Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Ok-landscape
GitHub Repository: Ok-landscape/computational-pipeline
Path: blob/main/notebooks/published/clifford_algebras/clifford_algebras_posts.txt
51 views
unlisted
1
================================================================================
2
CLIFFORD ALGEBRAS - SOCIAL MEDIA POSTS
3
================================================================================
4
5
================================================================================
6
SHORT-FORM POSTS
7
================================================================================
8
9
--------------------------------------------------------------------------------
10
1. TWITTER/X (< 280 chars)
11
--------------------------------------------------------------------------------
12
13
Clifford algebras unify rotations, reflections & geometry in one elegant framework. Complex numbers (i²=-1), quaternions, and spacetime physics are ALL special cases!
14
15
Implemented from scratch in Python.
16
17
#Python #Math #Science #ComputerGraphics
18
19
--------------------------------------------------------------------------------
20
2. BLUESKY (< 300 chars)
21
--------------------------------------------------------------------------------
22
23
Clifford algebras are a mathematical superpower: they generalize complex numbers, quaternions, and handle rotations in ANY dimension using "rotors."
24
25
Key insight: The geometric product uv = u·v + u∧v combines dot and wedge products naturally.
26
27
Built a full Python implementation from scratch.
28
29
--------------------------------------------------------------------------------
30
3. THREADS (< 500 chars)
31
--------------------------------------------------------------------------------
32
33
Ever wondered what connects complex numbers, quaternions, and Einstein's spacetime?
34
35
Clifford algebras! They're a unified framework where:
36
- Complex numbers are Cl(0,1) with i²=-1
37
- Quaternions are Cl(0,2) with i²=j²=k²=-1
38
- Spacetime physics uses Cl(1,3)
39
40
The magic: rotations become R·v·R† using "rotors" - works in ANY dimension!
41
42
I implemented the full algebra in Python and visualized 3D rotations. Math is beautiful when you see the connections.
43
44
--------------------------------------------------------------------------------
45
4. MASTODON (< 500 chars)
46
--------------------------------------------------------------------------------
47
48
Implemented Clifford algebra Cl(p,q) in Python from scratch.
49
50
The geometric product is elegant:
51
uv = u·v + u∧v
52
53
Key properties verified:
54
- Basis vectors: eᵢ² = ±1 (signature dependent)
55
- Anticommutation: eᵢeⱼ = -eⱼeᵢ for i≠j
56
- Bivectors e₁₂² = -1 act like imaginary units
57
58
Rotors R = cos(θ/2) - B·sin(θ/2) double-cover SO(n).
59
60
Complex numbers = Cl(0,1), Quaternions = Cl(0,2), Spacetime = Cl(1,3).
61
62
#Mathematics #Python #GeometricAlgebra #Physics
63
64
================================================================================
65
LONG-FORM POSTS
66
================================================================================
67
68
--------------------------------------------------------------------------------
69
5. REDDIT (r/learnpython or r/math)
70
--------------------------------------------------------------------------------
71
72
Title: I implemented Clifford Algebras from scratch in Python - here's why they're fascinating
73
74
Body:
75
76
Clifford algebras (also called geometric algebras) are one of those mathematical structures that seem abstract until you realize they unify almost everything you know about rotations, complex numbers, and physics.
77
78
**What I built:**
79
A complete Python implementation of Cl(p,q) algebras supporting:
80
- Arbitrary signatures (Euclidean, Minkowski, etc.)
81
- Full geometric product with grade extraction
82
- Rotors for n-dimensional rotations
83
- Reflections through hyperplanes
84
85
**The key insight:**
86
87
The geometric product combines the dot and wedge products:
88
89
uv = u·v + u∧v
90
91
For orthonormal basis vectors, you get the fundamental relation eᵢeⱼ + eⱼeᵢ = 2ηᵢⱼ, meaning distinct basis vectors anticommute (eᵢeⱼ = -eⱼeᵢ).
92
93
**Why this matters:**
94
95
1. Complex numbers are just Cl(0,1) where one basis vector squares to -1
96
2. Quaternions are Cl(0,2) - Hamilton's i,j,k fall out naturally
97
3. 3D rotations use "rotors" R = exp(-Bθ/2) instead of matrices
98
4. Spacetime physics uses Cl(1,3) for special relativity
99
100
**The beautiful part:**
101
102
Rotations become: v' = R·v·R†
103
104
This formula works in ANY dimension, handles gimbal lock gracefully, and the rotor R = cos(θ/2) - B·sin(θ/2) directly encodes the rotation plane as a bivector B.
105
106
I verified quaternion identities (i²=j²=k²=ijk=-1) emerge automatically from the Clifford product rules.
107
108
**Interactive notebook:** https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/clifford_algebras.ipynb
109
110
The visualization shows rotation trajectories in 3D and the multiplication table of Cl(3,0).
111
112
Has anyone else explored geometric algebra? I'm curious about applications in physics simulations or computer graphics.
113
114
--------------------------------------------------------------------------------
115
6. FACEBOOK (< 500 chars)
116
--------------------------------------------------------------------------------
117
118
Ever heard of Clifford algebras? They're a hidden gem in mathematics that unifies:
119
120
- Complex numbers (where i²=-1)
121
- Quaternions (used in 3D graphics)
122
- Even Einstein's spacetime!
123
124
I built a Python implementation from scratch and discovered how "rotors" elegantly handle rotations in any dimension.
125
126
The formula v' = R·v·R† works whether you're rotating in 2D, 3D, or 4D spacetime!
127
128
Check out the interactive notebook: https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/clifford_algebras.ipynb
129
130
--------------------------------------------------------------------------------
131
7. LINKEDIN (< 1000 chars)
132
--------------------------------------------------------------------------------
133
134
Exploring Mathematical Foundations: Clifford Algebras in Python
135
136
I recently completed a computational exploration of Clifford algebras - the mathematical framework that unifies complex numbers, quaternions, and geometric transformations.
137
138
Key technical accomplishments:
139
140
- Implemented Cl(p,q) algebras for arbitrary metric signatures
141
- Built geometric product, grade extraction, and rotor operations
142
- Verified isomorphisms: Cl(0,1) = Complex numbers, Cl(0,2) = Quaternions
143
- Demonstrated spacetime algebra Cl(1,3) properties
144
145
The elegant insight: rotations in any dimension reduce to v' = R·v·R† using rotors R = cos(θ/2) - B·sin(θ/2), where B is the bivector defining the rotation plane.
146
147
Applications span computer graphics (rotation interpolation), robotics (kinematics), physics (electromagnetism, relativity), and emerging geometric deep learning approaches.
148
149
This project demonstrates proficiency in: Python OOP design, numerical computation, mathematical abstraction, and technical visualization.
150
151
View the interactive notebook: https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/clifford_algebras.ipynb
152
153
#Mathematics #Python #ComputerScience #Physics #DataScience
154
155
--------------------------------------------------------------------------------
156
8. INSTAGRAM (< 500 chars, visual-focused)
157
--------------------------------------------------------------------------------
158
159
Clifford Algebras: Where Math Gets Geometric
160
161
This visualization shows vectors being rotated using "rotors" - the Clifford algebra way.
162
163
Instead of messy rotation matrices, you get one elegant formula:
164
v' = R·v·R†
165
166
The plots show:
167
- Rotation trajectories in different planes
168
- How vectors trace perfect circles
169
- The multiplication table of an 8D algebra
170
171
Mind-blowing fact: Complex numbers, quaternions, and spacetime physics are ALL special cases of Clifford algebras.
172
173
Math is art when you can see it.
174
175
#Mathematics #Physics #DataVisualization #Python #Science #Geometry #STEM #CodingLife
176
177