Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Ok-landscape
GitHub Repository: Ok-landscape/computational-pipeline
Path: blob/main/notebooks/published/bessel_functions/bessel_functions_posts.txt
71 views
unlisted
1
================================================================================
2
BESSEL FUNCTIONS - SOCIAL MEDIA POSTS
3
================================================================================
4
5
--------------------------------------------------------------------------------
6
1. TWITTER/X (< 280 chars)
7
--------------------------------------------------------------------------------
8
9
Ever wondered how drums vibrate? 🥁 Bessel functions Jₙ(x) solve x²y'' + xy' + (x² - n²)y = 0 and appear everywhere - from heat conduction to quantum mechanics!
10
11
Visualized in Python with scipy.special
12
13
#Python #Math #Physics #Science
14
15
--------------------------------------------------------------------------------
16
2. BLUESKY (< 300 chars)
17
--------------------------------------------------------------------------------
18
19
Bessel functions are solutions to cylindrical differential equations and fundamental to physics.
20
21
Explored Jₙ(x), Yₙ(x), and modified forms Iₙ(x), Kₙ(x) - verified recurrence relations and orthogonality numerically, then visualized vibrating membrane modes.
22
23
Python + SciPy make this accessible.
24
25
--------------------------------------------------------------------------------
26
3. THREADS (< 500 chars)
27
--------------------------------------------------------------------------------
28
29
Just dove deep into Bessel functions - one of math's most useful special functions!
30
31
These solve: x²y'' + xy' + (x² - n²)y = 0
32
33
Why care? They describe:
34
• Drum vibrations
35
• Electromagnetic waves in cables
36
• Heat flow in pipes
37
• Hydrogen atom wavefunctions
38
39
Built an interactive notebook computing Jₙ(x), Yₙ(x), Iₙ(x), Kₙ(x), verified orthogonality relations, and visualized circular membrane modes.
40
41
The math behind everyday physics is beautiful.
42
43
--------------------------------------------------------------------------------
44
4. MASTODON (< 500 chars)
45
--------------------------------------------------------------------------------
46
47
Created a computational notebook on Bessel functions.
48
49
Covered:
50
• Bessel's equation: x²y'' + xy' + (x² - n²)y = 0
51
• Series expansion: Jₙ(x) = Σₘ (-1)ᵐ/(m!Γ(m+n+1)) × (x/2)^(2m+n)
52
• Recurrence: Jₙ₋₁(x) + Jₙ₊₁(x) = (2n/x)Jₙ(x)
53
• Orthogonality verification via numerical integration
54
• Application: vibrating circular membrane modes
55
56
All verified with scipy.special. The zeros of Jₙ(x) determine natural frequencies in physical systems.
57
58
#Mathematics #Physics #Python #SciPy
59
60
--------------------------------------------------------------------------------
61
5. REDDIT (r/learnpython or r/math)
62
--------------------------------------------------------------------------------
63
64
**Title:** Visualizing Bessel Functions in Python - From Theory to Vibrating Drum Modes
65
66
**Body:**
67
68
If you've taken differential equations or physics, you've probably encountered Bessel functions but maybe found them abstract. I built a notebook that makes them tangible.
69
70
**What are Bessel functions?**
71
72
They solve this differential equation:
73
74
x²y'' + xy' + (x² - n²)y = 0
75
76
Think of it as the "circular coordinate" version of sines and cosines. Just like sin/cos appear when you solve wave equations in Cartesian coordinates, Bessel functions Jₙ(x) and Yₙ(x) appear for cylindrical symmetry.
77
78
**What the notebook covers:**
79
80
1. **Four types of Bessel functions** - Jₙ(x), Yₙ(x), Iₙ(x), Kₙ(x) with their properties
81
2. **Numerical verification** - Checked that recurrence relations like Jₙ₋₁(x) + Jₙ₊₁(x) = (2n/x)Jₙ(x) actually work
82
3. **Orthogonality** - Verified ∫₀¹ x·Jₙ(αₙₘx)·Jₙ(αₙₖx)dx = 0 for m ≠ k
83
4. **Physical application** - Visualized vibrating circular membrane modes (like a drum!)
84
85
**Key insight:** The zeros of Jₙ(x) determine natural frequencies. This is why drums have their characteristic sound - each mode vibrates at a frequency proportional to these zeros.
86
87
**Tools used:** numpy, scipy.special, matplotlib
88
89
Explore the full notebook: https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/bessel_functions.ipynb
90
91
--------------------------------------------------------------------------------
92
6. FACEBOOK (< 500 chars)
93
--------------------------------------------------------------------------------
94
95
Ever wonder why drums sound the way they do?
96
97
The answer involves Bessel functions - special mathematical solutions that describe how circular membranes vibrate.
98
99
Created a Python notebook exploring these fascinating functions. The coolest part: visualizing the actual vibration patterns of a drum head. Those nodal lines where it stays still? They're determined by zeros of Bessel functions!
100
101
Math isn't just abstract - it's the language describing the world around us.
102
103
Explore it yourself: https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/bessel_functions.ipynb
104
105
--------------------------------------------------------------------------------
106
7. LINKEDIN (< 1000 chars)
107
--------------------------------------------------------------------------------
108
109
Bessel Functions: Bridging Theory and Computation
110
111
Just completed a comprehensive computational analysis of Bessel functions - fundamental solutions that appear throughout engineering and physics.
112
113
**Technical Scope:**
114
• Implemented visualization of all four Bessel function types: Jₙ(x), Yₙ(x), Iₙ(x), Kₙ(x)
115
• Numerically verified recurrence relations and orthogonality properties
116
• Computed zeros of Bessel functions with scipy.special.jn_zeros()
117
• Applied theory to physical problem: vibrating circular membrane modes
118
119
**Engineering Applications:**
120
These functions are essential for:
121
- Electromagnetic waveguide design
122
- Heat transfer in cylindrical geometries
123
- Acoustic analysis
124
- Signal processing (FM synthesis)
125
126
**Skills Demonstrated:**
127
- Scientific Python (NumPy, SciPy, Matplotlib)
128
- Numerical integration and verification
129
- Mathematical physics modeling
130
- Technical visualization
131
132
The notebook verifies theoretical properties computationally, bridging mathematical rigor with practical implementation.
133
134
Full notebook: https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/bessel_functions.ipynb
135
136
#ScientificComputing #Python #Mathematics #Engineering #DataVisualization
137
138
--------------------------------------------------------------------------------
139
8. INSTAGRAM (< 500 chars)
140
--------------------------------------------------------------------------------
141
142
The mathematics of drums 🥁
143
144
These plots show Bessel functions - solutions that describe how circular membranes vibrate.
145
146
Top left: Jₙ(x) oscillates like damped waves
147
Top right: Yₙ(x) blows up at zero
148
Bottom left: Modified versions for different physics
149
Bottom right: Zeros that determine drum frequencies
150
151
The colorful polar plots? Actual vibration modes of a drum head. Red = moving up, blue = moving down.
152
153
Math makes music make sense.
154
155
#Mathematics #Physics #Python #DataViz #Science #Visualization #Drums #WavePhysics
156
157
================================================================================
158
159