Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/jdk17u
Path: blob/master/src/hotspot/cpu/x86/c1_LIRGenerator_x86.cpp
64440 views
1
/*
2
* Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "c1/c1_Compilation.hpp"
27
#include "c1/c1_FrameMap.hpp"
28
#include "c1/c1_Instruction.hpp"
29
#include "c1/c1_LIRAssembler.hpp"
30
#include "c1/c1_LIRGenerator.hpp"
31
#include "c1/c1_Runtime1.hpp"
32
#include "c1/c1_ValueStack.hpp"
33
#include "ci/ciArray.hpp"
34
#include "ci/ciObjArrayKlass.hpp"
35
#include "ci/ciTypeArrayKlass.hpp"
36
#include "gc/shared/c1/barrierSetC1.hpp"
37
#include "runtime/sharedRuntime.hpp"
38
#include "runtime/stubRoutines.hpp"
39
#include "utilities/powerOfTwo.hpp"
40
#include "vmreg_x86.inline.hpp"
41
42
#ifdef ASSERT
43
#define __ gen()->lir(__FILE__, __LINE__)->
44
#else
45
#define __ gen()->lir()->
46
#endif
47
48
// Item will be loaded into a byte register; Intel only
49
void LIRItem::load_byte_item() {
50
load_item();
51
LIR_Opr res = result();
52
53
if (!res->is_virtual() || !_gen->is_vreg_flag_set(res, LIRGenerator::byte_reg)) {
54
// make sure that it is a byte register
55
assert(!value()->type()->is_float() && !value()->type()->is_double(),
56
"can't load floats in byte register");
57
LIR_Opr reg = _gen->rlock_byte(T_BYTE);
58
__ move(res, reg);
59
60
_result = reg;
61
}
62
}
63
64
65
void LIRItem::load_nonconstant() {
66
LIR_Opr r = value()->operand();
67
if (r->is_constant()) {
68
_result = r;
69
} else {
70
load_item();
71
}
72
}
73
74
//--------------------------------------------------------------
75
// LIRGenerator
76
//--------------------------------------------------------------
77
78
79
LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::rax_oop_opr; }
80
LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::rdx_opr; }
81
LIR_Opr LIRGenerator::divInOpr() { return FrameMap::rax_opr; }
82
LIR_Opr LIRGenerator::divOutOpr() { return FrameMap::rax_opr; }
83
LIR_Opr LIRGenerator::remOutOpr() { return FrameMap::rdx_opr; }
84
LIR_Opr LIRGenerator::shiftCountOpr() { return FrameMap::rcx_opr; }
85
LIR_Opr LIRGenerator::syncLockOpr() { return new_register(T_INT); }
86
LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::rax_opr; }
87
LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; }
88
89
90
LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
91
LIR_Opr opr;
92
switch (type->tag()) {
93
case intTag: opr = FrameMap::rax_opr; break;
94
case objectTag: opr = FrameMap::rax_oop_opr; break;
95
case longTag: opr = FrameMap::long0_opr; break;
96
#ifdef _LP64
97
case floatTag: opr = FrameMap::xmm0_float_opr; break;
98
case doubleTag: opr = FrameMap::xmm0_double_opr; break;
99
#else
100
case floatTag: opr = UseSSE >= 1 ? FrameMap::xmm0_float_opr : FrameMap::fpu0_float_opr; break;
101
case doubleTag: opr = UseSSE >= 2 ? FrameMap::xmm0_double_opr : FrameMap::fpu0_double_opr; break;
102
#endif // _LP64
103
case addressTag:
104
default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
105
}
106
107
assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
108
return opr;
109
}
110
111
112
LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
113
LIR_Opr reg = new_register(T_INT);
114
set_vreg_flag(reg, LIRGenerator::byte_reg);
115
return reg;
116
}
117
118
119
//--------- loading items into registers --------------------------------
120
121
122
// i486 instructions can inline constants
123
bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
124
if (type == T_SHORT || type == T_CHAR) {
125
// there is no immediate move of word values in asembler_i486.?pp
126
return false;
127
}
128
Constant* c = v->as_Constant();
129
if (c && c->state_before() == NULL) {
130
// constants of any type can be stored directly, except for
131
// unloaded object constants.
132
return true;
133
}
134
return false;
135
}
136
137
138
bool LIRGenerator::can_inline_as_constant(Value v) const {
139
if (v->type()->tag() == longTag) return false;
140
return v->type()->tag() != objectTag ||
141
(v->type()->is_constant() && v->type()->as_ObjectType()->constant_value()->is_null_object());
142
}
143
144
145
bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
146
if (c->type() == T_LONG) return false;
147
return c->type() != T_OBJECT || c->as_jobject() == NULL;
148
}
149
150
151
LIR_Opr LIRGenerator::safepoint_poll_register() {
152
NOT_LP64( return new_register(T_ADDRESS); )
153
return LIR_OprFact::illegalOpr;
154
}
155
156
157
LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
158
int shift, int disp, BasicType type) {
159
assert(base->is_register(), "must be");
160
if (index->is_constant()) {
161
LIR_Const *constant = index->as_constant_ptr();
162
#ifdef _LP64
163
jlong c;
164
if (constant->type() == T_INT) {
165
c = (jlong(index->as_jint()) << shift) + disp;
166
} else {
167
assert(constant->type() == T_LONG, "should be");
168
c = (index->as_jlong() << shift) + disp;
169
}
170
if ((jlong)((jint)c) == c) {
171
return new LIR_Address(base, (jint)c, type);
172
} else {
173
LIR_Opr tmp = new_register(T_LONG);
174
__ move(index, tmp);
175
return new LIR_Address(base, tmp, type);
176
}
177
#else
178
return new LIR_Address(base,
179
((intx)(constant->as_jint()) << shift) + disp,
180
type);
181
#endif
182
} else {
183
return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
184
}
185
}
186
187
188
LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
189
BasicType type) {
190
int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
191
192
LIR_Address* addr;
193
if (index_opr->is_constant()) {
194
int elem_size = type2aelembytes(type);
195
#ifdef _LP64
196
jint index = index_opr->as_jint();
197
jlong disp = offset_in_bytes + (jlong)(index) * elem_size;
198
if (disp > max_jint) {
199
// Displacement overflow. Cannot directly use instruction with 32-bit displacement for 64-bit addresses.
200
// Convert array index to long to do array offset computation with 64-bit values.
201
index_opr = new_register(T_LONG);
202
__ move(LIR_OprFact::longConst(index), index_opr);
203
addr = new LIR_Address(array_opr, index_opr, LIR_Address::scale(type), offset_in_bytes, type);
204
} else {
205
addr = new LIR_Address(array_opr, (intx)disp, type);
206
}
207
#else
208
// A displacement overflow can also occur for x86 but that is not a problem due to the 32-bit address range!
209
// Let's assume an array 'a' and an access with displacement 'disp'. When disp overflows, then "a + disp" will
210
// always be negative (i.e. underflows the 32-bit address range):
211
// Let N = 2^32: a + signed_overflow(disp) = a + disp - N.
212
// "a + disp" is always smaller than N. If an index was chosen which would point to an address beyond N, then
213
// range checks would catch that and throw an exception. Thus, a + disp < 0 holds which means that it always
214
// underflows the 32-bit address range:
215
// unsigned_underflow(a + signed_overflow(disp)) = unsigned_underflow(a + disp - N)
216
// = (a + disp - N) + N = a + disp
217
// This shows that we still end up at the correct address with a displacement overflow due to the 32-bit address
218
// range limitation. This overflow only needs to be handled if addresses can be larger as on 64-bit platforms.
219
addr = new LIR_Address(array_opr, offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type);
220
#endif // _LP64
221
} else {
222
#ifdef _LP64
223
if (index_opr->type() == T_INT) {
224
LIR_Opr tmp = new_register(T_LONG);
225
__ convert(Bytecodes::_i2l, index_opr, tmp);
226
index_opr = tmp;
227
}
228
#endif // _LP64
229
addr = new LIR_Address(array_opr,
230
index_opr,
231
LIR_Address::scale(type),
232
offset_in_bytes, type);
233
}
234
return addr;
235
}
236
237
238
LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
239
LIR_Opr r = NULL;
240
if (type == T_LONG) {
241
r = LIR_OprFact::longConst(x);
242
} else if (type == T_INT) {
243
r = LIR_OprFact::intConst(x);
244
} else {
245
ShouldNotReachHere();
246
}
247
return r;
248
}
249
250
void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
251
LIR_Opr pointer = new_pointer_register();
252
__ move(LIR_OprFact::intptrConst(counter), pointer);
253
LIR_Address* addr = new LIR_Address(pointer, type);
254
increment_counter(addr, step);
255
}
256
257
258
void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
259
__ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr);
260
}
261
262
void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
263
__ cmp_mem_int(condition, base, disp, c, info);
264
}
265
266
267
void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
268
__ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info);
269
}
270
271
272
bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, jint c, LIR_Opr result, LIR_Opr tmp) {
273
if (tmp->is_valid() && c > 0 && c < max_jint) {
274
if (is_power_of_2(c + 1)) {
275
__ move(left, tmp);
276
__ shift_left(left, log2i_exact(c + 1), left);
277
__ sub(left, tmp, result);
278
return true;
279
} else if (is_power_of_2(c - 1)) {
280
__ move(left, tmp);
281
__ shift_left(left, log2i_exact(c - 1), left);
282
__ add(left, tmp, result);
283
return true;
284
}
285
}
286
return false;
287
}
288
289
290
void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
291
BasicType type = item->type();
292
__ store(item, new LIR_Address(FrameMap::rsp_opr, in_bytes(offset_from_sp), type));
293
}
294
295
void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
296
LIR_Opr tmp1 = new_register(objectType);
297
LIR_Opr tmp2 = new_register(objectType);
298
LIR_Opr tmp3 = new_register(objectType);
299
__ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
300
}
301
302
//----------------------------------------------------------------------
303
// visitor functions
304
//----------------------------------------------------------------------
305
306
void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
307
assert(x->is_pinned(),"");
308
LIRItem obj(x->obj(), this);
309
obj.load_item();
310
311
set_no_result(x);
312
313
// "lock" stores the address of the monitor stack slot, so this is not an oop
314
LIR_Opr lock = new_register(T_INT);
315
// Need a scratch register for biased locking on x86
316
LIR_Opr scratch = LIR_OprFact::illegalOpr;
317
if (UseBiasedLocking) {
318
scratch = new_register(T_INT);
319
}
320
321
CodeEmitInfo* info_for_exception = NULL;
322
if (x->needs_null_check()) {
323
info_for_exception = state_for(x);
324
}
325
// this CodeEmitInfo must not have the xhandlers because here the
326
// object is already locked (xhandlers expect object to be unlocked)
327
CodeEmitInfo* info = state_for(x, x->state(), true);
328
monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
329
x->monitor_no(), info_for_exception, info);
330
}
331
332
333
void LIRGenerator::do_MonitorExit(MonitorExit* x) {
334
assert(x->is_pinned(),"");
335
336
LIRItem obj(x->obj(), this);
337
obj.dont_load_item();
338
339
LIR_Opr lock = new_register(T_INT);
340
LIR_Opr obj_temp = new_register(T_INT);
341
set_no_result(x);
342
monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
343
}
344
345
346
// _ineg, _lneg, _fneg, _dneg
347
void LIRGenerator::do_NegateOp(NegateOp* x) {
348
LIRItem value(x->x(), this);
349
value.set_destroys_register();
350
value.load_item();
351
LIR_Opr reg = rlock(x);
352
353
LIR_Opr tmp = LIR_OprFact::illegalOpr;
354
#ifdef _LP64
355
if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
356
if (x->type()->tag() == doubleTag) {
357
tmp = new_register(T_DOUBLE);
358
__ move(LIR_OprFact::doubleConst(-0.0), tmp);
359
}
360
else if (x->type()->tag() == floatTag) {
361
tmp = new_register(T_FLOAT);
362
__ move(LIR_OprFact::floatConst(-0.0), tmp);
363
}
364
}
365
#endif
366
__ negate(value.result(), reg, tmp);
367
368
set_result(x, round_item(reg));
369
}
370
371
372
// for _fadd, _fmul, _fsub, _fdiv, _frem
373
// _dadd, _dmul, _dsub, _ddiv, _drem
374
void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
375
LIRItem left(x->x(), this);
376
LIRItem right(x->y(), this);
377
LIRItem* left_arg = &left;
378
LIRItem* right_arg = &right;
379
assert(!left.is_stack() || !right.is_stack(), "can't both be memory operands");
380
bool must_load_both = (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem);
381
if (left.is_register() || x->x()->type()->is_constant() || must_load_both) {
382
left.load_item();
383
} else {
384
left.dont_load_item();
385
}
386
387
#ifndef _LP64
388
// do not load right operand if it is a constant. only 0 and 1 are
389
// loaded because there are special instructions for loading them
390
// without memory access (not needed for SSE2 instructions)
391
bool must_load_right = false;
392
if (right.is_constant()) {
393
LIR_Const* c = right.result()->as_constant_ptr();
394
assert(c != NULL, "invalid constant");
395
assert(c->type() == T_FLOAT || c->type() == T_DOUBLE, "invalid type");
396
397
if (c->type() == T_FLOAT) {
398
must_load_right = UseSSE < 1 && (c->is_one_float() || c->is_zero_float());
399
} else {
400
must_load_right = UseSSE < 2 && (c->is_one_double() || c->is_zero_double());
401
}
402
}
403
#endif // !LP64
404
405
if (must_load_both) {
406
// frem and drem destroy also right operand, so move it to a new register
407
right.set_destroys_register();
408
right.load_item();
409
} else if (right.is_register()) {
410
right.load_item();
411
#ifndef _LP64
412
} else if (must_load_right) {
413
right.load_item();
414
#endif // !LP64
415
} else {
416
right.dont_load_item();
417
}
418
LIR_Opr reg = rlock(x);
419
LIR_Opr tmp = LIR_OprFact::illegalOpr;
420
if (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv) {
421
tmp = new_register(T_DOUBLE);
422
}
423
424
#ifdef _LP64
425
if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) {
426
// frem and drem are implemented as a direct call into the runtime.
427
LIRItem left(x->x(), this);
428
LIRItem right(x->y(), this);
429
430
BasicType bt = as_BasicType(x->type());
431
BasicTypeList signature(2);
432
signature.append(bt);
433
signature.append(bt);
434
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
435
436
const LIR_Opr result_reg = result_register_for(x->type());
437
left.load_item_force(cc->at(0));
438
right.load_item_force(cc->at(1));
439
440
address entry = NULL;
441
switch (x->op()) {
442
case Bytecodes::_frem:
443
entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
444
break;
445
case Bytecodes::_drem:
446
entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
447
break;
448
default:
449
ShouldNotReachHere();
450
}
451
452
LIR_Opr result = rlock_result(x);
453
__ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
454
__ move(result_reg, result);
455
} else {
456
arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), tmp);
457
set_result(x, round_item(reg));
458
}
459
#else
460
if ((UseSSE >= 1 && x->op() == Bytecodes::_frem) || (UseSSE >= 2 && x->op() == Bytecodes::_drem)) {
461
// special handling for frem and drem: no SSE instruction, so must use FPU with temporary fpu stack slots
462
LIR_Opr fpu0, fpu1;
463
if (x->op() == Bytecodes::_frem) {
464
fpu0 = LIR_OprFact::single_fpu(0);
465
fpu1 = LIR_OprFact::single_fpu(1);
466
} else {
467
fpu0 = LIR_OprFact::double_fpu(0);
468
fpu1 = LIR_OprFact::double_fpu(1);
469
}
470
__ move(right.result(), fpu1); // order of left and right operand is important!
471
__ move(left.result(), fpu0);
472
__ rem (fpu0, fpu1, fpu0);
473
__ move(fpu0, reg);
474
475
} else {
476
arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), tmp);
477
}
478
set_result(x, round_item(reg));
479
#endif // _LP64
480
}
481
482
483
// for _ladd, _lmul, _lsub, _ldiv, _lrem
484
void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
485
if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem ) {
486
// long division is implemented as a direct call into the runtime
487
LIRItem left(x->x(), this);
488
LIRItem right(x->y(), this);
489
490
// the check for division by zero destroys the right operand
491
right.set_destroys_register();
492
493
BasicTypeList signature(2);
494
signature.append(T_LONG);
495
signature.append(T_LONG);
496
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
497
498
// check for division by zero (destroys registers of right operand!)
499
CodeEmitInfo* info = state_for(x);
500
501
const LIR_Opr result_reg = result_register_for(x->type());
502
left.load_item_force(cc->at(1));
503
right.load_item();
504
505
__ move(right.result(), cc->at(0));
506
507
__ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
508
__ branch(lir_cond_equal, new DivByZeroStub(info));
509
510
address entry = NULL;
511
switch (x->op()) {
512
case Bytecodes::_lrem:
513
entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
514
break; // check if dividend is 0 is done elsewhere
515
case Bytecodes::_ldiv:
516
entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
517
break; // check if dividend is 0 is done elsewhere
518
default:
519
ShouldNotReachHere();
520
}
521
522
LIR_Opr result = rlock_result(x);
523
__ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
524
__ move(result_reg, result);
525
} else if (x->op() == Bytecodes::_lmul) {
526
// missing test if instr is commutative and if we should swap
527
LIRItem left(x->x(), this);
528
LIRItem right(x->y(), this);
529
530
// right register is destroyed by the long mul, so it must be
531
// copied to a new register.
532
right.set_destroys_register();
533
534
left.load_item();
535
right.load_item();
536
537
LIR_Opr reg = FrameMap::long0_opr;
538
arithmetic_op_long(x->op(), reg, left.result(), right.result(), NULL);
539
LIR_Opr result = rlock_result(x);
540
__ move(reg, result);
541
} else {
542
// missing test if instr is commutative and if we should swap
543
LIRItem left(x->x(), this);
544
LIRItem right(x->y(), this);
545
546
left.load_item();
547
// don't load constants to save register
548
right.load_nonconstant();
549
rlock_result(x);
550
arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
551
}
552
}
553
554
555
556
// for: _iadd, _imul, _isub, _idiv, _irem
557
void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
558
if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
559
// The requirements for division and modulo
560
// input : rax,: dividend min_int
561
// reg: divisor (may not be rax,/rdx) -1
562
//
563
// output: rax,: quotient (= rax, idiv reg) min_int
564
// rdx: remainder (= rax, irem reg) 0
565
566
// rax, and rdx will be destroyed
567
568
// Note: does this invalidate the spec ???
569
LIRItem right(x->y(), this);
570
LIRItem left(x->x() , this); // visit left second, so that the is_register test is valid
571
572
// call state_for before load_item_force because state_for may
573
// force the evaluation of other instructions that are needed for
574
// correct debug info. Otherwise the live range of the fix
575
// register might be too long.
576
CodeEmitInfo* info = state_for(x);
577
578
left.load_item_force(divInOpr());
579
580
right.load_item();
581
582
LIR_Opr result = rlock_result(x);
583
LIR_Opr result_reg;
584
if (x->op() == Bytecodes::_idiv) {
585
result_reg = divOutOpr();
586
} else {
587
result_reg = remOutOpr();
588
}
589
590
if (!ImplicitDiv0Checks) {
591
__ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0));
592
__ branch(lir_cond_equal, new DivByZeroStub(info));
593
// Idiv/irem cannot trap (passing info would generate an assertion).
594
info = NULL;
595
}
596
LIR_Opr tmp = FrameMap::rdx_opr; // idiv and irem use rdx in their implementation
597
if (x->op() == Bytecodes::_irem) {
598
__ irem(left.result(), right.result(), result_reg, tmp, info);
599
} else if (x->op() == Bytecodes::_idiv) {
600
__ idiv(left.result(), right.result(), result_reg, tmp, info);
601
} else {
602
ShouldNotReachHere();
603
}
604
605
__ move(result_reg, result);
606
} else {
607
// missing test if instr is commutative and if we should swap
608
LIRItem left(x->x(), this);
609
LIRItem right(x->y(), this);
610
LIRItem* left_arg = &left;
611
LIRItem* right_arg = &right;
612
if (x->is_commutative() && left.is_stack() && right.is_register()) {
613
// swap them if left is real stack (or cached) and right is real register(not cached)
614
left_arg = &right;
615
right_arg = &left;
616
}
617
618
left_arg->load_item();
619
620
// do not need to load right, as we can handle stack and constants
621
if (x->op() == Bytecodes::_imul ) {
622
// check if we can use shift instead
623
bool use_constant = false;
624
bool use_tmp = false;
625
if (right_arg->is_constant()) {
626
jint iconst = right_arg->get_jint_constant();
627
if (iconst > 0 && iconst < max_jint) {
628
if (is_power_of_2(iconst)) {
629
use_constant = true;
630
} else if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) {
631
use_constant = true;
632
use_tmp = true;
633
}
634
}
635
}
636
if (use_constant) {
637
right_arg->dont_load_item();
638
} else {
639
right_arg->load_item();
640
}
641
LIR_Opr tmp = LIR_OprFact::illegalOpr;
642
if (use_tmp) {
643
tmp = new_register(T_INT);
644
}
645
rlock_result(x);
646
647
arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
648
} else {
649
right_arg->dont_load_item();
650
rlock_result(x);
651
LIR_Opr tmp = LIR_OprFact::illegalOpr;
652
arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp);
653
}
654
}
655
}
656
657
658
void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
659
// when an operand with use count 1 is the left operand, then it is
660
// likely that no move for 2-operand-LIR-form is necessary
661
if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
662
x->swap_operands();
663
}
664
665
ValueTag tag = x->type()->tag();
666
assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
667
switch (tag) {
668
case floatTag:
669
case doubleTag: do_ArithmeticOp_FPU(x); return;
670
case longTag: do_ArithmeticOp_Long(x); return;
671
case intTag: do_ArithmeticOp_Int(x); return;
672
default: ShouldNotReachHere(); return;
673
}
674
}
675
676
677
// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
678
void LIRGenerator::do_ShiftOp(ShiftOp* x) {
679
// count must always be in rcx
680
LIRItem value(x->x(), this);
681
LIRItem count(x->y(), this);
682
683
ValueTag elemType = x->type()->tag();
684
bool must_load_count = !count.is_constant() || elemType == longTag;
685
if (must_load_count) {
686
// count for long must be in register
687
count.load_item_force(shiftCountOpr());
688
} else {
689
count.dont_load_item();
690
}
691
value.load_item();
692
LIR_Opr reg = rlock_result(x);
693
694
shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
695
}
696
697
698
// _iand, _land, _ior, _lor, _ixor, _lxor
699
void LIRGenerator::do_LogicOp(LogicOp* x) {
700
// when an operand with use count 1 is the left operand, then it is
701
// likely that no move for 2-operand-LIR-form is necessary
702
if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
703
x->swap_operands();
704
}
705
706
LIRItem left(x->x(), this);
707
LIRItem right(x->y(), this);
708
709
left.load_item();
710
right.load_nonconstant();
711
LIR_Opr reg = rlock_result(x);
712
713
logic_op(x->op(), reg, left.result(), right.result());
714
}
715
716
717
718
// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
719
void LIRGenerator::do_CompareOp(CompareOp* x) {
720
LIRItem left(x->x(), this);
721
LIRItem right(x->y(), this);
722
ValueTag tag = x->x()->type()->tag();
723
if (tag == longTag) {
724
left.set_destroys_register();
725
}
726
left.load_item();
727
right.load_item();
728
LIR_Opr reg = rlock_result(x);
729
730
if (x->x()->type()->is_float_kind()) {
731
Bytecodes::Code code = x->op();
732
__ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
733
} else if (x->x()->type()->tag() == longTag) {
734
__ lcmp2int(left.result(), right.result(), reg);
735
} else {
736
Unimplemented();
737
}
738
}
739
740
LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
741
LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience
742
if (is_reference_type(type)) {
743
cmp_value.load_item_force(FrameMap::rax_oop_opr);
744
new_value.load_item();
745
__ cas_obj(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
746
} else if (type == T_INT) {
747
cmp_value.load_item_force(FrameMap::rax_opr);
748
new_value.load_item();
749
__ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
750
} else if (type == T_LONG) {
751
cmp_value.load_item_force(FrameMap::long0_opr);
752
new_value.load_item_force(FrameMap::long1_opr);
753
__ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
754
} else {
755
Unimplemented();
756
}
757
LIR_Opr result = new_register(T_INT);
758
__ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
759
result, T_INT);
760
return result;
761
}
762
763
LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
764
bool is_oop = is_reference_type(type);
765
LIR_Opr result = new_register(type);
766
value.load_item();
767
// Because we want a 2-arg form of xchg and xadd
768
__ move(value.result(), result);
769
assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type");
770
__ xchg(addr, result, result, LIR_OprFact::illegalOpr);
771
return result;
772
}
773
774
LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
775
LIR_Opr result = new_register(type);
776
value.load_item();
777
// Because we want a 2-arg form of xchg and xadd
778
__ move(value.result(), result);
779
assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type");
780
__ xadd(addr, result, result, LIR_OprFact::illegalOpr);
781
return result;
782
}
783
784
void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
785
assert(x->number_of_arguments() == 3, "wrong type");
786
assert(UseFMA, "Needs FMA instructions support.");
787
LIRItem value(x->argument_at(0), this);
788
LIRItem value1(x->argument_at(1), this);
789
LIRItem value2(x->argument_at(2), this);
790
791
value2.set_destroys_register();
792
793
value.load_item();
794
value1.load_item();
795
value2.load_item();
796
797
LIR_Opr calc_input = value.result();
798
LIR_Opr calc_input1 = value1.result();
799
LIR_Opr calc_input2 = value2.result();
800
LIR_Opr calc_result = rlock_result(x);
801
802
switch (x->id()) {
803
case vmIntrinsics::_fmaD: __ fmad(calc_input, calc_input1, calc_input2, calc_result); break;
804
case vmIntrinsics::_fmaF: __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break;
805
default: ShouldNotReachHere();
806
}
807
808
}
809
810
811
void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
812
assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
813
814
if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog ||
815
x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos ||
816
x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan ||
817
x->id() == vmIntrinsics::_dlog10) {
818
do_LibmIntrinsic(x);
819
return;
820
}
821
822
LIRItem value(x->argument_at(0), this);
823
824
bool use_fpu = false;
825
#ifndef _LP64
826
if (UseSSE < 2) {
827
value.set_destroys_register();
828
}
829
#endif // !LP64
830
value.load_item();
831
832
LIR_Opr calc_input = value.result();
833
LIR_Opr calc_result = rlock_result(x);
834
835
LIR_Opr tmp = LIR_OprFact::illegalOpr;
836
#ifdef _LP64
837
if (UseAVX > 2 && (!VM_Version::supports_avx512vl()) &&
838
(x->id() == vmIntrinsics::_dabs)) {
839
tmp = new_register(T_DOUBLE);
840
__ move(LIR_OprFact::doubleConst(-0.0), tmp);
841
}
842
#endif
843
844
switch(x->id()) {
845
case vmIntrinsics::_dabs: __ abs (calc_input, calc_result, tmp); break;
846
case vmIntrinsics::_dsqrt: __ sqrt (calc_input, calc_result, LIR_OprFact::illegalOpr); break;
847
default: ShouldNotReachHere();
848
}
849
850
if (use_fpu) {
851
__ move(calc_result, x->operand());
852
}
853
}
854
855
void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) {
856
LIRItem value(x->argument_at(0), this);
857
value.set_destroys_register();
858
859
LIR_Opr calc_result = rlock_result(x);
860
LIR_Opr result_reg = result_register_for(x->type());
861
862
CallingConvention* cc = NULL;
863
864
if (x->id() == vmIntrinsics::_dpow) {
865
LIRItem value1(x->argument_at(1), this);
866
867
value1.set_destroys_register();
868
869
BasicTypeList signature(2);
870
signature.append(T_DOUBLE);
871
signature.append(T_DOUBLE);
872
cc = frame_map()->c_calling_convention(&signature);
873
value.load_item_force(cc->at(0));
874
value1.load_item_force(cc->at(1));
875
} else {
876
BasicTypeList signature(1);
877
signature.append(T_DOUBLE);
878
cc = frame_map()->c_calling_convention(&signature);
879
value.load_item_force(cc->at(0));
880
}
881
882
#ifndef _LP64
883
LIR_Opr tmp = FrameMap::fpu0_double_opr;
884
result_reg = tmp;
885
switch(x->id()) {
886
case vmIntrinsics::_dexp:
887
if (StubRoutines::dexp() != NULL) {
888
__ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
889
} else {
890
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
891
}
892
break;
893
case vmIntrinsics::_dlog:
894
if (StubRoutines::dlog() != NULL) {
895
__ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args());
896
} else {
897
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args());
898
}
899
break;
900
case vmIntrinsics::_dlog10:
901
if (StubRoutines::dlog10() != NULL) {
902
__ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args());
903
} else {
904
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args());
905
}
906
break;
907
case vmIntrinsics::_dpow:
908
if (StubRoutines::dpow() != NULL) {
909
__ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args());
910
} else {
911
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args());
912
}
913
break;
914
case vmIntrinsics::_dsin:
915
if (VM_Version::supports_sse2() && StubRoutines::dsin() != NULL) {
916
__ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args());
917
} else {
918
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args());
919
}
920
break;
921
case vmIntrinsics::_dcos:
922
if (VM_Version::supports_sse2() && StubRoutines::dcos() != NULL) {
923
__ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args());
924
} else {
925
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args());
926
}
927
break;
928
case vmIntrinsics::_dtan:
929
if (StubRoutines::dtan() != NULL) {
930
__ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args());
931
} else {
932
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args());
933
}
934
break;
935
default: ShouldNotReachHere();
936
}
937
#else
938
switch (x->id()) {
939
case vmIntrinsics::_dexp:
940
if (StubRoutines::dexp() != NULL) {
941
__ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
942
} else {
943
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
944
}
945
break;
946
case vmIntrinsics::_dlog:
947
if (StubRoutines::dlog() != NULL) {
948
__ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args());
949
} else {
950
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args());
951
}
952
break;
953
case vmIntrinsics::_dlog10:
954
if (StubRoutines::dlog10() != NULL) {
955
__ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args());
956
} else {
957
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args());
958
}
959
break;
960
case vmIntrinsics::_dpow:
961
if (StubRoutines::dpow() != NULL) {
962
__ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args());
963
} else {
964
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args());
965
}
966
break;
967
case vmIntrinsics::_dsin:
968
if (StubRoutines::dsin() != NULL) {
969
__ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args());
970
} else {
971
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args());
972
}
973
break;
974
case vmIntrinsics::_dcos:
975
if (StubRoutines::dcos() != NULL) {
976
__ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args());
977
} else {
978
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args());
979
}
980
break;
981
case vmIntrinsics::_dtan:
982
if (StubRoutines::dtan() != NULL) {
983
__ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args());
984
} else {
985
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args());
986
}
987
break;
988
default: ShouldNotReachHere();
989
}
990
#endif // _LP64
991
__ move(result_reg, calc_result);
992
}
993
994
void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
995
assert(x->number_of_arguments() == 5, "wrong type");
996
997
// Make all state_for calls early since they can emit code
998
CodeEmitInfo* info = state_for(x, x->state());
999
1000
LIRItem src(x->argument_at(0), this);
1001
LIRItem src_pos(x->argument_at(1), this);
1002
LIRItem dst(x->argument_at(2), this);
1003
LIRItem dst_pos(x->argument_at(3), this);
1004
LIRItem length(x->argument_at(4), this);
1005
1006
// operands for arraycopy must use fixed registers, otherwise
1007
// LinearScan will fail allocation (because arraycopy always needs a
1008
// call)
1009
1010
#ifndef _LP64
1011
src.load_item_force (FrameMap::rcx_oop_opr);
1012
src_pos.load_item_force (FrameMap::rdx_opr);
1013
dst.load_item_force (FrameMap::rax_oop_opr);
1014
dst_pos.load_item_force (FrameMap::rbx_opr);
1015
length.load_item_force (FrameMap::rdi_opr);
1016
LIR_Opr tmp = (FrameMap::rsi_opr);
1017
#else
1018
1019
// The java calling convention will give us enough registers
1020
// so that on the stub side the args will be perfect already.
1021
// On the other slow/special case side we call C and the arg
1022
// positions are not similar enough to pick one as the best.
1023
// Also because the java calling convention is a "shifted" version
1024
// of the C convention we can process the java args trivially into C
1025
// args without worry of overwriting during the xfer
1026
1027
src.load_item_force (FrameMap::as_oop_opr(j_rarg0));
1028
src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
1029
dst.load_item_force (FrameMap::as_oop_opr(j_rarg2));
1030
dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
1031
length.load_item_force (FrameMap::as_opr(j_rarg4));
1032
1033
LIR_Opr tmp = FrameMap::as_opr(j_rarg5);
1034
#endif // LP64
1035
1036
set_no_result(x);
1037
1038
int flags;
1039
ciArrayKlass* expected_type;
1040
arraycopy_helper(x, &flags, &expected_type);
1041
1042
__ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
1043
}
1044
1045
void LIRGenerator::do_update_CRC32(Intrinsic* x) {
1046
assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
1047
// Make all state_for calls early since they can emit code
1048
LIR_Opr result = rlock_result(x);
1049
int flags = 0;
1050
switch (x->id()) {
1051
case vmIntrinsics::_updateCRC32: {
1052
LIRItem crc(x->argument_at(0), this);
1053
LIRItem val(x->argument_at(1), this);
1054
// val is destroyed by update_crc32
1055
val.set_destroys_register();
1056
crc.load_item();
1057
val.load_item();
1058
__ update_crc32(crc.result(), val.result(), result);
1059
break;
1060
}
1061
case vmIntrinsics::_updateBytesCRC32:
1062
case vmIntrinsics::_updateByteBufferCRC32: {
1063
bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
1064
1065
LIRItem crc(x->argument_at(0), this);
1066
LIRItem buf(x->argument_at(1), this);
1067
LIRItem off(x->argument_at(2), this);
1068
LIRItem len(x->argument_at(3), this);
1069
buf.load_item();
1070
off.load_nonconstant();
1071
1072
LIR_Opr index = off.result();
1073
int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
1074
if(off.result()->is_constant()) {
1075
index = LIR_OprFact::illegalOpr;
1076
offset += off.result()->as_jint();
1077
}
1078
LIR_Opr base_op = buf.result();
1079
1080
#ifndef _LP64
1081
if (!is_updateBytes) { // long b raw address
1082
base_op = new_register(T_INT);
1083
__ convert(Bytecodes::_l2i, buf.result(), base_op);
1084
}
1085
#else
1086
if (index->is_valid()) {
1087
LIR_Opr tmp = new_register(T_LONG);
1088
__ convert(Bytecodes::_i2l, index, tmp);
1089
index = tmp;
1090
}
1091
#endif
1092
1093
LIR_Address* a = new LIR_Address(base_op,
1094
index,
1095
offset,
1096
T_BYTE);
1097
BasicTypeList signature(3);
1098
signature.append(T_INT);
1099
signature.append(T_ADDRESS);
1100
signature.append(T_INT);
1101
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1102
const LIR_Opr result_reg = result_register_for(x->type());
1103
1104
LIR_Opr addr = new_pointer_register();
1105
__ leal(LIR_OprFact::address(a), addr);
1106
1107
crc.load_item_force(cc->at(0));
1108
__ move(addr, cc->at(1));
1109
len.load_item_force(cc->at(2));
1110
1111
__ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
1112
__ move(result_reg, result);
1113
1114
break;
1115
}
1116
default: {
1117
ShouldNotReachHere();
1118
}
1119
}
1120
}
1121
1122
void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
1123
Unimplemented();
1124
}
1125
1126
void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
1127
assert(UseVectorizedMismatchIntrinsic, "need AVX instruction support");
1128
1129
// Make all state_for calls early since they can emit code
1130
LIR_Opr result = rlock_result(x);
1131
1132
LIRItem a(x->argument_at(0), this); // Object
1133
LIRItem aOffset(x->argument_at(1), this); // long
1134
LIRItem b(x->argument_at(2), this); // Object
1135
LIRItem bOffset(x->argument_at(3), this); // long
1136
LIRItem length(x->argument_at(4), this); // int
1137
LIRItem log2ArrayIndexScale(x->argument_at(5), this); // int
1138
1139
a.load_item();
1140
aOffset.load_nonconstant();
1141
b.load_item();
1142
bOffset.load_nonconstant();
1143
1144
long constant_aOffset = 0;
1145
LIR_Opr result_aOffset = aOffset.result();
1146
if (result_aOffset->is_constant()) {
1147
constant_aOffset = result_aOffset->as_jlong();
1148
result_aOffset = LIR_OprFact::illegalOpr;
1149
}
1150
LIR_Opr result_a = a.result();
1151
1152
long constant_bOffset = 0;
1153
LIR_Opr result_bOffset = bOffset.result();
1154
if (result_bOffset->is_constant()) {
1155
constant_bOffset = result_bOffset->as_jlong();
1156
result_bOffset = LIR_OprFact::illegalOpr;
1157
}
1158
LIR_Opr result_b = b.result();
1159
1160
#ifndef _LP64
1161
result_a = new_register(T_INT);
1162
__ convert(Bytecodes::_l2i, a.result(), result_a);
1163
result_b = new_register(T_INT);
1164
__ convert(Bytecodes::_l2i, b.result(), result_b);
1165
#endif
1166
1167
1168
LIR_Address* addr_a = new LIR_Address(result_a,
1169
result_aOffset,
1170
constant_aOffset,
1171
T_BYTE);
1172
1173
LIR_Address* addr_b = new LIR_Address(result_b,
1174
result_bOffset,
1175
constant_bOffset,
1176
T_BYTE);
1177
1178
BasicTypeList signature(4);
1179
signature.append(T_ADDRESS);
1180
signature.append(T_ADDRESS);
1181
signature.append(T_INT);
1182
signature.append(T_INT);
1183
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1184
const LIR_Opr result_reg = result_register_for(x->type());
1185
1186
LIR_Opr ptr_addr_a = new_pointer_register();
1187
__ leal(LIR_OprFact::address(addr_a), ptr_addr_a);
1188
1189
LIR_Opr ptr_addr_b = new_pointer_register();
1190
__ leal(LIR_OprFact::address(addr_b), ptr_addr_b);
1191
1192
__ move(ptr_addr_a, cc->at(0));
1193
__ move(ptr_addr_b, cc->at(1));
1194
length.load_item_force(cc->at(2));
1195
log2ArrayIndexScale.load_item_force(cc->at(3));
1196
1197
__ call_runtime_leaf(StubRoutines::vectorizedMismatch(), getThreadTemp(), result_reg, cc->args());
1198
__ move(result_reg, result);
1199
}
1200
1201
// _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
1202
// _i2b, _i2c, _i2s
1203
LIR_Opr fixed_register_for(BasicType type) {
1204
switch (type) {
1205
case T_FLOAT: return FrameMap::fpu0_float_opr;
1206
case T_DOUBLE: return FrameMap::fpu0_double_opr;
1207
case T_INT: return FrameMap::rax_opr;
1208
case T_LONG: return FrameMap::long0_opr;
1209
default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
1210
}
1211
}
1212
1213
void LIRGenerator::do_Convert(Convert* x) {
1214
#ifdef _LP64
1215
LIRItem value(x->value(), this);
1216
value.load_item();
1217
LIR_Opr input = value.result();
1218
LIR_Opr result = rlock(x);
1219
__ convert(x->op(), input, result);
1220
assert(result->is_virtual(), "result must be virtual register");
1221
set_result(x, result);
1222
#else
1223
// flags that vary for the different operations and different SSE-settings
1224
bool fixed_input = false, fixed_result = false, round_result = false, needs_stub = false;
1225
1226
switch (x->op()) {
1227
case Bytecodes::_i2l: // fall through
1228
case Bytecodes::_l2i: // fall through
1229
case Bytecodes::_i2b: // fall through
1230
case Bytecodes::_i2c: // fall through
1231
case Bytecodes::_i2s: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break;
1232
1233
case Bytecodes::_f2d: fixed_input = UseSSE == 1; fixed_result = false; round_result = false; needs_stub = false; break;
1234
case Bytecodes::_d2f: fixed_input = false; fixed_result = UseSSE == 1; round_result = UseSSE < 1; needs_stub = false; break;
1235
case Bytecodes::_i2f: fixed_input = false; fixed_result = false; round_result = UseSSE < 1; needs_stub = false; break;
1236
case Bytecodes::_i2d: fixed_input = false; fixed_result = false; round_result = false; needs_stub = false; break;
1237
case Bytecodes::_f2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break;
1238
case Bytecodes::_d2i: fixed_input = false; fixed_result = false; round_result = false; needs_stub = true; break;
1239
case Bytecodes::_l2f: fixed_input = false; fixed_result = UseSSE >= 1; round_result = UseSSE < 1; needs_stub = false; break;
1240
case Bytecodes::_l2d: fixed_input = false; fixed_result = UseSSE >= 2; round_result = UseSSE < 2; needs_stub = false; break;
1241
case Bytecodes::_f2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break;
1242
case Bytecodes::_d2l: fixed_input = true; fixed_result = true; round_result = false; needs_stub = false; break;
1243
default: ShouldNotReachHere();
1244
}
1245
1246
LIRItem value(x->value(), this);
1247
value.load_item();
1248
LIR_Opr input = value.result();
1249
LIR_Opr result = rlock(x);
1250
1251
// arguments of lir_convert
1252
LIR_Opr conv_input = input;
1253
LIR_Opr conv_result = result;
1254
ConversionStub* stub = NULL;
1255
1256
if (fixed_input) {
1257
conv_input = fixed_register_for(input->type());
1258
__ move(input, conv_input);
1259
}
1260
1261
assert(fixed_result == false || round_result == false, "cannot set both");
1262
if (fixed_result) {
1263
conv_result = fixed_register_for(result->type());
1264
} else if (round_result) {
1265
result = new_register(result->type());
1266
set_vreg_flag(result, must_start_in_memory);
1267
}
1268
1269
if (needs_stub) {
1270
stub = new ConversionStub(x->op(), conv_input, conv_result);
1271
}
1272
1273
__ convert(x->op(), conv_input, conv_result, stub);
1274
1275
if (result != conv_result) {
1276
__ move(conv_result, result);
1277
}
1278
1279
assert(result->is_virtual(), "result must be virtual register");
1280
set_result(x, result);
1281
#endif // _LP64
1282
}
1283
1284
1285
void LIRGenerator::do_NewInstance(NewInstance* x) {
1286
print_if_not_loaded(x);
1287
1288
CodeEmitInfo* info = state_for(x, x->state());
1289
LIR_Opr reg = result_register_for(x->type());
1290
new_instance(reg, x->klass(), x->is_unresolved(),
1291
FrameMap::rcx_oop_opr,
1292
FrameMap::rdi_oop_opr,
1293
FrameMap::rsi_oop_opr,
1294
LIR_OprFact::illegalOpr,
1295
FrameMap::rdx_metadata_opr, info);
1296
LIR_Opr result = rlock_result(x);
1297
__ move(reg, result);
1298
}
1299
1300
1301
void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1302
CodeEmitInfo* info = state_for(x, x->state());
1303
1304
LIRItem length(x->length(), this);
1305
length.load_item_force(FrameMap::rbx_opr);
1306
1307
LIR_Opr reg = result_register_for(x->type());
1308
LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1309
LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1310
LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1311
LIR_Opr tmp4 = reg;
1312
LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
1313
LIR_Opr len = length.result();
1314
BasicType elem_type = x->elt_type();
1315
1316
__ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1317
1318
CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1319
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1320
1321
LIR_Opr result = rlock_result(x);
1322
__ move(reg, result);
1323
}
1324
1325
1326
void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1327
LIRItem length(x->length(), this);
1328
// in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1329
// and therefore provide the state before the parameters have been consumed
1330
CodeEmitInfo* patching_info = NULL;
1331
if (!x->klass()->is_loaded() || PatchALot) {
1332
patching_info = state_for(x, x->state_before());
1333
}
1334
1335
CodeEmitInfo* info = state_for(x, x->state());
1336
1337
const LIR_Opr reg = result_register_for(x->type());
1338
LIR_Opr tmp1 = FrameMap::rcx_oop_opr;
1339
LIR_Opr tmp2 = FrameMap::rsi_oop_opr;
1340
LIR_Opr tmp3 = FrameMap::rdi_oop_opr;
1341
LIR_Opr tmp4 = reg;
1342
LIR_Opr klass_reg = FrameMap::rdx_metadata_opr;
1343
1344
length.load_item_force(FrameMap::rbx_opr);
1345
LIR_Opr len = length.result();
1346
1347
CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1348
ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
1349
if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1350
BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1351
}
1352
klass2reg_with_patching(klass_reg, obj, patching_info);
1353
__ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1354
1355
LIR_Opr result = rlock_result(x);
1356
__ move(reg, result);
1357
}
1358
1359
1360
void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1361
Values* dims = x->dims();
1362
int i = dims->length();
1363
LIRItemList* items = new LIRItemList(i, i, NULL);
1364
while (i-- > 0) {
1365
LIRItem* size = new LIRItem(dims->at(i), this);
1366
items->at_put(i, size);
1367
}
1368
1369
// Evaluate state_for early since it may emit code.
1370
CodeEmitInfo* patching_info = NULL;
1371
if (!x->klass()->is_loaded() || PatchALot) {
1372
patching_info = state_for(x, x->state_before());
1373
1374
// Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1375
// clone all handlers (NOTE: Usually this is handled transparently
1376
// by the CodeEmitInfo cloning logic in CodeStub constructors but
1377
// is done explicitly here because a stub isn't being used).
1378
x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1379
}
1380
CodeEmitInfo* info = state_for(x, x->state());
1381
1382
i = dims->length();
1383
while (i-- > 0) {
1384
LIRItem* size = items->at(i);
1385
size->load_nonconstant();
1386
1387
store_stack_parameter(size->result(), in_ByteSize(i*4));
1388
}
1389
1390
LIR_Opr klass_reg = FrameMap::rax_metadata_opr;
1391
klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1392
1393
LIR_Opr rank = FrameMap::rbx_opr;
1394
__ move(LIR_OprFact::intConst(x->rank()), rank);
1395
LIR_Opr varargs = FrameMap::rcx_opr;
1396
__ move(FrameMap::rsp_opr, varargs);
1397
LIR_OprList* args = new LIR_OprList(3);
1398
args->append(klass_reg);
1399
args->append(rank);
1400
args->append(varargs);
1401
LIR_Opr reg = result_register_for(x->type());
1402
__ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1403
LIR_OprFact::illegalOpr,
1404
reg, args, info);
1405
1406
LIR_Opr result = rlock_result(x);
1407
__ move(reg, result);
1408
}
1409
1410
1411
void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1412
// nothing to do for now
1413
}
1414
1415
1416
void LIRGenerator::do_CheckCast(CheckCast* x) {
1417
LIRItem obj(x->obj(), this);
1418
1419
CodeEmitInfo* patching_info = NULL;
1420
if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) {
1421
// must do this before locking the destination register as an oop register,
1422
// and before the obj is loaded (the latter is for deoptimization)
1423
patching_info = state_for(x, x->state_before());
1424
}
1425
obj.load_item();
1426
1427
// info for exceptions
1428
CodeEmitInfo* info_for_exception =
1429
(x->needs_exception_state() ? state_for(x) :
1430
state_for(x, x->state_before(), true /*ignore_xhandler*/));
1431
1432
CodeStub* stub;
1433
if (x->is_incompatible_class_change_check()) {
1434
assert(patching_info == NULL, "can't patch this");
1435
stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1436
} else if (x->is_invokespecial_receiver_check()) {
1437
assert(patching_info == NULL, "can't patch this");
1438
stub = new DeoptimizeStub(info_for_exception, Deoptimization::Reason_class_check, Deoptimization::Action_none);
1439
} else {
1440
stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1441
}
1442
LIR_Opr reg = rlock_result(x);
1443
LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1444
if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1445
tmp3 = new_register(objectType);
1446
}
1447
__ checkcast(reg, obj.result(), x->klass(),
1448
new_register(objectType), new_register(objectType), tmp3,
1449
x->direct_compare(), info_for_exception, patching_info, stub,
1450
x->profiled_method(), x->profiled_bci());
1451
}
1452
1453
1454
void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1455
LIRItem obj(x->obj(), this);
1456
1457
// result and test object may not be in same register
1458
LIR_Opr reg = rlock_result(x);
1459
CodeEmitInfo* patching_info = NULL;
1460
if ((!x->klass()->is_loaded() || PatchALot)) {
1461
// must do this before locking the destination register as an oop register
1462
patching_info = state_for(x, x->state_before());
1463
}
1464
obj.load_item();
1465
LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1466
if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1467
tmp3 = new_register(objectType);
1468
}
1469
__ instanceof(reg, obj.result(), x->klass(),
1470
new_register(objectType), new_register(objectType), tmp3,
1471
x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1472
}
1473
1474
1475
void LIRGenerator::do_If(If* x) {
1476
assert(x->number_of_sux() == 2, "inconsistency");
1477
ValueTag tag = x->x()->type()->tag();
1478
bool is_safepoint = x->is_safepoint();
1479
1480
If::Condition cond = x->cond();
1481
1482
LIRItem xitem(x->x(), this);
1483
LIRItem yitem(x->y(), this);
1484
LIRItem* xin = &xitem;
1485
LIRItem* yin = &yitem;
1486
1487
if (tag == longTag) {
1488
// for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1489
// mirror for other conditions
1490
if (cond == If::gtr || cond == If::leq) {
1491
cond = Instruction::mirror(cond);
1492
xin = &yitem;
1493
yin = &xitem;
1494
}
1495
xin->set_destroys_register();
1496
}
1497
xin->load_item();
1498
if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) {
1499
// inline long zero
1500
yin->dont_load_item();
1501
} else if (tag == longTag || tag == floatTag || tag == doubleTag) {
1502
// longs cannot handle constants at right side
1503
yin->load_item();
1504
} else {
1505
yin->dont_load_item();
1506
}
1507
1508
LIR_Opr left = xin->result();
1509
LIR_Opr right = yin->result();
1510
1511
set_no_result(x);
1512
1513
// add safepoint before generating condition code so it can be recomputed
1514
if (x->is_safepoint()) {
1515
// increment backedge counter if needed
1516
increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()),
1517
x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci());
1518
__ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
1519
}
1520
1521
__ cmp(lir_cond(cond), left, right);
1522
// Generate branch profiling. Profiling code doesn't kill flags.
1523
profile_branch(x, cond);
1524
move_to_phi(x->state());
1525
if (x->x()->type()->is_float_kind()) {
1526
__ branch(lir_cond(cond), x->tsux(), x->usux());
1527
} else {
1528
__ branch(lir_cond(cond), x->tsux());
1529
}
1530
assert(x->default_sux() == x->fsux(), "wrong destination above");
1531
__ jump(x->default_sux());
1532
}
1533
1534
1535
LIR_Opr LIRGenerator::getThreadPointer() {
1536
#ifdef _LP64
1537
return FrameMap::as_pointer_opr(r15_thread);
1538
#else
1539
LIR_Opr result = new_register(T_INT);
1540
__ get_thread(result);
1541
return result;
1542
#endif //
1543
}
1544
1545
void LIRGenerator::trace_block_entry(BlockBegin* block) {
1546
store_stack_parameter(LIR_OprFact::intConst(block->block_id()), in_ByteSize(0));
1547
LIR_OprList* args = new LIR_OprList();
1548
address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1549
__ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args);
1550
}
1551
1552
1553
void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1554
CodeEmitInfo* info) {
1555
if (address->type() == T_LONG) {
1556
address = new LIR_Address(address->base(),
1557
address->index(), address->scale(),
1558
address->disp(), T_DOUBLE);
1559
// Transfer the value atomically by using FP moves. This means
1560
// the value has to be moved between CPU and FPU registers. It
1561
// always has to be moved through spill slot since there's no
1562
// quick way to pack the value into an SSE register.
1563
LIR_Opr temp_double = new_register(T_DOUBLE);
1564
LIR_Opr spill = new_register(T_LONG);
1565
set_vreg_flag(spill, must_start_in_memory);
1566
__ move(value, spill);
1567
__ volatile_move(spill, temp_double, T_LONG);
1568
__ volatile_move(temp_double, LIR_OprFact::address(address), T_LONG, info);
1569
} else {
1570
__ store(value, address, info);
1571
}
1572
}
1573
1574
void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1575
CodeEmitInfo* info) {
1576
if (address->type() == T_LONG) {
1577
address = new LIR_Address(address->base(),
1578
address->index(), address->scale(),
1579
address->disp(), T_DOUBLE);
1580
// Transfer the value atomically by using FP moves. This means
1581
// the value has to be moved between CPU and FPU registers. In
1582
// SSE0 and SSE1 mode it has to be moved through spill slot but in
1583
// SSE2+ mode it can be moved directly.
1584
LIR_Opr temp_double = new_register(T_DOUBLE);
1585
__ volatile_move(LIR_OprFact::address(address), temp_double, T_LONG, info);
1586
__ volatile_move(temp_double, result, T_LONG);
1587
#ifndef _LP64
1588
if (UseSSE < 2) {
1589
// no spill slot needed in SSE2 mode because xmm->cpu register move is possible
1590
set_vreg_flag(result, must_start_in_memory);
1591
}
1592
#endif // !LP64
1593
} else {
1594
__ load(address, result, info);
1595
}
1596
}
1597
1598