Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/jdk17u
Path: blob/master/src/hotspot/share/c1/c1_IR.cpp
64440 views
1
/*
2
* Copyright (c) 1999, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "c1/c1_Compilation.hpp"
27
#include "c1/c1_FrameMap.hpp"
28
#include "c1/c1_GraphBuilder.hpp"
29
#include "c1/c1_IR.hpp"
30
#include "c1/c1_InstructionPrinter.hpp"
31
#include "c1/c1_Optimizer.hpp"
32
#include "compiler/oopMap.hpp"
33
#include "memory/resourceArea.hpp"
34
#include "utilities/bitMap.inline.hpp"
35
36
37
// Implementation of XHandlers
38
//
39
// Note: This code could eventually go away if we are
40
// just using the ciExceptionHandlerStream.
41
42
XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
43
ciExceptionHandlerStream s(method);
44
while (!s.is_done()) {
45
_list.append(new XHandler(s.handler()));
46
s.next();
47
}
48
assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
49
}
50
51
// deep copy of all XHandler contained in list
52
XHandlers::XHandlers(XHandlers* other) :
53
_list(other->length())
54
{
55
for (int i = 0; i < other->length(); i++) {
56
_list.append(new XHandler(other->handler_at(i)));
57
}
58
}
59
60
// Returns whether a particular exception type can be caught. Also
61
// returns true if klass is unloaded or any exception handler
62
// classes are unloaded. type_is_exact indicates whether the throw
63
// is known to be exactly that class or it might throw a subtype.
64
bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
65
// the type is unknown so be conservative
66
if (!klass->is_loaded()) {
67
return true;
68
}
69
70
for (int i = 0; i < length(); i++) {
71
XHandler* handler = handler_at(i);
72
if (handler->is_catch_all()) {
73
// catch of ANY
74
return true;
75
}
76
ciInstanceKlass* handler_klass = handler->catch_klass();
77
// if it's unknown it might be catchable
78
if (!handler_klass->is_loaded()) {
79
return true;
80
}
81
// if the throw type is definitely a subtype of the catch type
82
// then it can be caught.
83
if (klass->is_subtype_of(handler_klass)) {
84
return true;
85
}
86
if (!type_is_exact) {
87
// If the type isn't exactly known then it can also be caught by
88
// catch statements where the inexact type is a subtype of the
89
// catch type.
90
// given: foo extends bar extends Exception
91
// throw bar can be caught by catch foo, catch bar, and catch
92
// Exception, however it can't be caught by any handlers without
93
// bar in its type hierarchy.
94
if (handler_klass->is_subtype_of(klass)) {
95
return true;
96
}
97
}
98
}
99
100
return false;
101
}
102
103
104
bool XHandlers::equals(XHandlers* others) const {
105
if (others == NULL) return false;
106
if (length() != others->length()) return false;
107
108
for (int i = 0; i < length(); i++) {
109
if (!handler_at(i)->equals(others->handler_at(i))) return false;
110
}
111
return true;
112
}
113
114
bool XHandler::equals(XHandler* other) const {
115
assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
116
117
if (entry_pco() != other->entry_pco()) return false;
118
if (scope_count() != other->scope_count()) return false;
119
if (_desc != other->_desc) return false;
120
121
assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
122
return true;
123
}
124
125
126
// Implementation of IRScope
127
BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
128
GraphBuilder gm(compilation, this);
129
NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
130
if (compilation->bailed_out()) return NULL;
131
return gm.start();
132
}
133
134
135
IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
136
: _compilation(compilation)
137
, _callees(2)
138
, _requires_phi_function(method->max_locals())
139
{
140
_caller = caller;
141
_level = caller == NULL ? 0 : caller->level() + 1;
142
_method = method;
143
_xhandlers = new XHandlers(method);
144
_number_of_locks = 0;
145
_monitor_pairing_ok = method->has_balanced_monitors();
146
_wrote_final = false;
147
_wrote_fields = false;
148
_wrote_volatile = false;
149
_start = NULL;
150
151
if (osr_bci != -1) {
152
// selective creation of phi functions is not possibel in osr-methods
153
_requires_phi_function.set_range(0, method->max_locals());
154
}
155
156
assert(method->holder()->is_loaded() , "method holder must be loaded");
157
158
// build graph if monitor pairing is ok
159
if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
160
}
161
162
163
int IRScope::max_stack() const {
164
int my_max = method()->max_stack();
165
int callee_max = 0;
166
for (int i = 0; i < number_of_callees(); i++) {
167
callee_max = MAX2(callee_max, callee_no(i)->max_stack());
168
}
169
return my_max + callee_max;
170
}
171
172
173
bool IRScopeDebugInfo::should_reexecute() {
174
ciMethod* cur_method = scope()->method();
175
int cur_bci = bci();
176
if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
177
Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
178
return Interpreter::bytecode_should_reexecute(code);
179
} else
180
return false;
181
}
182
183
184
// Implementation of CodeEmitInfo
185
186
// Stack must be NON-null
187
CodeEmitInfo::CodeEmitInfo(ValueStack* stack, XHandlers* exception_handlers, bool deoptimize_on_exception)
188
: _scope_debug_info(NULL)
189
, _scope(stack->scope())
190
, _exception_handlers(exception_handlers)
191
, _oop_map(NULL)
192
, _stack(stack)
193
, _is_method_handle_invoke(false)
194
, _deoptimize_on_exception(deoptimize_on_exception)
195
, _force_reexecute(false) {
196
assert(_stack != NULL, "must be non null");
197
}
198
199
200
CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, ValueStack* stack)
201
: _scope_debug_info(NULL)
202
, _scope(info->_scope)
203
, _exception_handlers(NULL)
204
, _oop_map(NULL)
205
, _stack(stack == NULL ? info->_stack : stack)
206
, _is_method_handle_invoke(info->_is_method_handle_invoke)
207
, _deoptimize_on_exception(info->_deoptimize_on_exception)
208
, _force_reexecute(info->_force_reexecute) {
209
210
// deep copy of exception handlers
211
if (info->_exception_handlers != NULL) {
212
_exception_handlers = new XHandlers(info->_exception_handlers);
213
}
214
}
215
216
217
void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
218
// record the safepoint before recording the debug info for enclosing scopes
219
recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
220
bool reexecute = _force_reexecute || _scope_debug_info->should_reexecute();
221
_scope_debug_info->record_debug_info(recorder, pc_offset, reexecute, _is_method_handle_invoke);
222
recorder->end_safepoint(pc_offset);
223
}
224
225
226
void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
227
assert(_oop_map != NULL, "oop map must already exist");
228
assert(opr->is_single_cpu(), "should not call otherwise");
229
230
VMReg name = frame_map()->regname(opr);
231
_oop_map->set_oop(name);
232
}
233
234
// Mirror the stack size calculation in the deopt code
235
// How much stack space would we need at this point in the program in
236
// case of deoptimization?
237
int CodeEmitInfo::interpreter_frame_size() const {
238
ValueStack* state = _stack;
239
int size = 0;
240
int callee_parameters = 0;
241
int callee_locals = 0;
242
int extra_args = state->scope()->method()->max_stack() - state->stack_size();
243
244
while (state != NULL) {
245
int locks = state->locks_size();
246
int temps = state->stack_size();
247
bool is_top_frame = (state == _stack);
248
ciMethod* method = state->scope()->method();
249
250
int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
251
temps + callee_parameters,
252
extra_args,
253
locks,
254
callee_parameters,
255
callee_locals,
256
is_top_frame);
257
size += frame_size;
258
259
callee_parameters = method->size_of_parameters();
260
callee_locals = method->max_locals();
261
extra_args = 0;
262
state = state->caller_state();
263
}
264
return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
265
}
266
267
// Implementation of IR
268
269
IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
270
_num_loops(0) {
271
// setup IR fields
272
_compilation = compilation;
273
_top_scope = new IRScope(compilation, NULL, -1, method, osr_bci, true);
274
_code = NULL;
275
}
276
277
278
void IR::optimize_blocks() {
279
Optimizer opt(this);
280
if (!compilation()->profile_branches()) {
281
if (DoCEE) {
282
opt.eliminate_conditional_expressions();
283
#ifndef PRODUCT
284
if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
285
if (PrintIR || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
286
#endif
287
}
288
if (EliminateBlocks) {
289
opt.eliminate_blocks();
290
#ifndef PRODUCT
291
if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
292
if (PrintIR || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
293
#endif
294
}
295
}
296
}
297
298
void IR::eliminate_null_checks() {
299
Optimizer opt(this);
300
if (EliminateNullChecks) {
301
opt.eliminate_null_checks();
302
#ifndef PRODUCT
303
if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
304
if (PrintIR || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
305
#endif
306
}
307
}
308
309
310
static int sort_pairs(BlockPair** a, BlockPair** b) {
311
if ((*a)->from() == (*b)->from()) {
312
return (*a)->to()->block_id() - (*b)->to()->block_id();
313
} else {
314
return (*a)->from()->block_id() - (*b)->from()->block_id();
315
}
316
}
317
318
319
class CriticalEdgeFinder: public BlockClosure {
320
BlockPairList blocks;
321
IR* _ir;
322
323
public:
324
CriticalEdgeFinder(IR* ir): _ir(ir) {}
325
void block_do(BlockBegin* bb) {
326
BlockEnd* be = bb->end();
327
int nos = be->number_of_sux();
328
if (nos >= 2) {
329
for (int i = 0; i < nos; i++) {
330
BlockBegin* sux = be->sux_at(i);
331
if (sux->number_of_preds() >= 2) {
332
blocks.append(new BlockPair(bb, sux));
333
}
334
}
335
}
336
}
337
338
void split_edges() {
339
BlockPair* last_pair = NULL;
340
blocks.sort(sort_pairs);
341
for (int i = 0; i < blocks.length(); i++) {
342
BlockPair* pair = blocks.at(i);
343
if (last_pair != NULL && pair->is_same(last_pair)) continue;
344
BlockBegin* from = pair->from();
345
BlockBegin* to = pair->to();
346
BlockBegin* split = from->insert_block_between(to);
347
#ifndef PRODUCT
348
if ((PrintIR || PrintIR1) && Verbose) {
349
tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
350
from->block_id(), to->block_id(), split->block_id());
351
}
352
#endif
353
last_pair = pair;
354
}
355
}
356
};
357
358
void IR::split_critical_edges() {
359
CriticalEdgeFinder cef(this);
360
361
iterate_preorder(&cef);
362
cef.split_edges();
363
}
364
365
366
class UseCountComputer: public ValueVisitor, BlockClosure {
367
private:
368
void visit(Value* n) {
369
// Local instructions and Phis for expression stack values at the
370
// start of basic blocks are not added to the instruction list
371
if (!(*n)->is_linked() && (*n)->can_be_linked()) {
372
assert(false, "a node was not appended to the graph");
373
Compilation::current()->bailout("a node was not appended to the graph");
374
}
375
// use n's input if not visited before
376
if (!(*n)->is_pinned() && !(*n)->has_uses()) {
377
// note: a) if the instruction is pinned, it will be handled by compute_use_count
378
// b) if the instruction has uses, it was touched before
379
// => in both cases we don't need to update n's values
380
uses_do(n);
381
}
382
// use n
383
(*n)->_use_count++;
384
}
385
386
Values* worklist;
387
int depth;
388
enum {
389
max_recurse_depth = 20
390
};
391
392
void uses_do(Value* n) {
393
depth++;
394
if (depth > max_recurse_depth) {
395
// don't allow the traversal to recurse too deeply
396
worklist->push(*n);
397
} else {
398
(*n)->input_values_do(this);
399
// special handling for some instructions
400
if ((*n)->as_BlockEnd() != NULL) {
401
// note on BlockEnd:
402
// must 'use' the stack only if the method doesn't
403
// terminate, however, in those cases stack is empty
404
(*n)->state_values_do(this);
405
}
406
}
407
depth--;
408
}
409
410
void block_do(BlockBegin* b) {
411
depth = 0;
412
// process all pinned nodes as the roots of expression trees
413
for (Instruction* n = b; n != NULL; n = n->next()) {
414
if (n->is_pinned()) uses_do(&n);
415
}
416
assert(depth == 0, "should have counted back down");
417
418
// now process any unpinned nodes which recursed too deeply
419
while (worklist->length() > 0) {
420
Value t = worklist->pop();
421
if (!t->is_pinned()) {
422
// compute the use count
423
uses_do(&t);
424
425
// pin the instruction so that LIRGenerator doesn't recurse
426
// too deeply during it's evaluation.
427
t->pin();
428
}
429
}
430
assert(depth == 0, "should have counted back down");
431
}
432
433
UseCountComputer() {
434
worklist = new Values();
435
depth = 0;
436
}
437
438
public:
439
static void compute(BlockList* blocks) {
440
UseCountComputer ucc;
441
blocks->iterate_backward(&ucc);
442
}
443
};
444
445
446
// helper macro for short definition of trace-output inside code
447
#ifdef ASSERT
448
#define TRACE_LINEAR_SCAN(level, code) \
449
if (TraceLinearScanLevel >= level) { \
450
code; \
451
}
452
#else
453
#define TRACE_LINEAR_SCAN(level, code)
454
#endif
455
456
class ComputeLinearScanOrder : public StackObj {
457
private:
458
int _max_block_id; // the highest block_id of a block
459
int _num_blocks; // total number of blocks (smaller than _max_block_id)
460
int _num_loops; // total number of loops
461
bool _iterative_dominators;// method requires iterative computation of dominatiors
462
463
BlockList* _linear_scan_order; // the resulting list of blocks in correct order
464
465
ResourceBitMap _visited_blocks; // used for recursive processing of blocks
466
ResourceBitMap _active_blocks; // used for recursive processing of blocks
467
ResourceBitMap _dominator_blocks; // temproary BitMap used for computation of dominator
468
intArray _forward_branches; // number of incoming forward branches for each block
469
BlockList _loop_end_blocks; // list of all loop end blocks collected during count_edges
470
BitMap2D _loop_map; // two-dimensional bit set: a bit is set if a block is contained in a loop
471
BlockList _work_list; // temporary list (used in mark_loops and compute_order)
472
BlockList _loop_headers;
473
474
Compilation* _compilation;
475
476
// accessors for _visited_blocks and _active_blocks
477
void init_visited() { _active_blocks.clear(); _visited_blocks.clear(); }
478
bool is_visited(BlockBegin* b) const { return _visited_blocks.at(b->block_id()); }
479
bool is_active(BlockBegin* b) const { return _active_blocks.at(b->block_id()); }
480
void set_visited(BlockBegin* b) { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
481
void set_active(BlockBegin* b) { assert(!is_active(b), "already set"); _active_blocks.set_bit(b->block_id()); }
482
void clear_active(BlockBegin* b) { assert(is_active(b), "not already"); _active_blocks.clear_bit(b->block_id()); }
483
484
// accessors for _forward_branches
485
void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
486
int dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
487
488
// accessors for _loop_map
489
bool is_block_in_loop (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
490
void set_block_in_loop (int loop_idx, BlockBegin* b) { _loop_map.set_bit(loop_idx, b->block_id()); }
491
void clear_block_in_loop(int loop_idx, int block_id) { _loop_map.clear_bit(loop_idx, block_id); }
492
493
// count edges between blocks
494
void count_edges(BlockBegin* cur, BlockBegin* parent);
495
496
// loop detection
497
void mark_loops();
498
void clear_non_natural_loops(BlockBegin* start_block);
499
void assign_loop_depth(BlockBegin* start_block);
500
501
// computation of final block order
502
BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
503
void compute_dominator(BlockBegin* cur, BlockBegin* parent);
504
void compute_dominator_impl(BlockBegin* cur, BlockBegin* parent);
505
int compute_weight(BlockBegin* cur);
506
bool ready_for_processing(BlockBegin* cur);
507
void sort_into_work_list(BlockBegin* b);
508
void append_block(BlockBegin* cur);
509
void compute_order(BlockBegin* start_block);
510
511
// fixup of dominators for non-natural loops
512
bool compute_dominators_iter();
513
void compute_dominators();
514
515
// debug functions
516
DEBUG_ONLY(void print_blocks();)
517
DEBUG_ONLY(void verify();)
518
519
Compilation* compilation() const { return _compilation; }
520
public:
521
ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block);
522
523
// accessors for final result
524
BlockList* linear_scan_order() const { return _linear_scan_order; }
525
int num_loops() const { return _num_loops; }
526
};
527
528
529
ComputeLinearScanOrder::ComputeLinearScanOrder(Compilation* c, BlockBegin* start_block) :
530
_max_block_id(BlockBegin::number_of_blocks()),
531
_num_blocks(0),
532
_num_loops(0),
533
_iterative_dominators(false),
534
_linear_scan_order(NULL), // initialized later with correct size
535
_visited_blocks(_max_block_id),
536
_active_blocks(_max_block_id),
537
_dominator_blocks(_max_block_id),
538
_forward_branches(_max_block_id, _max_block_id, 0),
539
_loop_end_blocks(8),
540
_loop_map(0), // initialized later with correct size
541
_work_list(8),
542
_compilation(c)
543
{
544
TRACE_LINEAR_SCAN(2, tty->print_cr("***** computing linear-scan block order"));
545
546
count_edges(start_block, NULL);
547
548
if (compilation()->is_profiling()) {
549
ciMethod *method = compilation()->method();
550
if (!method->is_accessor()) {
551
ciMethodData* md = method->method_data_or_null();
552
assert(md != NULL, "Sanity");
553
md->set_compilation_stats(_num_loops, _num_blocks);
554
}
555
}
556
557
if (_num_loops > 0) {
558
mark_loops();
559
clear_non_natural_loops(start_block);
560
assign_loop_depth(start_block);
561
}
562
563
compute_order(start_block);
564
compute_dominators();
565
566
DEBUG_ONLY(print_blocks());
567
DEBUG_ONLY(verify());
568
}
569
570
571
// Traverse the CFG:
572
// * count total number of blocks
573
// * count all incoming edges and backward incoming edges
574
// * number loop header blocks
575
// * create a list with all loop end blocks
576
void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
577
TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
578
assert(cur->dominator() == NULL, "dominator already initialized");
579
580
if (is_active(cur)) {
581
TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
582
assert(is_visited(cur), "block must be visisted when block is active");
583
assert(parent != NULL, "must have parent");
584
585
cur->set(BlockBegin::backward_branch_target_flag);
586
587
// When a loop header is also the start of an exception handler, then the backward branch is
588
// an exception edge. Because such edges are usually critical edges which cannot be split, the
589
// loop must be excluded here from processing.
590
if (cur->is_set(BlockBegin::exception_entry_flag)) {
591
// Make sure that dominators are correct in this weird situation
592
_iterative_dominators = true;
593
return;
594
}
595
596
cur->set(BlockBegin::linear_scan_loop_header_flag);
597
parent->set(BlockBegin::linear_scan_loop_end_flag);
598
599
assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
600
"loop end blocks must have one successor (critical edges are split)");
601
602
_loop_end_blocks.append(parent);
603
return;
604
}
605
606
// increment number of incoming forward branches
607
inc_forward_branches(cur);
608
609
if (is_visited(cur)) {
610
TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
611
return;
612
}
613
614
_num_blocks++;
615
set_visited(cur);
616
set_active(cur);
617
618
// recursive call for all successors
619
int i;
620
for (i = cur->number_of_sux() - 1; i >= 0; i--) {
621
count_edges(cur->sux_at(i), cur);
622
}
623
for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
624
count_edges(cur->exception_handler_at(i), cur);
625
}
626
627
clear_active(cur);
628
629
// Each loop has a unique number.
630
// When multiple loops are nested, assign_loop_depth assumes that the
631
// innermost loop has the lowest number. This is guaranteed by setting
632
// the loop number after the recursive calls for the successors above
633
// have returned.
634
if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
635
assert(cur->loop_index() == -1, "cannot set loop-index twice");
636
TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
637
638
cur->set_loop_index(_num_loops);
639
_loop_headers.append(cur);
640
_num_loops++;
641
}
642
643
TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
644
}
645
646
647
void ComputeLinearScanOrder::mark_loops() {
648
TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
649
650
_loop_map = BitMap2D(_num_loops, _max_block_id);
651
652
for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
653
BlockBegin* loop_end = _loop_end_blocks.at(i);
654
BlockBegin* loop_start = loop_end->sux_at(0);
655
int loop_idx = loop_start->loop_index();
656
657
TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
658
assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
659
assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
660
assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
661
assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
662
assert(_work_list.is_empty(), "work list must be empty before processing");
663
664
// add the end-block of the loop to the working list
665
_work_list.push(loop_end);
666
set_block_in_loop(loop_idx, loop_end);
667
do {
668
BlockBegin* cur = _work_list.pop();
669
670
TRACE_LINEAR_SCAN(3, tty->print_cr(" processing B%d", cur->block_id()));
671
assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
672
673
// recursive processing of all predecessors ends when start block of loop is reached
674
if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
675
for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
676
BlockBegin* pred = cur->pred_at(j);
677
678
if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
679
// this predecessor has not been processed yet, so add it to work list
680
TRACE_LINEAR_SCAN(3, tty->print_cr(" pushing B%d", pred->block_id()));
681
_work_list.push(pred);
682
set_block_in_loop(loop_idx, pred);
683
}
684
}
685
}
686
} while (!_work_list.is_empty());
687
}
688
}
689
690
691
// check for non-natural loops (loops where the loop header does not dominate
692
// all other loop blocks = loops with mulitple entries).
693
// such loops are ignored
694
void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
695
for (int i = _num_loops - 1; i >= 0; i--) {
696
if (is_block_in_loop(i, start_block)) {
697
// loop i contains the entry block of the method
698
// -> this is not a natural loop, so ignore it
699
TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
700
701
BlockBegin *loop_header = _loop_headers.at(i);
702
assert(loop_header->is_set(BlockBegin::linear_scan_loop_header_flag), "Must be loop header");
703
704
for (int j = 0; j < loop_header->number_of_preds(); j++) {
705
BlockBegin *pred = loop_header->pred_at(j);
706
pred->clear(BlockBegin::linear_scan_loop_end_flag);
707
}
708
709
loop_header->clear(BlockBegin::linear_scan_loop_header_flag);
710
711
for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
712
clear_block_in_loop(i, block_id);
713
}
714
_iterative_dominators = true;
715
}
716
}
717
}
718
719
void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
720
TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing loop-depth and weight"));
721
init_visited();
722
723
assert(_work_list.is_empty(), "work list must be empty before processing");
724
_work_list.append(start_block);
725
726
do {
727
BlockBegin* cur = _work_list.pop();
728
729
if (!is_visited(cur)) {
730
set_visited(cur);
731
TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
732
733
// compute loop-depth and loop-index for the block
734
assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
735
int i;
736
int loop_depth = 0;
737
int min_loop_idx = -1;
738
for (i = _num_loops - 1; i >= 0; i--) {
739
if (is_block_in_loop(i, cur)) {
740
loop_depth++;
741
min_loop_idx = i;
742
}
743
}
744
cur->set_loop_depth(loop_depth);
745
cur->set_loop_index(min_loop_idx);
746
747
// append all unvisited successors to work list
748
for (i = cur->number_of_sux() - 1; i >= 0; i--) {
749
_work_list.append(cur->sux_at(i));
750
}
751
for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
752
_work_list.append(cur->exception_handler_at(i));
753
}
754
}
755
} while (!_work_list.is_empty());
756
}
757
758
759
BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
760
assert(a != NULL && b != NULL, "must have input blocks");
761
762
_dominator_blocks.clear();
763
while (a != NULL) {
764
_dominator_blocks.set_bit(a->block_id());
765
assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
766
a = a->dominator();
767
}
768
while (b != NULL && !_dominator_blocks.at(b->block_id())) {
769
assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
770
b = b->dominator();
771
}
772
773
assert(b != NULL, "could not find dominator");
774
return b;
775
}
776
777
void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
778
init_visited();
779
compute_dominator_impl(cur, parent);
780
}
781
782
void ComputeLinearScanOrder::compute_dominator_impl(BlockBegin* cur, BlockBegin* parent) {
783
// Mark as visited to avoid recursive calls with same parent
784
set_visited(cur);
785
786
if (cur->dominator() == NULL) {
787
TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
788
cur->set_dominator(parent);
789
790
} else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
791
TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
792
// Does not hold for exception blocks
793
assert(cur->number_of_preds() > 1 || cur->is_set(BlockBegin::exception_entry_flag), "");
794
cur->set_dominator(common_dominator(cur->dominator(), parent));
795
}
796
797
// Additional edge to xhandler of all our successors
798
// range check elimination needs that the state at the end of a
799
// block be valid in every block it dominates so cur must dominate
800
// the exception handlers of its successors.
801
int num_cur_xhandler = cur->number_of_exception_handlers();
802
for (int j = 0; j < num_cur_xhandler; j++) {
803
BlockBegin* xhandler = cur->exception_handler_at(j);
804
if (!is_visited(xhandler)) {
805
compute_dominator_impl(xhandler, parent);
806
}
807
}
808
}
809
810
811
int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
812
BlockBegin* single_sux = NULL;
813
if (cur->number_of_sux() == 1) {
814
single_sux = cur->sux_at(0);
815
}
816
817
// limit loop-depth to 15 bit (only for security reason, it will never be so big)
818
int weight = (cur->loop_depth() & 0x7FFF) << 16;
819
820
// general macro for short definition of weight flags
821
// the first instance of INC_WEIGHT_IF has the highest priority
822
int cur_bit = 15;
823
#define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
824
825
// this is necessery for the (very rare) case that two successing blocks have
826
// the same loop depth, but a different loop index (can happen for endless loops
827
// with exception handlers)
828
INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
829
830
// loop end blocks (blocks that end with a backward branch) are added
831
// after all other blocks of the loop.
832
INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
833
834
// critical edge split blocks are prefered because than they have a bigger
835
// proability to be completely empty
836
INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
837
838
// exceptions should not be thrown in normal control flow, so these blocks
839
// are added as late as possible
840
INC_WEIGHT_IF(cur->end()->as_Throw() == NULL && (single_sux == NULL || single_sux->end()->as_Throw() == NULL));
841
INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
842
843
// exceptions handlers are added as late as possible
844
INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
845
846
// guarantee that weight is > 0
847
weight |= 1;
848
849
#undef INC_WEIGHT_IF
850
assert(cur_bit >= 0, "too many flags");
851
assert(weight > 0, "weight cannot become negative");
852
853
return weight;
854
}
855
856
bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
857
// Discount the edge just traveled.
858
// When the number drops to zero, all forward branches were processed
859
if (dec_forward_branches(cur) != 0) {
860
return false;
861
}
862
863
assert(_linear_scan_order->find(cur) == -1, "block already processed (block can be ready only once)");
864
assert(_work_list.find(cur) == -1, "block already in work-list (block can be ready only once)");
865
return true;
866
}
867
868
void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
869
assert(_work_list.find(cur) == -1, "block already in work list");
870
871
int cur_weight = compute_weight(cur);
872
873
// the linear_scan_number is used to cache the weight of a block
874
cur->set_linear_scan_number(cur_weight);
875
876
#ifndef PRODUCT
877
if (StressLinearScan) {
878
_work_list.insert_before(0, cur);
879
return;
880
}
881
#endif
882
883
_work_list.append(NULL); // provide space for new element
884
885
int insert_idx = _work_list.length() - 1;
886
while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
887
_work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
888
insert_idx--;
889
}
890
_work_list.at_put(insert_idx, cur);
891
892
TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
893
TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
894
895
#ifdef ASSERT
896
for (int i = 0; i < _work_list.length(); i++) {
897
assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
898
assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
899
}
900
#endif
901
}
902
903
void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
904
TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
905
assert(_linear_scan_order->find(cur) == -1, "cannot add the same block twice");
906
907
// currently, the linear scan order and code emit order are equal.
908
// therefore the linear_scan_number and the weight of a block must also
909
// be equal.
910
cur->set_linear_scan_number(_linear_scan_order->length());
911
_linear_scan_order->append(cur);
912
}
913
914
void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
915
TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing final block order"));
916
917
// the start block is always the first block in the linear scan order
918
_linear_scan_order = new BlockList(_num_blocks);
919
append_block(start_block);
920
921
assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
922
BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
923
BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
924
925
BlockBegin* sux_of_osr_entry = NULL;
926
if (osr_entry != NULL) {
927
// special handling for osr entry:
928
// ignore the edge between the osr entry and its successor for processing
929
// the osr entry block is added manually below
930
assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
931
assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
932
933
sux_of_osr_entry = osr_entry->sux_at(0);
934
dec_forward_branches(sux_of_osr_entry);
935
936
compute_dominator(osr_entry, start_block);
937
_iterative_dominators = true;
938
}
939
compute_dominator(std_entry, start_block);
940
941
// start processing with standard entry block
942
assert(_work_list.is_empty(), "list must be empty before processing");
943
944
if (ready_for_processing(std_entry)) {
945
sort_into_work_list(std_entry);
946
} else {
947
assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
948
}
949
950
do {
951
BlockBegin* cur = _work_list.pop();
952
953
if (cur == sux_of_osr_entry) {
954
// the osr entry block is ignored in normal processing, it is never added to the
955
// work list. Instead, it is added as late as possible manually here.
956
append_block(osr_entry);
957
compute_dominator(cur, osr_entry);
958
}
959
append_block(cur);
960
961
int i;
962
int num_sux = cur->number_of_sux();
963
// changed loop order to get "intuitive" order of if- and else-blocks
964
for (i = 0; i < num_sux; i++) {
965
BlockBegin* sux = cur->sux_at(i);
966
compute_dominator(sux, cur);
967
if (ready_for_processing(sux)) {
968
sort_into_work_list(sux);
969
}
970
}
971
num_sux = cur->number_of_exception_handlers();
972
for (i = 0; i < num_sux; i++) {
973
BlockBegin* sux = cur->exception_handler_at(i);
974
if (ready_for_processing(sux)) {
975
sort_into_work_list(sux);
976
}
977
}
978
} while (_work_list.length() > 0);
979
}
980
981
982
bool ComputeLinearScanOrder::compute_dominators_iter() {
983
bool changed = false;
984
int num_blocks = _linear_scan_order->length();
985
986
assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
987
assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
988
for (int i = 1; i < num_blocks; i++) {
989
BlockBegin* block = _linear_scan_order->at(i);
990
991
BlockBegin* dominator = block->pred_at(0);
992
int num_preds = block->number_of_preds();
993
994
TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: Processing B%d", block->block_id()));
995
996
for (int j = 0; j < num_preds; j++) {
997
998
BlockBegin *pred = block->pred_at(j);
999
TRACE_LINEAR_SCAN(4, tty->print_cr(" DOM: Subrocessing B%d", pred->block_id()));
1000
1001
if (block->is_set(BlockBegin::exception_entry_flag)) {
1002
dominator = common_dominator(dominator, pred);
1003
int num_pred_preds = pred->number_of_preds();
1004
for (int k = 0; k < num_pred_preds; k++) {
1005
dominator = common_dominator(dominator, pred->pred_at(k));
1006
}
1007
} else {
1008
dominator = common_dominator(dominator, pred);
1009
}
1010
}
1011
1012
if (dominator != block->dominator()) {
1013
TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
1014
1015
block->set_dominator(dominator);
1016
changed = true;
1017
}
1018
}
1019
return changed;
1020
}
1021
1022
void ComputeLinearScanOrder::compute_dominators() {
1023
TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
1024
1025
// iterative computation of dominators is only required for methods with non-natural loops
1026
// and OSR-methods. For all other methods, the dominators computed when generating the
1027
// linear scan block order are correct.
1028
if (_iterative_dominators) {
1029
do {
1030
TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
1031
} while (compute_dominators_iter());
1032
}
1033
1034
// check that dominators are correct
1035
assert(!compute_dominators_iter(), "fix point not reached");
1036
1037
// Add Blocks to dominates-Array
1038
int num_blocks = _linear_scan_order->length();
1039
for (int i = 0; i < num_blocks; i++) {
1040
BlockBegin* block = _linear_scan_order->at(i);
1041
1042
BlockBegin *dom = block->dominator();
1043
if (dom) {
1044
assert(dom->dominator_depth() != -1, "Dominator must have been visited before");
1045
dom->dominates()->append(block);
1046
block->set_dominator_depth(dom->dominator_depth() + 1);
1047
} else {
1048
block->set_dominator_depth(0);
1049
}
1050
}
1051
}
1052
1053
1054
#ifdef ASSERT
1055
void ComputeLinearScanOrder::print_blocks() {
1056
if (TraceLinearScanLevel >= 2) {
1057
tty->print_cr("----- loop information:");
1058
for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
1059
BlockBegin* cur = _linear_scan_order->at(block_idx);
1060
1061
tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
1062
for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1063
tty->print ("%d ", is_block_in_loop(loop_idx, cur));
1064
}
1065
tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
1066
}
1067
}
1068
1069
if (TraceLinearScanLevel >= 1) {
1070
tty->print_cr("----- linear-scan block order:");
1071
for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
1072
BlockBegin* cur = _linear_scan_order->at(block_idx);
1073
tty->print("%4d: B%2d loop: %2d depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
1074
1075
tty->print(cur->is_set(BlockBegin::exception_entry_flag) ? " ex" : " ");
1076
tty->print(cur->is_set(BlockBegin::critical_edge_split_flag) ? " ce" : " ");
1077
tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : " ");
1078
tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag) ? " le" : " ");
1079
1080
if (cur->dominator() != NULL) {
1081
tty->print(" dom: B%d ", cur->dominator()->block_id());
1082
} else {
1083
tty->print(" dom: NULL ");
1084
}
1085
1086
if (cur->number_of_preds() > 0) {
1087
tty->print(" preds: ");
1088
for (int j = 0; j < cur->number_of_preds(); j++) {
1089
BlockBegin* pred = cur->pred_at(j);
1090
tty->print("B%d ", pred->block_id());
1091
}
1092
}
1093
if (cur->number_of_sux() > 0) {
1094
tty->print(" sux: ");
1095
for (int j = 0; j < cur->number_of_sux(); j++) {
1096
BlockBegin* sux = cur->sux_at(j);
1097
tty->print("B%d ", sux->block_id());
1098
}
1099
}
1100
if (cur->number_of_exception_handlers() > 0) {
1101
tty->print(" ex: ");
1102
for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
1103
BlockBegin* ex = cur->exception_handler_at(j);
1104
tty->print("B%d ", ex->block_id());
1105
}
1106
}
1107
tty->cr();
1108
}
1109
}
1110
}
1111
1112
void ComputeLinearScanOrder::verify() {
1113
assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
1114
1115
if (StressLinearScan) {
1116
// blocks are scrambled when StressLinearScan is used
1117
return;
1118
}
1119
1120
// check that all successors of a block have a higher linear-scan-number
1121
// and that all predecessors of a block have a lower linear-scan-number
1122
// (only backward branches of loops are ignored)
1123
int i;
1124
for (i = 0; i < _linear_scan_order->length(); i++) {
1125
BlockBegin* cur = _linear_scan_order->at(i);
1126
1127
assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
1128
assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->find(cur), "incorrect linear_scan_number");
1129
1130
int j;
1131
for (j = cur->number_of_sux() - 1; j >= 0; j--) {
1132
BlockBegin* sux = cur->sux_at(j);
1133
1134
assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->find(sux), "incorrect linear_scan_number");
1135
if (!sux->is_set(BlockBegin::backward_branch_target_flag)) {
1136
assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
1137
}
1138
if (cur->loop_depth() == sux->loop_depth()) {
1139
assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1140
}
1141
}
1142
1143
for (j = cur->number_of_preds() - 1; j >= 0; j--) {
1144
BlockBegin* pred = cur->pred_at(j);
1145
1146
assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->find(pred), "incorrect linear_scan_number");
1147
if (!cur->is_set(BlockBegin::backward_branch_target_flag)) {
1148
assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
1149
}
1150
if (cur->loop_depth() == pred->loop_depth()) {
1151
assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1152
}
1153
1154
assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
1155
}
1156
1157
// check dominator
1158
if (i == 0) {
1159
assert(cur->dominator() == NULL, "first block has no dominator");
1160
} else {
1161
assert(cur->dominator() != NULL, "all but first block must have dominator");
1162
}
1163
// Assertion does not hold for exception handlers
1164
assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0) || cur->is_set(BlockBegin::exception_entry_flag), "Single predecessor must also be dominator");
1165
}
1166
1167
// check that all loops are continuous
1168
for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1169
int block_idx = 0;
1170
assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
1171
1172
// skip blocks before the loop
1173
while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1174
block_idx++;
1175
}
1176
// skip blocks of loop
1177
while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1178
block_idx++;
1179
}
1180
// after the first non-loop block, there must not be another loop-block
1181
while (block_idx < _num_blocks) {
1182
assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
1183
block_idx++;
1184
}
1185
}
1186
}
1187
#endif // ASSERT
1188
1189
1190
void IR::compute_code() {
1191
assert(is_valid(), "IR must be valid");
1192
1193
ComputeLinearScanOrder compute_order(compilation(), start());
1194
_num_loops = compute_order.num_loops();
1195
_code = compute_order.linear_scan_order();
1196
}
1197
1198
1199
void IR::compute_use_counts() {
1200
// make sure all values coming out of this block get evaluated.
1201
int num_blocks = _code->length();
1202
for (int i = 0; i < num_blocks; i++) {
1203
_code->at(i)->end()->state()->pin_stack_for_linear_scan();
1204
}
1205
1206
// compute use counts
1207
UseCountComputer::compute(_code);
1208
}
1209
1210
1211
void IR::iterate_preorder(BlockClosure* closure) {
1212
assert(is_valid(), "IR must be valid");
1213
start()->iterate_preorder(closure);
1214
}
1215
1216
1217
void IR::iterate_postorder(BlockClosure* closure) {
1218
assert(is_valid(), "IR must be valid");
1219
start()->iterate_postorder(closure);
1220
}
1221
1222
void IR::iterate_linear_scan_order(BlockClosure* closure) {
1223
linear_scan_order()->iterate_forward(closure);
1224
}
1225
1226
1227
#ifndef PRODUCT
1228
class BlockPrinter: public BlockClosure {
1229
private:
1230
InstructionPrinter* _ip;
1231
bool _cfg_only;
1232
bool _live_only;
1233
1234
public:
1235
BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
1236
_ip = ip;
1237
_cfg_only = cfg_only;
1238
_live_only = live_only;
1239
}
1240
1241
virtual void block_do(BlockBegin* block) {
1242
if (_cfg_only) {
1243
_ip->print_instr(block); tty->cr();
1244
} else {
1245
block->print_block(*_ip, _live_only);
1246
}
1247
}
1248
};
1249
1250
1251
void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
1252
ttyLocker ttyl;
1253
InstructionPrinter ip(!cfg_only);
1254
BlockPrinter bp(&ip, cfg_only, live_only);
1255
start->iterate_preorder(&bp);
1256
tty->cr();
1257
}
1258
1259
void IR::print(bool cfg_only, bool live_only) {
1260
if (is_valid()) {
1261
print(start(), cfg_only, live_only);
1262
} else {
1263
tty->print_cr("invalid IR");
1264
}
1265
}
1266
1267
1268
typedef GrowableArray<BlockList*> BlockListList;
1269
1270
class PredecessorValidator : public BlockClosure {
1271
private:
1272
BlockListList* _predecessors;
1273
BlockList* _blocks;
1274
1275
static int cmp(BlockBegin** a, BlockBegin** b) {
1276
return (*a)->block_id() - (*b)->block_id();
1277
}
1278
1279
public:
1280
PredecessorValidator(IR* hir) {
1281
ResourceMark rm;
1282
_predecessors = new BlockListList(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), NULL);
1283
_blocks = new BlockList();
1284
1285
int i;
1286
hir->start()->iterate_preorder(this);
1287
if (hir->code() != NULL) {
1288
assert(hir->code()->length() == _blocks->length(), "must match");
1289
for (i = 0; i < _blocks->length(); i++) {
1290
assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
1291
}
1292
}
1293
1294
for (i = 0; i < _blocks->length(); i++) {
1295
BlockBegin* block = _blocks->at(i);
1296
BlockList* preds = _predecessors->at(block->block_id());
1297
if (preds == NULL) {
1298
assert(block->number_of_preds() == 0, "should be the same");
1299
continue;
1300
}
1301
1302
// clone the pred list so we can mutate it
1303
BlockList* pred_copy = new BlockList();
1304
int j;
1305
for (j = 0; j < block->number_of_preds(); j++) {
1306
pred_copy->append(block->pred_at(j));
1307
}
1308
// sort them in the same order
1309
preds->sort(cmp);
1310
pred_copy->sort(cmp);
1311
int length = MIN2(preds->length(), block->number_of_preds());
1312
for (j = 0; j < block->number_of_preds(); j++) {
1313
assert(preds->at(j) == pred_copy->at(j), "must match");
1314
}
1315
1316
assert(preds->length() == block->number_of_preds(), "should be the same");
1317
}
1318
}
1319
1320
virtual void block_do(BlockBegin* block) {
1321
_blocks->append(block);
1322
BlockEnd* be = block->end();
1323
int n = be->number_of_sux();
1324
int i;
1325
for (i = 0; i < n; i++) {
1326
BlockBegin* sux = be->sux_at(i);
1327
assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
1328
1329
BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1330
if (preds == NULL) {
1331
preds = new BlockList();
1332
_predecessors->at_put(sux->block_id(), preds);
1333
}
1334
preds->append(block);
1335
}
1336
1337
n = block->number_of_exception_handlers();
1338
for (i = 0; i < n; i++) {
1339
BlockBegin* sux = block->exception_handler_at(i);
1340
assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
1341
1342
BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1343
if (preds == NULL) {
1344
preds = new BlockList();
1345
_predecessors->at_put(sux->block_id(), preds);
1346
}
1347
preds->append(block);
1348
}
1349
}
1350
};
1351
1352
class VerifyBlockBeginField : public BlockClosure {
1353
1354
public:
1355
1356
virtual void block_do(BlockBegin *block) {
1357
for ( Instruction *cur = block; cur != NULL; cur = cur->next()) {
1358
assert(cur->block() == block, "Block begin is not correct");
1359
}
1360
}
1361
};
1362
1363
void IR::verify() {
1364
#ifdef ASSERT
1365
PredecessorValidator pv(this);
1366
VerifyBlockBeginField verifier;
1367
this->iterate_postorder(&verifier);
1368
#endif
1369
}
1370
1371
#endif // PRODUCT
1372
1373
void SubstitutionResolver::visit(Value* v) {
1374
Value v0 = *v;
1375
if (v0) {
1376
Value vs = v0->subst();
1377
if (vs != v0) {
1378
*v = v0->subst();
1379
}
1380
}
1381
}
1382
1383
#ifdef ASSERT
1384
class SubstitutionChecker: public ValueVisitor {
1385
void visit(Value* v) {
1386
Value v0 = *v;
1387
if (v0) {
1388
Value vs = v0->subst();
1389
assert(vs == v0, "missed substitution");
1390
}
1391
}
1392
};
1393
#endif
1394
1395
1396
void SubstitutionResolver::block_do(BlockBegin* block) {
1397
Instruction* last = NULL;
1398
for (Instruction* n = block; n != NULL;) {
1399
n->values_do(this);
1400
// need to remove this instruction from the instruction stream
1401
if (n->subst() != n) {
1402
guarantee(last != NULL, "must have last");
1403
last->set_next(n->next());
1404
} else {
1405
last = n;
1406
}
1407
n = last->next();
1408
}
1409
1410
#ifdef ASSERT
1411
SubstitutionChecker check_substitute;
1412
if (block->state()) block->state()->values_do(&check_substitute);
1413
block->block_values_do(&check_substitute);
1414
if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
1415
#endif
1416
}
1417
1418