Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Ok-landscape
GitHub Repository: Ok-landscape/computational-pipeline
Path: blob/main/notebooks/published/beta_function/beta_function_posts.txt
51 views
unlisted
1
# Social Media Posts: The Beta Function
2
3
================================================================================
4
## SHORT-FORM POSTS
5
================================================================================
6
7
### Twitter/X (280 chars)
8
--------------------------------------------------------------------------------
9
The Beta function B(a,b) = Γ(a)Γ(b)/Γ(a+b) is beautifully symmetric and powers Bayesian statistics! Fun fact: B(1/2, 1/2) = π
10
11
Explored its properties with Python & SciPy.
12
13
#Math #Python #Science #DataScience #Statistics
14
15
--------------------------------------------------------------------------------
16
17
### Bluesky (300 chars)
18
--------------------------------------------------------------------------------
19
Explored the Beta function today - a fundamental special function defined by:
20
21
B(a,b) = ∫₀¹ t^(a-1)(1-t)^(b-1) dt
22
23
It's symmetric [B(a,b) = B(b,a)], connects to Gamma functions, and underlies the Beta distribution used in Bayesian inference.
24
25
#Mathematics #Python #Science
26
27
--------------------------------------------------------------------------------
28
29
### Threads (500 chars)
30
--------------------------------------------------------------------------------
31
Just explored the Beta function - one of math's most elegant special functions!
32
33
What makes it cool:
34
- Defined by a simple integral from 0 to 1
35
- Perfectly symmetric: B(a,b) = B(b,a)
36
- Connected to Gamma: B(a,b) = Γ(a)Γ(b)/Γ(a+b)
37
- B(1/2, 1/2) equals exactly π!
38
39
It's the foundation of the Beta distribution, which is huge in Bayesian statistics for modeling probabilities.
40
41
Verified all properties numerically with Python/SciPy. Math is beautiful when you can see it work!
42
43
--------------------------------------------------------------------------------
44
45
### Mastodon (500 chars)
46
--------------------------------------------------------------------------------
47
Deep dive into the Beta function B(a,b) - a cornerstone of mathematical analysis.
48
49
Key properties verified:
50
- Symmetry: B(a,b) = B(b,a)
51
- Gamma relation: B(a,b) = Γ(a)Γ(b)/Γ(a+b)
52
- Integer formula: B(m,n) = (m-1)!(n-1)!/(m+n-1)!
53
- Special value: B(1/2, 1/2) = π
54
55
The regularized incomplete Beta function I_x(a,b) serves as the CDF for Beta distributions - essential for Bayesian inference.
56
57
Computed via numerical integration, Gamma relation, and scipy.special.beta.
58
59
#Mathematics #Python #SciPy #Statistics
60
61
--------------------------------------------------------------------------------
62
63
================================================================================
64
## LONG-FORM POSTS
65
================================================================================
66
67
### Reddit (r/learnpython or r/math)
68
--------------------------------------------------------------------------------
69
**Title:** Exploring the Beta Function with Python - Verification of Properties and Visualizations
70
71
**Body:**
72
73
I created a notebook exploring the Beta function B(a,b), one of the fundamental special functions in mathematics.
74
75
**What is the Beta function?**
76
77
It's defined by the integral:
78
B(a,b) = ∫₀¹ t^(a-1)(1-t)^(b-1) dt
79
80
Think of it as measuring the "area under a curve" where the curve shape depends on parameters a and b.
81
82
**Why should you care?**
83
84
1. It's the normalizing constant for the Beta distribution, which is everywhere in Bayesian statistics
85
2. It connects to factorials: for integers, B(m,n) = (m-1)!(n-1)!/(m+n-1)!
86
3. It has a beautiful relationship with the Gamma function: B(a,b) = Γ(a)Γ(b)/Γ(a+b)
87
88
**Cool findings:**
89
90
- B(1/2, 1/2) = π (exactly!)
91
- It's perfectly symmetric: B(a,b) = B(b,a)
92
- The regularized incomplete Beta function is the CDF of the Beta distribution
93
94
**What I implemented:**
95
96
- Three computation methods (direct integration, Gamma relation, SciPy)
97
- Numerical verification of all key properties
98
- Visualizations including 3D surface plots and Beta distribution PDFs
99
100
The notebook uses NumPy, SciPy, and Matplotlib. All three computation methods agree to 8+ decimal places.
101
102
**View the full interactive notebook here:**
103
https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/beta_function.ipynb
104
105
--------------------------------------------------------------------------------
106
107
### Facebook (500 chars)
108
--------------------------------------------------------------------------------
109
Ever wondered what's behind Bayesian statistics? Meet the Beta function!
110
111
It's defined by a simple integral, but it's incredibly powerful:
112
- Perfectly symmetric in its inputs
113
- Connected to factorials and Gamma functions
114
- B(1/2, 1/2) = π exactly!
115
116
I built a Python notebook exploring this function - computing it three different ways and verifying its elegant mathematical properties.
117
118
Check out the interactive notebook:
119
https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/beta_function.ipynb
120
121
--------------------------------------------------------------------------------
122
123
### LinkedIn (1000 chars)
124
--------------------------------------------------------------------------------
125
Exploring Foundational Mathematics: The Beta Function
126
127
I recently developed a computational notebook examining the Beta function B(a,b) - a special function fundamental to probability theory and statistical analysis.
128
129
Key technical accomplishments:
130
131
- Implemented three independent computation methods: direct numerical integration, Gamma function relationship, and SciPy's optimized implementation
132
- Verified mathematical properties numerically: symmetry, recurrence relations, and special values
133
- Created comprehensive visualizations including 3D surface plots, Beta distribution PDFs, and integrand behavior
134
135
The Beta function is particularly valuable in:
136
- Bayesian inference (Beta distribution for modeling probabilities)
137
- Statistical testing (F-distribution, Student's t)
138
- Combinatorics (relationship to binomial coefficients)
139
140
Technical stack: Python, NumPy, SciPy, Matplotlib
141
142
One elegant result: B(1/2, 1/2) = π, connecting this function to fundamental constants in mathematics.
143
144
This project demonstrates proficiency in numerical methods, scientific visualization, and mathematical software development.
145
146
View the complete notebook:
147
https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/beta_function.ipynb
148
149
#Python #Mathematics #DataScience #ScientificComputing #Statistics
150
151
--------------------------------------------------------------------------------
152
153
### Instagram (500 chars)
154
--------------------------------------------------------------------------------
155
The Beta Function: Where Math Gets Beautiful
156
157
B(a,b) = ∫₀¹ t^(a-1)(1-t)^(b-1) dt
158
159
This elegant integral powers Bayesian statistics and has gorgeous properties:
160
161
- Perfectly symmetric
162
- B(1/2, 1/2) = π
163
- Foundation of the Beta distribution
164
165
Swipe to see:
166
- 3D surface visualization
167
- Beta distribution curves
168
- The integrand that defines it all
169
170
Built with Python, NumPy, SciPy, and Matplotlib.
171
172
When theory meets computation, patterns emerge.
173
174
#Mathematics #Python #DataScience #Coding #Science #Visualization #Statistics #Learning
175
176
--------------------------------------------------------------------------------
177
178