Path: blob/main/notebooks/published/character_theory/character_theory_posts.txt
51 views
unlisted
# Social Media Posts: Character Theory of Finite Groups1# Generated from: notebooks/published/character_theory.ipynb23================================================================================4## SHORT-FORM POSTS5================================================================================67### TWITTER/X (< 280 chars)8--------------------------------------------------------------------------------9Character theory distills entire group representations into a single function: χ(g) = Tr(ρ(g)). We computed the character table of S₃ and verified orthogonality. Beautiful math in action!1011#Python #Math #GroupTheory #AbstractAlgebra1213--------------------------------------------------------------------------------1415### BLUESKY (< 300 chars)16--------------------------------------------------------------------------------17Exploring character theory: how traces of representation matrices encode the structure of finite groups. Built the complete character table of S₃ (symmetric group on 3 elements) and verified the orthogonality relations that make characters so powerful.1819#Math #GroupTheory #Python2021--------------------------------------------------------------------------------2223### THREADS (< 500 chars)24--------------------------------------------------------------------------------25Ever wondered how mathematicians compress an entire group representation into a single number?2627Character theory does exactly that! The character χ(g) = Tr(ρ(g)) captures essential info about how groups act on vector spaces.2829We explored S₃ (all permutations of 3 elements) and found:30- 3 conjugacy classes31- 3 irreducible representations32- A beautiful orthonormality relation: ⟨χᵢ, χⱼ⟩ = δᵢⱼ3334The sum of squared degrees equals the group order: 1² + 1² + 2² = 6 = |S₃|3536--------------------------------------------------------------------------------3738### MASTODON (< 500 chars)39--------------------------------------------------------------------------------40Implemented character theory for finite groups in Python!4142Key results for S₃:43• Characters are class functions: χ(xgx⁻¹) = χ(g)44• First orthogonality: (1/|G|) Σ χᵢ(g)χⱼ(g)* = δᵢⱼ45• Three irreducible reps: trivial (dim 1), sign (dim 1), standard (dim 2)46• Sum of squares: 1² + 1² + 2² = 6 = |S₃| ✓4748The character table is a complete invariant encoding all representation-theoretic information.4950#Math #GroupTheory #RepresentationTheory #Python5152--------------------------------------------------------------------------------5354================================================================================55## LONG-FORM POSTS56================================================================================5758### REDDIT (r/learnpython or r/math)59--------------------------------------------------------------------------------60**Title:** Built a Character Table Calculator for Finite Groups in Python - Here's How Characters Reveal Group Structure6162**Body:**6364I just finished implementing character theory for the symmetric group S₃ and wanted to share what I learned!6566**What is character theory?**6768A character χ of a group representation ρ is simply the trace of the matrix: χ(g) = Tr(ρ(g)). This single number encodes essential information about how the group acts.6970**Why is this cool?**71721. Characters are *class functions* - they're constant on conjugacy classes (elements related by conjugation)732. Irreducible characters form an orthonormal basis with respect to the inner product ⟨χᵢ, χⱼ⟩ = (1/|G|) Σ χᵢ(g)χⱼ(g)*743. The number of irreducible representations equals the number of conjugacy classes7576**Results for S₃:**7778S₃ has 6 elements and 3 conjugacy classes:79- Identity: {e}80- Transpositions: {(12), (13), (23)}81- 3-cycles: {(123), (132)}8283The character table:8485| | e | (12) | (123) |86|--|---|------|-------|87| χ_trivial | 1 | 1 | 1 |88| χ_sign | 1 | -1 | 1 |89| χ_standard | 2 | 0 | -1 |9091The degrees satisfy: 1² + 1² + 2² = 6 = |S₃|9293**Applications:**94- Molecular symmetry in chemistry95- Particle physics (classifying bosons/fermions)96- Generalized Fourier analysis on groups9798Check out the full interactive notebook with code and visualizations:99https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/character_theory.ipynb100101--------------------------------------------------------------------------------102103### FACEBOOK (< 500 chars)104--------------------------------------------------------------------------------105Just explored one of the most elegant ideas in abstract algebra: character theory!106107The key insight: you can compress an entire group representation (matrices showing how a group acts) into a single function using traces.108109For the symmetric group S₃ (all ways to shuffle 3 objects), we found exactly 3 irreducible representations whose squared dimensions sum to 6 - the group's size!110111Math is beautiful when patterns like this emerge.112113Full notebook: https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/character_theory.ipynb114115--------------------------------------------------------------------------------116117### LINKEDIN (< 1000 chars)118--------------------------------------------------------------------------------119Applying Representation Theory: Building Character Tables with Python120121In my latest computational notebook, I explored character theory - a cornerstone of abstract algebra with applications spanning chemistry, physics, and data science.122123Key Technical Highlights:124125• Implemented group composition and conjugacy class detection algorithms126• Constructed three irreducible representations of S₃: trivial, sign (parity), and the 2D standard representation127• Verified orthogonality relations that make character theory computationally tractable128• Visualized the character table and inner product matrix129130The character table of a finite group is a powerful invariant - it encodes:131- Normal subgroup structure (kernels of characters)132- Whether the group is abelian133- Centralizer sizes via orthogonality134135Skills demonstrated: NumPy for linear algebra, algorithmic thinking for permutation groups, mathematical rigor in verification.136137Character theory underlies techniques in signal processing on graphs, molecular orbital theory, and quantum computing gate synthesis.138139View the interactive notebook: https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/character_theory.ipynb140141#Mathematics #Python #DataScience #ComputationalThinking #AbstractAlgebra142143--------------------------------------------------------------------------------144145### INSTAGRAM (< 500 chars)146--------------------------------------------------------------------------------147Character Theory of Finite Groups ✨148149What you're seeing: The character table of S₃ - a matrix encoding ALL essential information about how this group acts on vector spaces.150151The magic:152→ 3 conjugacy classes = 3 irreducible representations153→ 1² + 1² + 2² = 6 (group order!)154→ Characters form an orthonormal basis155156The right panel shows perfect orthogonality - different characters are perpendicular, same character has length 1.157158Abstract algebra meets Python.159160#math #abstractalgebra #grouptheory #python #dataviz #science #coding161162--------------------------------------------------------------------------------163164165