlisted
# Social Media Posts: Autoencoder1# Neural Network for Unsupervised Representation Learning23================================================================================4## SHORT-FORM POSTS5================================================================================67### Twitter/X (280 chars)8--------------------------------------------------------------------------------9Built an autoencoder from scratch with NumPy! Compressed 2D spiral data into 1D latent space - that's 2x compression while preserving structure.1011z = σ(Wₑx + bₑ)12x̂ = σ(Wₐz + bₐ)1314#Python #MachineLearning #NeuralNetworks #DataScience1516--------------------------------------------------------------------------------1718### Bluesky (300 chars)19--------------------------------------------------------------------------------20Implemented a simple autoencoder: 2D → 1D → 2D compression using gradient descent.2122The encoder maps x → z = σ(Wₑx + bₑ), decoder reconstructs x̂ = σ(Wₐz + bₐ).2324Trained on spiral data, the 1D latent space naturally captures position along the curve. Pure NumPy implementation.2526#MachineLearning #Python2728--------------------------------------------------------------------------------2930### Threads (500 chars)31--------------------------------------------------------------------------------32Ever wondered how neural networks learn to compress data?3334I built an autoencoder from scratch - a network that learns to squeeze data through a bottleneck and reconstruct it.3536The magic: 2D data → 1D latent code → 2D reconstruction3738Loss function: L = Σᵢ(xᵢ - x̂ᵢ)²3940Key insight: Even a single number (1D) can capture the essential structure of 2D spiral data. The latent code naturally orders points along the spiral's path.4142No TensorFlow, no PyTorch - just NumPy and backpropagation!4344#MachineLearning #Python #DeepLearning4546--------------------------------------------------------------------------------4748### Mastodon (500 chars)49--------------------------------------------------------------------------------50New notebook: Autoencoder implementation from scratch5152Architecture: encoder f_φ maps x → z, decoder g_θ reconstructs x̂5354Encoder: z = σ(Wₑx + bₑ)55Decoder: x̂ = σ(Wₐz + bₐ)56Loss: L = ||x - x̂||² = Σᵢ(xᵢ - x̂ᵢ)²5758Implemented full backprop with gradients:59δ_out = (x̂ - x) ⊙ σ'(Wₐz + bₐ)60δ_hidden = (Wₐᵀδ_out) ⊙ σ'(Wₑx + bₑ)61622D spiral → 1D latent → 2D reconstruction63Compression ratio: 2x6465Code uses Xavier initialization and sigmoid activations.6667#Python #MachineLearning #NeuralNetworks6869--------------------------------------------------------------------------------7071================================================================================72## LONG-FORM POSTS73================================================================================7475### Reddit (r/learnpython or r/MachineLearning)76--------------------------------------------------------------------------------77**Title:** Built an Autoencoder from Scratch with NumPy - Full Backpropagation Implementation7879**Body:**8081I created a complete autoencoder implementation using only NumPy to understand how these networks actually learn. No frameworks, just math and code.8283**What's an Autoencoder?**8485Think of it as a neural network that learns to compress and decompress data. It has two parts:86- Encoder: Squeezes your data into a smaller representation87- Decoder: Reconstructs the original from that compressed version8889**The Math (simplified):**9091Encoder: z = σ(Wₑ · x + bₑ)92Decoder: x̂ = σ(Wₐ · z + bₐ)93Loss: L = average of (x - x̂)²9495The network learns by minimizing reconstruction error using gradient descent.9697**What I Built:**9899- 2D input → 1D latent space → 2D output100- That's 2x compression!101- Trained on spiral data with noise102103**Key Findings:**1041051. Even a 1D bottleneck captures meaningful structure1062. The latent code naturally orders data along the spiral1073. Reconstruction error varies spatially - some regions compress better108109**What I Learned:**110111The backpropagation gradients flow backward through the network:112- Output gradient: δ_out = (x̂ - x) ⊙ σ'(pre-activation)113- Hidden gradient: δ_hidden = (Wₐᵀ · δ_out) ⊙ σ'(pre-activation)114115Xavier initialization really helps with training stability.116117The notebook includes full visualizations: loss curves, reconstruction comparisons, latent space distributions, and the learned decoder manifold.118119**Interactive Notebook:**120https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/autoencoder.ipynb121122Questions welcome! Happy to explain any part of the implementation.123124--------------------------------------------------------------------------------125126### Facebook (500 chars)127--------------------------------------------------------------------------------128Just built something cool: a neural network that learns to compress and reconstruct data automatically!129130It's called an autoencoder - it squeezes 2D data into a single number, then reconstructs the original. Like extreme zip compression, but learned by the network itself.131132The fascinating part? That single number captures the essential structure of the data. The network figured out the most efficient way to represent it.133134Pure Python + NumPy, no fancy frameworks!135136Check out the interactive notebook:137https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/autoencoder.ipynb138139--------------------------------------------------------------------------------140141### LinkedIn (1000 chars)142--------------------------------------------------------------------------------143Exploring Unsupervised Representation Learning: Autoencoder Implementation144145I recently completed a from-scratch implementation of an autoencoder neural network to deepen my understanding of unsupervised learning fundamentals.146147**Technical Approach:**148149Built the complete training pipeline using NumPy:150- Forward propagation through encoder/decoder151- MSE loss computation: L = ||x - x̂||²152- Full backpropagation with gradient descent153- Xavier weight initialization for training stability154155**Architecture:**156Input (2D) → Encoder → Latent (1D) → Decoder → Output (2D)157158**Key Results:**159- Achieved 2x compression ratio160- Network learned to order data by position along spiral manifold161- Visualized reconstruction error spatially across the dataset162163**Skills Demonstrated:**164- Neural network architecture design165- Gradient computation and backpropagation166- Numerical optimization167- Scientific visualization with matplotlib168169This foundational work connects to advanced architectures like VAEs and denoising autoencoders used in modern generative AI.170171Full implementation with visualizations:172https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/autoencoder.ipynb173174#MachineLearning #DeepLearning #Python #DataScience #NeuralNetworks #UnsupervisedLearning175176--------------------------------------------------------------------------------177178### Instagram (500 chars)179--------------------------------------------------------------------------------180Neural networks that teach themselves to compress data ✨181182This is an autoencoder - a network that learns to squeeze information through a bottleneck and reconstruct it.1831842D spiral data → 1D latent code → 2D reconstruction185186The plot shows:187📉 Training loss dropping188🔴🔵 Original vs reconstructed points189🌈 How reconstruction error varies190📊 What the latent space learned191192The coolest part: The network discovered the spiral structure on its own. That single latent number captures where each point sits along the curve.193194Built from scratch with Python & NumPy!195196#MachineLearning #Python #DataScience #NeuralNetworks #DeepLearning #CodingLife #LearnToCode197198--------------------------------------------------------------------------------199200201