Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Ok-landscape
GitHub Repository: Ok-landscape/computational-pipeline
Path: blob/main/notebooks/published/bifurcation_diagram/bifurcation_diagram_posts.txt
51 views
unlisted
1
# Social Media Posts: Bifurcation Diagram of the Logistic Map
2
3
================================================================================
4
## SHORT-FORM POSTS
5
================================================================================
6
7
### Twitter/X (< 280 chars)
8
--------------------------------------------------------------------------------
9
From order to chaos in one equation: xₙ₊₁ = r·xₙ(1-xₙ)
10
11
The logistic map's bifurcation diagram reveals how simple rules create infinite complexity. Period-doubling cascades → chaos at r ≈ 3.57
12
13
#Python #Chaos #Math #DataViz
14
15
--------------------------------------------------------------------------------
16
17
### Bluesky (< 300 chars)
18
--------------------------------------------------------------------------------
19
Exploring the edge of chaos with Python.
20
21
The logistic map xₙ₊₁ = r·xₙ(1-xₙ) undergoes period-doubling bifurcations as r increases. At r ≈ 3.5699, chaos emerges—yet periodic windows persist within.
22
23
The Feigenbaum constant δ ≈ 4.669 governs this universal transition.
24
25
#Mathematics #Complexity
26
27
--------------------------------------------------------------------------------
28
29
### Threads (< 500 chars)
30
--------------------------------------------------------------------------------
31
Ever wonder how chaos emerges from simple equations?
32
33
The logistic map is just: xₙ₊₁ = r·xₙ(1-xₙ)
34
35
But as you increase r:
36
• r < 3: stable equilibrium
37
• r ≈ 3: period doubles (1→2→4→8...)
38
• r ≈ 3.57: CHAOS begins
39
40
The wildest part? Within the chaos, there are windows of order. A period-3 orbit at r ≈ 3.83 proves "period three implies chaos" (Li-Yorke theorem).
41
42
Simple rules. Infinite complexity.
43
44
--------------------------------------------------------------------------------
45
46
### Mastodon (< 500 chars)
47
--------------------------------------------------------------------------------
48
Generated a bifurcation diagram for the logistic map xₙ₊₁ = r·xₙ(1-xₙ) using Python.
49
50
Key observations:
51
• Period-doubling cascade: 1→2→4→8→... as r increases
52
• Accumulation point at r∞ ≈ 3.5699456
53
• Feigenbaum constant δ ≈ 4.669201 (universal!)
54
• Period-3 window at r ≈ 3.83 (Li-Yorke: period 3 implies chaos)
55
56
The diagram exhibits beautiful self-similar fractal structure. Each chaotic region contains miniature copies of the whole.
57
58
#DynamicalSystems #Chaos #Python #Science
59
60
--------------------------------------------------------------------------------
61
62
================================================================================
63
## LONG-FORM POSTS
64
================================================================================
65
66
### Reddit (r/learnpython or r/math)
67
--------------------------------------------------------------------------------
68
**Title:** I created a bifurcation diagram showing how chaos emerges from the simplest nonlinear equation
69
70
**Body:**
71
72
Hey everyone! I've been exploring chaos theory through Python and wanted to share this classic visualization.
73
74
**The Setup**
75
76
The logistic map is deceptively simple:
77
78
xₙ₊₁ = r · xₙ · (1 - xₙ)
79
80
That's it. One equation. But when you plot what happens to x as you vary the parameter r from 2.5 to 4, you get this incredible structure.
81
82
**What the Diagram Shows**
83
84
- **r < 3:** The system settles to a single stable value (fixed point at x* = (r-1)/r)
85
- **r = 3:** First bifurcation! The system oscillates between 2 values
86
- **r ≈ 3.45:** Doubles again to period-4
87
- **r ≈ 3.57:** Chaos begins after infinite period-doublings
88
89
**The Cool Parts**
90
91
1. **Feigenbaum Constant:** The ratio of successive bifurcation intervals converges to δ ≈ 4.669201... This number is UNIVERSAL—it appears in completely different chaotic systems!
92
93
2. **Periodic Windows:** Even in chaos, there are regions of order. The period-3 window near r ≈ 3.83 is special because "period three implies chaos" (Li-Yorke theorem).
94
95
3. **Self-Similarity:** Zoom into any chaotic region and you'll see the same period-doubling pattern. It's fractal!
96
97
**ELI5 Version**
98
99
Imagine a population of rabbits. r controls how fast they breed. Too slow (low r) = population stabilizes. Medium r = population oscillates between years. High r = population goes haywire, bouncing unpredictably—but following deterministic rules.
100
101
**What I Learned**
102
103
This project really drove home how "deterministic" doesn't mean "predictable." The logistic map is completely determined by its equation, yet at high r values, tiny differences in initial conditions lead to completely different outcomes.
104
105
Interactive notebook: https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/bifurcation_diagram.ipynb
106
107
Happy to answer questions about the implementation!
108
109
--------------------------------------------------------------------------------
110
111
### Facebook (< 500 chars)
112
--------------------------------------------------------------------------------
113
How does chaos emerge from order?
114
115
This bifurcation diagram shows the answer. The logistic map is just one simple equation: xₙ₊₁ = r·xₙ(1-xₙ)
116
117
As you increase parameter r, the behavior transforms:
118
→ Stable equilibrium
119
→ Oscillation between 2 values
120
→ Then 4, 8, 16...
121
→ Then CHAOS
122
123
But here's the beautiful part: within the chaos, there are windows of perfect order. Math is wild.
124
125
Explore the interactive notebook: https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/bifurcation_diagram.ipynb
126
127
--------------------------------------------------------------------------------
128
129
### LinkedIn (< 1000 chars)
130
--------------------------------------------------------------------------------
131
Visualizing the Onset of Chaos: A Computational Study of the Logistic Map
132
133
I recently completed an analysis of bifurcation dynamics in nonlinear systems, implementing the classic logistic map visualization in Python.
134
135
**Technical Approach:**
136
• Implemented iterative map xₙ₊₁ = r·xₙ(1-xₙ) with transient removal
137
• Generated 300,000+ attractor points across 2,000 parameter values
138
• Applied high-resolution sampling in regions of interest (period-3 window)
139
140
**Key Findings:**
141
• Period-doubling cascade follows universal Feigenbaum scaling (δ ≈ 4.669)
142
• Chaotic regime exhibits sensitive dependence on initial conditions
143
• Self-similar structure reveals fractal geometry in parameter space
144
145
**Applications:**
146
This analysis methodology extends to population dynamics modeling, signal processing, control systems, and financial market analysis—anywhere nonlinear dynamics matter.
147
148
The project demonstrates proficiency in NumPy/Matplotlib, dynamical systems theory, and scientific visualization. The approach of sampling attractors after discarding transients is fundamental to many computational physics applications.
149
150
View the full analysis: https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/bifurcation_diagram.ipynb
151
152
#DataScience #Python #ComputationalPhysics #Visualization #ChaosTheory
153
154
--------------------------------------------------------------------------------
155
156
### Instagram (< 500 chars, assumes plot.png as image)
157
--------------------------------------------------------------------------------
158
The edge of chaos, visualized ✨
159
160
This is a bifurcation diagram—it shows how a simple equation transforms from order to chaos.
161
162
xₙ₊₁ = r · xₙ · (1 - xₙ)
163
164
As r increases:
165
• Single stable point
166
• Splits into 2
167
• Then 4, 8, 16...
168
• Then chaos
169
170
But look closely at the chaos—there are bands of order hiding inside. The universe loves patterns, even in randomness.
171
172
Built with Python + matplotlib
173
.
174
.
175
.
176
#chaos #mathematics #python #dataviz #science #visualization #complexity #fractal #coding #stem
177
178
--------------------------------------------------------------------------------
179
180