Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Ok-landscape
GitHub Repository: Ok-landscape/computational-pipeline
Path: blob/main/notebooks/published/christoffel_symbols/christoffel_symbols_posts.txt
51 views
unlisted
1
# Social Media Posts: Christoffel Symbols
2
3
================================================================================
4
## SHORT-FORM POSTS
5
================================================================================
6
7
### Twitter/X (280 chars)
8
--------------------------------------------------------------------------------
9
Ever wonder how GPS satellites account for curved spacetime? Christoffel symbols! These geometric objects describe how space itself bends and twists. Built a Python calculator for them today.
10
11
#Physics #Python #Math #GR
12
13
--------------------------------------------------------------------------------
14
15
### Bluesky (300 chars)
16
--------------------------------------------------------------------------------
17
Christoffel symbols: the mathematical machinery behind curved space. They tell us how coordinate systems twist as we move through a manifold.
18
19
Built a numerical calculator in Python and visualized geodesics on spheres. The connection between geometry and physics is beautiful.
20
21
--------------------------------------------------------------------------------
22
23
### Threads (500 chars)
24
--------------------------------------------------------------------------------
25
Here's something cool: why do objects in orbit follow curved paths even in "empty" space?
26
27
The answer involves Christoffel symbols - mathematical objects that encode how space itself curves. They're not tensors (they transform weirdly under coordinate changes), but they're essential for understanding geodesics.
28
29
I built a Python calculator that computes these symbols numerically from any metric tensor. Tested it on polar coordinates, spheres, and even the Schwarzschild black hole metric. The divergence near the event horizon is wild.
30
31
--------------------------------------------------------------------------------
32
33
### Mastodon (500 chars)
34
--------------------------------------------------------------------------------
35
Implemented a numerical Christoffel symbol calculator using finite differences. Three test cases:
36
37
1. Polar coordinates: Gamma^r_{theta,theta} = -r (centrifugal term)
38
2. 2-sphere: Gamma^theta_{phi,phi} = -sin(theta)cos(theta)
39
3. Schwarzschild: symbols diverge as r approaches 2M
40
41
The geodesic equation d²x^mu/ds² + Gamma^mu_{alpha,beta}(dx^alpha/ds)(dx^beta/ds) = 0 produces beautiful great circles on the sphere.
42
43
Code uses numpy for matrix inversion and scipy.integrate for ODEs.
44
45
#Physics #Python #DifferentialGeometry #GR
46
47
--------------------------------------------------------------------------------
48
49
================================================================================
50
## LONG-FORM POSTS
51
================================================================================
52
53
### Reddit (r/learnpython or r/Physics)
54
--------------------------------------------------------------------------------
55
**Title:** Built a Christoffel symbol calculator in Python - visualizing curved space and geodesics
56
57
**Body:**
58
59
I've been learning differential geometry and wanted to understand Christoffel symbols intuitively, so I built a numerical calculator from scratch.
60
61
**What are Christoffel symbols?**
62
63
Think of them as "connection coefficients" that tell you how basis vectors rotate as you move through a curved space. The formula is:
64
65
Gamma^lambda_{mu,nu} = (1/2) g^{lambda,sigma} (dg_{sigma,mu}/dx^nu + dg_{sigma,nu}/dx^mu - dg_{mu,nu}/dx^sigma)
66
67
where g is the metric tensor.
68
69
**The implementation:**
70
71
- Takes any metric function as input
72
- Uses central finite differences for derivatives
73
- Computes inverse metric with numpy.linalg.inv
74
- Returns a 3D array of all symbol values
75
76
**Test cases I ran:**
77
78
1. **Polar coordinates** - flat space, but curvilinear coordinates give non-zero symbols. Gamma^r_{theta,theta} = -r explains the "centrifugal force."
79
80
2. **Sphere surface** - intrinsically curved 2D manifold. The symbols explain why great circles oscillate in latitude.
81
82
3. **Schwarzschild metric** - spacetime around a black hole. Symbols diverge at the event horizon (r = 2M).
83
84
**Coolest part:** Using the geodesic equation with these symbols to trace great circles on a sphere. The curves naturally follow the shortest paths!
85
86
**What I learned:**
87
88
- Christoffel symbols aren't tensors (they depend on coordinate choice)
89
- They're the bridge between metric and equations of motion
90
- Numerical differentiation works well but watch out for coordinate singularities
91
92
Interactive notebook: https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/christoffel_symbols.ipynb
93
94
Has anyone implemented symbolic computation for these using SymPy? I'd love to compare accuracy.
95
96
--------------------------------------------------------------------------------
97
98
### Facebook (500 chars)
99
--------------------------------------------------------------------------------
100
Just finished a fun computational project on Christoffel symbols - the mathematical objects that describe how space curves!
101
102
These symbols are essential in Einstein's general relativity. They tell us how freely-falling objects move through curved spacetime (like satellites orbiting Earth, or light bending around a black hole).
103
104
I built a Python calculator and visualized geodesics (shortest paths) on a sphere. Great circles emerge naturally from the math!
105
106
Check it out: https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/christoffel_symbols.ipynb
107
108
--------------------------------------------------------------------------------
109
110
### LinkedIn (1000 chars)
111
--------------------------------------------------------------------------------
112
Combining Physics and Programming: A Computational Approach to Differential Geometry
113
114
I recently developed a numerical calculator for Christoffel symbols - fundamental objects in differential geometry that describe how coordinate systems evolve across curved manifolds.
115
116
Key technical components:
117
- Metric tensor input via callable functions
118
- Finite difference approximation for partial derivatives
119
- Matrix inversion for raising indices
120
- ODE integration for geodesic visualization
121
122
The implementation handles three progressively complex cases:
123
1. Polar coordinates (flat space, curvilinear coords)
124
2. Spherical surfaces (intrinsic 2D curvature)
125
3. Schwarzschild metric (4D spacetime around black holes)
126
127
This project reinforced several valuable skills:
128
- Translating mathematical formalism into working code
129
- Numerical methods for differential geometry
130
- Scientific visualization with matplotlib
131
132
The geodesic visualizations particularly demonstrate how abstract mathematics connects to physical reality - shortest paths on a sphere are precisely the great circles that airlines use for long-haul routes.
133
134
Full interactive notebook: https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/christoffel_symbols.ipynb
135
136
#Python #Physics #DataScience #ComputationalScience #Mathematics
137
138
--------------------------------------------------------------------------------
139
140
### Instagram (500 chars)
141
--------------------------------------------------------------------------------
142
Geodesics on a sphere - the math behind the shortest path
143
144
These colorful curves are "great circles" - the straightest possible lines on a curved surface. They're what airplanes follow on long flights.
145
146
The math that generates them? Christoffel symbols - objects that encode how space curves.
147
148
Built a Python calculator from scratch and let the equations trace these paths automatically.
149
150
Red: equator
151
Blue/green/purple: tilted geodesics
152
153
The universe speaks mathematics.
154
155
#Physics #Math #Python #DataVisualization #Science #Geometry #Coding #GeneralRelativity #DifferentialGeometry
156
157
--------------------------------------------------------------------------------
158
159