Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Ok-landscape
GitHub Repository: Ok-landscape/computational-pipeline
Path: blob/main/notebooks/published/complex_integration/complex_integration_posts.txt
51 views
unlisted
1
=== COMPLEX INTEGRATION - SOCIAL MEDIA POSTS ===
2
3
================================================================================
4
TWITTER/X (< 280 chars)
5
================================================================================
6
7
Why does ∮f(z)dz = 0 for analytic functions?
8
9
Cauchy's theorem is pure magic: integrate ANY analytic function around a closed loop → zero!
10
11
We verify this numerically with Python.
12
13
#Python #Math #ComplexAnalysis #Science
14
15
================================================================================
16
BLUESKY (< 300 chars)
17
================================================================================
18
19
Complex integration unlocks powerful techniques for evaluating "impossible" real integrals.
20
21
The residue theorem: ∮f(z)dz = 2πi·Σ(residues)
22
23
We demonstrate Cauchy's theorem, integral formula, and compute ∫dx/(x²+1) = π using residues.
24
25
#Mathematics #Python
26
27
================================================================================
28
THREADS (< 500 chars)
29
================================================================================
30
31
Ever tried to compute ∫dx/(x²+1) from -∞ to ∞?
32
33
Complex analysis makes it elegant! Instead of struggling with real calculus, we:
34
35
1. Extend to complex plane
36
2. Find poles at z = ±i
37
3. Apply residue theorem
38
4. Get the answer: π
39
40
The residue theorem says ∮f(z)dz = 2πi times the sum of residues inside the contour.
41
42
We verify this numerically in Python - the error is ~10⁻¹⁵!
43
44
Mind = blown.
45
46
================================================================================
47
MASTODON (< 500 chars)
48
================================================================================
49
50
Implemented numerical verification of complex integration theorems in Python:
51
52
• Cauchy's Integral Theorem: ∮f(z)dz = 0 for analytic f
53
• Cauchy's Integral Formula: f(z₀) = (1/2πi)∮f(z)/(z-z₀)dz
54
• Residue Theorem: ∮f(z)dz = 2πi·Σ Res(f, zₖ)
55
56
Applied to evaluate ∫₋∞^∞ dx/(x²+1) = π
57
58
Used trapezoidal integration over parametrized contours. Numerical errors on order of 10⁻¹⁵.
59
60
#Mathematics #ComplexAnalysis #Python #Science #SciPy
61
62
================================================================================
63
REDDIT - r/learnpython or r/math (Title + Body)
64
================================================================================
65
66
TITLE: I implemented numerical verification of complex integration theorems (Cauchy, Residues) in Python
67
68
BODY:
69
70
**TL;DR:** Built a Python notebook that numerically verifies the major theorems of complex integration and shows how to evaluate "impossible" real integrals.
71
72
---
73
74
**What is this?**
75
76
Complex integration extends calculus to functions of complex numbers. This leads to incredibly powerful results:
77
78
**Cauchy's Integral Theorem:** If f(z) is analytic (differentiable everywhere in a region), then integrating around any closed loop gives zero:
79
80
∮f(z)dz = 0
81
82
**Cauchy's Integral Formula:** You can compute f(z₀) at any interior point using only boundary values:
83
84
f(z₀) = (1/2πi) ∮ f(z)/(z - z₀) dz
85
86
**Residue Theorem:** For functions with poles (singularities), the contour integral equals 2πi times the sum of residues:
87
88
∮f(z)dz = 2πi · Σ Res(f, zₖ)
89
90
---
91
92
**The Cool Application**
93
94
The real integral ∫₋∞^∞ dx/(x²+1) is tricky by standard methods. But with complex analysis:
95
96
1. Extend to f(z) = 1/(z²+1)
97
2. Note poles at z = i and z = -i
98
3. Use semicircular contour in upper half-plane (encloses only z = i)
99
4. Residue at z = i is 1/(2i)
100
5. Result: 2πi · (1/2i) = π
101
102
The notebook verifies this numerically - direct integration and residue theorem both give π!
103
104
---
105
106
**Implementation Details**
107
108
- Used parametric contour integration with trapezoidal rule
109
- Verified all three major theorems numerically
110
- Errors on order of 10⁻¹⁵ (machine precision)
111
- Visualizations show contours, poles, and function magnitudes
112
113
**View the interactive notebook:** https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/complex_integration.ipynb
114
115
---
116
117
**What I Learned**
118
119
Complex analysis isn't just abstract math - it's a computational tool. Problems that seem impossible in real calculus become elegant with residues.
120
121
Would love feedback on the implementation or suggestions for other applications!
122
123
================================================================================
124
FACEBOOK (< 500 chars)
125
================================================================================
126
127
What if I told you there's a "cheat code" for calculus?
128
129
Complex integration lets you solve integrals that seem impossible. The secret: extend to imaginary numbers!
130
131
Example: ∫dx/(x²+1) from -∞ to ∞
132
133
Instead of struggling, we find the "poles" at z = ±i, compute residues, and boom - the answer is π.
134
135
I built a Python notebook demonstrating these magical theorems. The math checks out to 15 decimal places!
136
137
Check it out: https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/complex_integration.ipynb
138
139
================================================================================
140
LINKEDIN (< 1000 chars)
141
================================================================================
142
143
Numerical Verification of Complex Integration Theorems
144
145
I recently completed a computational project implementing and verifying the fundamental theorems of complex analysis in Python.
146
147
**Technical Implementation:**
148
149
• Developed parametric contour integration using trapezoidal numerical methods
150
• Verified Cauchy's Integral Theorem (∮f(z)dz = 0 for analytic functions)
151
• Implemented Cauchy's Integral Formula for computing function values from boundary data
152
• Applied the Residue Theorem to evaluate challenging real integrals
153
154
**Key Results:**
155
156
The project demonstrates how complex analysis provides elegant solutions to problems intractable by real methods. For example, evaluating ∫₋∞^∞ dx/(x²+1) reduces to computing a single residue, yielding the exact answer π.
157
158
Numerical verification achieved errors on the order of 10⁻¹⁵, confirming the theoretical predictions.
159
160
**Skills Demonstrated:**
161
- Complex analysis fundamentals
162
- Numerical integration techniques
163
- Scientific Python (NumPy, SciPy, Matplotlib)
164
- Mathematical visualization
165
166
View the complete implementation: https://cocalc.com/github/Ok-landscape/computational-pipeline/blob/main/notebooks/published/complex_integration.ipynb
167
168
#Mathematics #Python #DataScience #ScientificComputing #NumericalMethods
169
170
================================================================================
171
INSTAGRAM (< 500 chars, visual-focused)
172
================================================================================
173
174
The beauty of complex integration ✨
175
176
This plot shows contours in the complex plane wrapping around "poles" - points where functions blow up to infinity.
177
178
The magic: integrate around a closed loop and you get 2πi times the sum of residues inside.
179
180
This lets us solve "impossible" integrals.
181
182
Example: ∫dx/(x²+1) from -∞ to ∞ = π
183
184
The shaded area in the bottom-right shows this integral geometrically.
185
186
Math is beautiful when you can see it.
187
188
·
189
·
190
·
191
192
#mathematics #complexanalysis #python #datascience #visualization #mathisbeautiful #coding #science #stem
193
194
================================================================================
195
196