Path: blob/main/notebooks/published/clifford_algebras/clifford_algebras_posts.txt
51 views
unlisted
================================================================================1CLIFFORD ALGEBRAS - SOCIAL MEDIA POSTS2================================================================================34================================================================================5SHORT-FORM POSTS6================================================================================78--------------------------------------------------------------------------------91. TWITTER/X (< 280 chars)10--------------------------------------------------------------------------------1112Clifford algebras unify rotations, reflections & geometry in one elegant framework. Complex numbers (i²=-1), quaternions, and spacetime physics are ALL special cases!1314Implemented from scratch in Python.1516#Python #Math #Science #ComputerGraphics1718--------------------------------------------------------------------------------192. BLUESKY (< 300 chars)20--------------------------------------------------------------------------------2122Clifford algebras are a mathematical superpower: they generalize complex numbers, quaternions, and handle rotations in ANY dimension using "rotors."2324Key insight: The geometric product uv = u·v + u∧v combines dot and wedge products naturally.2526Built a full Python implementation from scratch.2728--------------------------------------------------------------------------------293. THREADS (< 500 chars)30--------------------------------------------------------------------------------3132Ever wondered what connects complex numbers, quaternions, and Einstein's spacetime?3334Clifford algebras! They're a unified framework where:35- Complex numbers are Cl(0,1) with i²=-136- Quaternions are Cl(0,2) with i²=j²=k²=-137- Spacetime physics uses Cl(1,3)3839The magic: rotations become R·v·R† using "rotors" - works in ANY dimension!4041I implemented the full algebra in Python and visualized 3D rotations. Math is beautiful when you see the connections.4243--------------------------------------------------------------------------------444. MASTODON (< 500 chars)45--------------------------------------------------------------------------------4647Implemented Clifford algebra Cl(p,q) in Python from scratch.4849The geometric product is elegant:50uv = u·v + u∧v5152Key properties verified:53- Basis vectors: eᵢ² = ±1 (signature dependent)54- Anticommutation: eᵢeⱼ = -eⱼeᵢ for i≠j55- Bivectors e₁₂² = -1 act like imaginary units5657Rotors R = cos(θ/2) - B·sin(θ/2) double-cover SO(n).5859Complex numbers = Cl(0,1), Quaternions = Cl(0,2), Spacetime = Cl(1,3).6061#Mathematics #Python #GeometricAlgebra #Physics6263================================================================================64LONG-FORM POSTS65================================================================================6667--------------------------------------------------------------------------------685. REDDIT (r/learnpython or r/math)69--------------------------------------------------------------------------------7071Title: I implemented Clifford Algebras from scratch in Python - here's why they're fascinating7273Body:7475Clifford algebras (also called geometric algebras) are one of those mathematical structures that seem abstract until you realize they unify almost everything you know about rotations, complex numbers, and physics.7677**What I built:**78A complete Python implementation of Cl(p,q) algebras supporting:79- Arbitrary signatures (Euclidean, Minkowski, etc.)80- Full geometric product with grade extraction81- Rotors for n-dimensional rotations82- Reflections through hyperplanes8384**The key insight:**8586The geometric product combines the dot and wedge products:8788uv = u·v + u∧v8990For orthonormal basis vectors, you get the fundamental relation eᵢeⱼ + eⱼeᵢ = 2ηᵢⱼ, meaning distinct basis vectors anticommute (eᵢeⱼ = -eⱼeᵢ).9192**Why this matters:**93941. Complex numbers are just Cl(0,1) where one basis vector squares to -1952. Quaternions are Cl(0,2) - Hamilton's i,j,k fall out naturally963. 3D rotations use "rotors" R = exp(-Bθ/2) instead of matrices974. Spacetime physics uses Cl(1,3) for special relativity9899**The beautiful part:**100101Rotations become: v' = R·v·R†102103This formula works in ANY dimension, handles gimbal lock gracefully, and the rotor R = cos(θ/2) - B·sin(θ/2) directly encodes the rotation plane as a bivector B.104105I verified quaternion identities (i²=j²=k²=ijk=-1) emerge automatically from the Clifford product rules.106107**Interactive notebook:** https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/clifford_algebras.ipynb108109The visualization shows rotation trajectories in 3D and the multiplication table of Cl(3,0).110111Has anyone else explored geometric algebra? I'm curious about applications in physics simulations or computer graphics.112113--------------------------------------------------------------------------------1146. FACEBOOK (< 500 chars)115--------------------------------------------------------------------------------116117Ever heard of Clifford algebras? They're a hidden gem in mathematics that unifies:118119- Complex numbers (where i²=-1)120- Quaternions (used in 3D graphics)121- Even Einstein's spacetime!122123I built a Python implementation from scratch and discovered how "rotors" elegantly handle rotations in any dimension.124125The formula v' = R·v·R† works whether you're rotating in 2D, 3D, or 4D spacetime!126127Check out the interactive notebook: https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/clifford_algebras.ipynb128129--------------------------------------------------------------------------------1307. LINKEDIN (< 1000 chars)131--------------------------------------------------------------------------------132133Exploring Mathematical Foundations: Clifford Algebras in Python134135I recently completed a computational exploration of Clifford algebras - the mathematical framework that unifies complex numbers, quaternions, and geometric transformations.136137Key technical accomplishments:138139- Implemented Cl(p,q) algebras for arbitrary metric signatures140- Built geometric product, grade extraction, and rotor operations141- Verified isomorphisms: Cl(0,1) = Complex numbers, Cl(0,2) = Quaternions142- Demonstrated spacetime algebra Cl(1,3) properties143144The elegant insight: rotations in any dimension reduce to v' = R·v·R† using rotors R = cos(θ/2) - B·sin(θ/2), where B is the bivector defining the rotation plane.145146Applications span computer graphics (rotation interpolation), robotics (kinematics), physics (electromagnetism, relativity), and emerging geometric deep learning approaches.147148This project demonstrates proficiency in: Python OOP design, numerical computation, mathematical abstraction, and technical visualization.149150View the interactive notebook: https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/clifford_algebras.ipynb151152#Mathematics #Python #ComputerScience #Physics #DataScience153154--------------------------------------------------------------------------------1558. INSTAGRAM (< 500 chars, visual-focused)156--------------------------------------------------------------------------------157158Clifford Algebras: Where Math Gets Geometric159160This visualization shows vectors being rotated using "rotors" - the Clifford algebra way.161162Instead of messy rotation matrices, you get one elegant formula:163v' = R·v·R†164165The plots show:166- Rotation trajectories in different planes167- How vectors trace perfect circles168- The multiplication table of an 8D algebra169170Mind-blowing fact: Complex numbers, quaternions, and spacetime physics are ALL special cases of Clifford algebras.171172Math is art when you can see it.173174#Mathematics #Physics #DataVisualization #Python #Science #Geometry #STEM #CodingLife175176177