from torch.nn.utils import spectral_norm
from torch.nn import init
import torch
import torch.nn as nn
import numpy as np
class ConditionalBatchNorm2d(nn.Module):
def __init__(self, in_features, out_features, MODULES):
super().__init__()
self.in_features = in_features
self.bn = batchnorm_2d(out_features, eps=1e-4, momentum=0.1, affine=False)
self.gain = MODULES.g_linear(in_features=in_features, out_features=out_features, bias=False)
self.bias = MODULES.g_linear(in_features=in_features, out_features=out_features, bias=False)
def forward(self, x, y):
gain = (1 + self.gain(y)).view(y.size(0), -1, 1, 1)
bias = self.bias(y).view(y.size(0), -1, 1, 1)
out = self.bn(x)
return out * gain + bias
class SelfAttention(nn.Module):
"""
https://github.com/voletiv/self-attention-GAN-pytorch
MIT License
Copyright (c) 2019 Vikram Voleti
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
def __init__(self, in_channels, is_generator, MODULES):
super(SelfAttention, self).__init__()
self.in_channels = in_channels
if is_generator:
self.conv1x1_theta = MODULES.g_conv2d(in_channels=in_channels, out_channels=in_channels // 8, kernel_size=1,
stride=1, padding=0, bias=False)
self.conv1x1_phi = MODULES.g_conv2d(in_channels=in_channels, out_channels=in_channels // 8, kernel_size=1,
stride=1, padding=0, bias=False)
self.conv1x1_g = MODULES.g_conv2d(in_channels=in_channels, out_channels=in_channels // 2, kernel_size=1,
stride=1, padding=0, bias=False)
self.conv1x1_attn = MODULES.g_conv2d(in_channels=in_channels // 2, out_channels=in_channels, kernel_size=1,
stride=1, padding=0, bias=False)
else:
self.conv1x1_theta = MODULES.d_conv2d(in_channels=in_channels, out_channels=in_channels // 8, kernel_size=1,
stride=1, padding=0, bias=False)
self.conv1x1_phi = MODULES.d_conv2d(in_channels=in_channels, out_channels=in_channels // 8, kernel_size=1,
stride=1, padding=0, bias=False)
self.conv1x1_g = MODULES.d_conv2d(in_channels=in_channels, out_channels=in_channels // 2, kernel_size=1,
stride=1, padding=0, bias=False)
self.conv1x1_attn = MODULES.d_conv2d(in_channels=in_channels // 2, out_channels=in_channels, kernel_size=1,
stride=1, padding=0, bias=False)
self.maxpool = nn.MaxPool2d(2, stride=2, padding=0)
self.softmax = nn.Softmax(dim=-1)
self.sigma = nn.Parameter(torch.zeros(1), requires_grad=True)
def forward(self, x):
_, ch, h, w = x.size()
theta = self.conv1x1_theta(x)
theta = theta.view(-1, ch // 8, h * w)
phi = self.conv1x1_phi(x)
phi = self.maxpool(phi)
phi = phi.view(-1, ch // 8, h * w // 4)
attn = torch.bmm(theta.permute(0, 2, 1), phi)
attn = self.softmax(attn)
g = self.conv1x1_g(x)
g = self.maxpool(g)
g = g.view(-1, ch // 2, h * w // 4)
attn_g = torch.bmm(g, attn.permute(0, 2, 1))
attn_g = attn_g.view(-1, ch // 2, h, w)
attn_g = self.conv1x1_attn(attn_g)
return x + self.sigma * attn_g
class LeCamEMA(object):
def __init__(self, init=7777, decay=0.9, start_iter=0):
self.G_loss = init
self.D_loss_real = init
self.D_loss_fake = init
self.D_real = init
self.D_fake = init
self.decay = decay
self.start_itr = start_iter
def update(self, cur, mode, itr):
if itr < self.start_itr:
decay = 0.0
else:
decay = self.decay
if mode == "G_loss":
self.G_loss = self.G_loss*decay + cur*(1 - decay)
elif mode == "D_loss_real":
self.D_loss_real = self.D_loss_real*decay + cur*(1 - decay)
elif mode == "D_loss_fake":
self.D_loss_fake = self.D_loss_fake*decay + cur*(1 - decay)
elif mode == "D_real":
self.D_real = self.D_real*decay + cur*(1 - decay)
elif mode == "D_fake":
self.D_fake = self.D_fake*decay + cur*(1 - decay)
def init_weights(modules, initialize):
for module in modules():
if (isinstance(module, nn.Conv2d) or isinstance(module, nn.ConvTranspose2d) or isinstance(module, nn.Linear)):
if initialize == "ortho":
init.orthogonal_(module.weight)
if module.bias is not None:
module.bias.data.fill_(0.)
elif initialize == "N02":
init.normal_(module.weight, 0, 0.02)
if module.bias is not None:
module.bias.data.fill_(0.)
elif initialize in ["glorot", "xavier"]:
init.xavier_uniform_(module.weight)
if module.bias is not None:
module.bias.data.fill_(0.)
else:
pass
elif isinstance(module, nn.Embedding):
if initialize == "ortho":
init.orthogonal_(module.weight)
elif initialize == "N02":
init.normal_(module.weight, 0, 0.02)
elif initialize in ["glorot", "xavier"]:
init.xavier_uniform_(module.weight)
else:
pass
else:
pass
def conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True):
return nn.Conv2d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias)
def deconv2d(in_channels, out_channels, kernel_size, stride=2, padding=0, dilation=1, groups=1, bias=True):
return nn.ConvTranspose2d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias)
def linear(in_features, out_features, bias=True):
return nn.Linear(in_features=in_features, out_features=out_features, bias=bias)
def embedding(num_embeddings, embedding_dim):
return nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim)
def snconv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True):
return spectral_norm(nn.Conv2d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias),
eps=1e-6)
def sndeconv2d(in_channels, out_channels, kernel_size, stride=2, padding=0, dilation=1, groups=1, bias=True):
return spectral_norm(nn.ConvTranspose2d(in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias),
eps=1e-6)
def snlinear(in_features, out_features, bias=True):
return spectral_norm(nn.Linear(in_features=in_features, out_features=out_features, bias=bias), eps=1e-6)
def sn_embedding(num_embeddings, embedding_dim):
return spectral_norm(nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim), eps=1e-6)
def batchnorm_2d(in_features, eps=1e-4, momentum=0.1, affine=True):
return nn.BatchNorm2d(in_features, eps=eps, momentum=momentum, affine=affine, track_running_stats=True)
def conv3x3(in_planes, out_planes, stride=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
def adjust_learning_rate(optimizer, lr_org, epoch, total_epoch, dataset):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
if dataset in ["CIFAR10", "CIFAR100"]:
lr = lr_org * (0.1 ** (epoch // (total_epoch * 0.5))) * (0.1 ** (epoch // (total_epoch * 0.75)))
elif dataset in ["Tiny_ImageNet", "ImageNet"]:
if total_epoch == 300:
lr = lr_org * (0.1 ** (epoch // 75))
else:
lr = lr_org * (0.1 ** (epoch // 30))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def quantize_images(x):
x = (x + 1)/2
x = (255.0*x + 0.5).clamp(0.0, 255.0)
x = x.detach().cpu().numpy().astype(np.uint8)
return x
def resize_images(x, resizer, ToTensor, mean, std, device):
x = x.transpose((0, 2, 3, 1))
x = list(map(lambda x: ToTensor(resizer(x)), list(x)))
x = torch.stack(x, 0).to(device)
x = (x/255.0 - mean)/std
return x