Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/jdk17u
Path: blob/master/src/hotspot/share/c1/c1_LIRGenerator.cpp
64440 views
1
/*
2
* Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "c1/c1_Compilation.hpp"
27
#include "c1/c1_Defs.hpp"
28
#include "c1/c1_FrameMap.hpp"
29
#include "c1/c1_Instruction.hpp"
30
#include "c1/c1_LIRAssembler.hpp"
31
#include "c1/c1_LIRGenerator.hpp"
32
#include "c1/c1_ValueStack.hpp"
33
#include "ci/ciArrayKlass.hpp"
34
#include "ci/ciInstance.hpp"
35
#include "ci/ciObjArray.hpp"
36
#include "ci/ciUtilities.hpp"
37
#include "gc/shared/barrierSet.hpp"
38
#include "gc/shared/c1/barrierSetC1.hpp"
39
#include "oops/klass.inline.hpp"
40
#include "runtime/sharedRuntime.hpp"
41
#include "runtime/stubRoutines.hpp"
42
#include "runtime/vm_version.hpp"
43
#include "utilities/bitMap.inline.hpp"
44
#include "utilities/macros.hpp"
45
#include "utilities/powerOfTwo.hpp"
46
47
#ifdef ASSERT
48
#define __ gen()->lir(__FILE__, __LINE__)->
49
#else
50
#define __ gen()->lir()->
51
#endif
52
53
#ifndef PATCHED_ADDR
54
#define PATCHED_ADDR (max_jint)
55
#endif
56
57
void PhiResolverState::reset() {
58
_virtual_operands.clear();
59
_other_operands.clear();
60
_vreg_table.clear();
61
}
62
63
64
//--------------------------------------------------------------
65
// PhiResolver
66
67
// Resolves cycles:
68
//
69
// r1 := r2 becomes temp := r1
70
// r2 := r1 r1 := r2
71
// r2 := temp
72
// and orders moves:
73
//
74
// r2 := r3 becomes r1 := r2
75
// r1 := r2 r2 := r3
76
77
PhiResolver::PhiResolver(LIRGenerator* gen)
78
: _gen(gen)
79
, _state(gen->resolver_state())
80
, _temp(LIR_OprFact::illegalOpr)
81
{
82
// reinitialize the shared state arrays
83
_state.reset();
84
}
85
86
87
void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
88
assert(src->is_valid(), "");
89
assert(dest->is_valid(), "");
90
__ move(src, dest);
91
}
92
93
94
void PhiResolver::move_temp_to(LIR_Opr dest) {
95
assert(_temp->is_valid(), "");
96
emit_move(_temp, dest);
97
NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
98
}
99
100
101
void PhiResolver::move_to_temp(LIR_Opr src) {
102
assert(_temp->is_illegal(), "");
103
_temp = _gen->new_register(src->type());
104
emit_move(src, _temp);
105
}
106
107
108
// Traverse assignment graph in depth first order and generate moves in post order
109
// ie. two assignments: b := c, a := b start with node c:
110
// Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
111
// Generates moves in this order: move b to a and move c to b
112
// ie. cycle a := b, b := a start with node a
113
// Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
114
// Generates moves in this order: move b to temp, move a to b, move temp to a
115
void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
116
if (!dest->visited()) {
117
dest->set_visited();
118
for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
119
move(dest, dest->destination_at(i));
120
}
121
} else if (!dest->start_node()) {
122
// cylce in graph detected
123
assert(_loop == NULL, "only one loop valid!");
124
_loop = dest;
125
move_to_temp(src->operand());
126
return;
127
} // else dest is a start node
128
129
if (!dest->assigned()) {
130
if (_loop == dest) {
131
move_temp_to(dest->operand());
132
dest->set_assigned();
133
} else if (src != NULL) {
134
emit_move(src->operand(), dest->operand());
135
dest->set_assigned();
136
}
137
}
138
}
139
140
141
PhiResolver::~PhiResolver() {
142
int i;
143
// resolve any cycles in moves from and to virtual registers
144
for (i = virtual_operands().length() - 1; i >= 0; i --) {
145
ResolveNode* node = virtual_operands().at(i);
146
if (!node->visited()) {
147
_loop = NULL;
148
move(NULL, node);
149
node->set_start_node();
150
assert(_temp->is_illegal(), "move_temp_to() call missing");
151
}
152
}
153
154
// generate move for move from non virtual register to abitrary destination
155
for (i = other_operands().length() - 1; i >= 0; i --) {
156
ResolveNode* node = other_operands().at(i);
157
for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
158
emit_move(node->operand(), node->destination_at(j)->operand());
159
}
160
}
161
}
162
163
164
ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
165
ResolveNode* node;
166
if (opr->is_virtual()) {
167
int vreg_num = opr->vreg_number();
168
node = vreg_table().at_grow(vreg_num, NULL);
169
assert(node == NULL || node->operand() == opr, "");
170
if (node == NULL) {
171
node = new ResolveNode(opr);
172
vreg_table().at_put(vreg_num, node);
173
}
174
// Make sure that all virtual operands show up in the list when
175
// they are used as the source of a move.
176
if (source && !virtual_operands().contains(node)) {
177
virtual_operands().append(node);
178
}
179
} else {
180
assert(source, "");
181
node = new ResolveNode(opr);
182
other_operands().append(node);
183
}
184
return node;
185
}
186
187
188
void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
189
assert(dest->is_virtual(), "");
190
// tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
191
assert(src->is_valid(), "");
192
assert(dest->is_valid(), "");
193
ResolveNode* source = source_node(src);
194
source->append(destination_node(dest));
195
}
196
197
198
//--------------------------------------------------------------
199
// LIRItem
200
201
void LIRItem::set_result(LIR_Opr opr) {
202
assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
203
value()->set_operand(opr);
204
205
if (opr->is_virtual()) {
206
_gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
207
}
208
209
_result = opr;
210
}
211
212
void LIRItem::load_item() {
213
if (result()->is_illegal()) {
214
// update the items result
215
_result = value()->operand();
216
}
217
if (!result()->is_register()) {
218
LIR_Opr reg = _gen->new_register(value()->type());
219
__ move(result(), reg);
220
if (result()->is_constant()) {
221
_result = reg;
222
} else {
223
set_result(reg);
224
}
225
}
226
}
227
228
229
void LIRItem::load_for_store(BasicType type) {
230
if (_gen->can_store_as_constant(value(), type)) {
231
_result = value()->operand();
232
if (!_result->is_constant()) {
233
_result = LIR_OprFact::value_type(value()->type());
234
}
235
} else if (type == T_BYTE || type == T_BOOLEAN) {
236
load_byte_item();
237
} else {
238
load_item();
239
}
240
}
241
242
void LIRItem::load_item_force(LIR_Opr reg) {
243
LIR_Opr r = result();
244
if (r != reg) {
245
#if !defined(ARM) && !defined(E500V2)
246
if (r->type() != reg->type()) {
247
// moves between different types need an intervening spill slot
248
r = _gen->force_to_spill(r, reg->type());
249
}
250
#endif
251
__ move(r, reg);
252
_result = reg;
253
}
254
}
255
256
ciObject* LIRItem::get_jobject_constant() const {
257
ObjectType* oc = type()->as_ObjectType();
258
if (oc) {
259
return oc->constant_value();
260
}
261
return NULL;
262
}
263
264
265
jint LIRItem::get_jint_constant() const {
266
assert(is_constant() && value() != NULL, "");
267
assert(type()->as_IntConstant() != NULL, "type check");
268
return type()->as_IntConstant()->value();
269
}
270
271
272
jint LIRItem::get_address_constant() const {
273
assert(is_constant() && value() != NULL, "");
274
assert(type()->as_AddressConstant() != NULL, "type check");
275
return type()->as_AddressConstant()->value();
276
}
277
278
279
jfloat LIRItem::get_jfloat_constant() const {
280
assert(is_constant() && value() != NULL, "");
281
assert(type()->as_FloatConstant() != NULL, "type check");
282
return type()->as_FloatConstant()->value();
283
}
284
285
286
jdouble LIRItem::get_jdouble_constant() const {
287
assert(is_constant() && value() != NULL, "");
288
assert(type()->as_DoubleConstant() != NULL, "type check");
289
return type()->as_DoubleConstant()->value();
290
}
291
292
293
jlong LIRItem::get_jlong_constant() const {
294
assert(is_constant() && value() != NULL, "");
295
assert(type()->as_LongConstant() != NULL, "type check");
296
return type()->as_LongConstant()->value();
297
}
298
299
300
301
//--------------------------------------------------------------
302
303
304
void LIRGenerator::block_do_prolog(BlockBegin* block) {
305
#ifndef PRODUCT
306
if (PrintIRWithLIR) {
307
block->print();
308
}
309
#endif
310
311
// set up the list of LIR instructions
312
assert(block->lir() == NULL, "LIR list already computed for this block");
313
_lir = new LIR_List(compilation(), block);
314
block->set_lir(_lir);
315
316
__ branch_destination(block->label());
317
318
if (LIRTraceExecution &&
319
Compilation::current()->hir()->start()->block_id() != block->block_id() &&
320
!block->is_set(BlockBegin::exception_entry_flag)) {
321
assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
322
trace_block_entry(block);
323
}
324
}
325
326
327
void LIRGenerator::block_do_epilog(BlockBegin* block) {
328
#ifndef PRODUCT
329
if (PrintIRWithLIR) {
330
tty->cr();
331
}
332
#endif
333
334
// LIR_Opr for unpinned constants shouldn't be referenced by other
335
// blocks so clear them out after processing the block.
336
for (int i = 0; i < _unpinned_constants.length(); i++) {
337
_unpinned_constants.at(i)->clear_operand();
338
}
339
_unpinned_constants.trunc_to(0);
340
341
// clear our any registers for other local constants
342
_constants.trunc_to(0);
343
_reg_for_constants.trunc_to(0);
344
}
345
346
347
void LIRGenerator::block_do(BlockBegin* block) {
348
CHECK_BAILOUT();
349
350
block_do_prolog(block);
351
set_block(block);
352
353
for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
354
if (instr->is_pinned()) do_root(instr);
355
}
356
357
set_block(NULL);
358
block_do_epilog(block);
359
}
360
361
362
//-------------------------LIRGenerator-----------------------------
363
364
// This is where the tree-walk starts; instr must be root;
365
void LIRGenerator::do_root(Value instr) {
366
CHECK_BAILOUT();
367
368
InstructionMark im(compilation(), instr);
369
370
assert(instr->is_pinned(), "use only with roots");
371
assert(instr->subst() == instr, "shouldn't have missed substitution");
372
373
instr->visit(this);
374
375
assert(!instr->has_uses() || instr->operand()->is_valid() ||
376
instr->as_Constant() != NULL || bailed_out(), "invalid item set");
377
}
378
379
380
// This is called for each node in tree; the walk stops if a root is reached
381
void LIRGenerator::walk(Value instr) {
382
InstructionMark im(compilation(), instr);
383
//stop walk when encounter a root
384
if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
385
assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
386
} else {
387
assert(instr->subst() == instr, "shouldn't have missed substitution");
388
instr->visit(this);
389
// assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
390
}
391
}
392
393
394
CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
395
assert(state != NULL, "state must be defined");
396
397
#ifndef PRODUCT
398
state->verify();
399
#endif
400
401
ValueStack* s = state;
402
for_each_state(s) {
403
if (s->kind() == ValueStack::EmptyExceptionState) {
404
assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
405
continue;
406
}
407
408
int index;
409
Value value;
410
for_each_stack_value(s, index, value) {
411
assert(value->subst() == value, "missed substitution");
412
if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
413
walk(value);
414
assert(value->operand()->is_valid(), "must be evaluated now");
415
}
416
}
417
418
int bci = s->bci();
419
IRScope* scope = s->scope();
420
ciMethod* method = scope->method();
421
422
MethodLivenessResult liveness = method->liveness_at_bci(bci);
423
if (bci == SynchronizationEntryBCI) {
424
if (x->as_ExceptionObject() || x->as_Throw()) {
425
// all locals are dead on exit from the synthetic unlocker
426
liveness.clear();
427
} else {
428
assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
429
}
430
}
431
if (!liveness.is_valid()) {
432
// Degenerate or breakpointed method.
433
bailout("Degenerate or breakpointed method");
434
} else {
435
assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
436
for_each_local_value(s, index, value) {
437
assert(value->subst() == value, "missed substition");
438
if (liveness.at(index) && !value->type()->is_illegal()) {
439
if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
440
walk(value);
441
assert(value->operand()->is_valid(), "must be evaluated now");
442
}
443
} else {
444
// NULL out this local so that linear scan can assume that all non-NULL values are live.
445
s->invalidate_local(index);
446
}
447
}
448
}
449
}
450
451
return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
452
}
453
454
455
CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
456
return state_for(x, x->exception_state());
457
}
458
459
460
void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
461
/* C2 relies on constant pool entries being resolved (ciTypeFlow), so if tiered compilation
462
* is active and the class hasn't yet been resolved we need to emit a patch that resolves
463
* the class. */
464
if ((!CompilerConfig::is_c1_only_no_jvmci() && need_resolve) || !obj->is_loaded() || PatchALot) {
465
assert(info != NULL, "info must be set if class is not loaded");
466
__ klass2reg_patch(NULL, r, info);
467
} else {
468
// no patching needed
469
__ metadata2reg(obj->constant_encoding(), r);
470
}
471
}
472
473
474
void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
475
CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
476
CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
477
if (index->is_constant()) {
478
cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
479
index->as_jint(), null_check_info);
480
__ branch(lir_cond_belowEqual, stub); // forward branch
481
} else {
482
cmp_reg_mem(lir_cond_aboveEqual, index, array,
483
arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
484
__ branch(lir_cond_aboveEqual, stub); // forward branch
485
}
486
}
487
488
489
void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
490
CodeStub* stub = new RangeCheckStub(info, index);
491
if (index->is_constant()) {
492
cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
493
__ branch(lir_cond_belowEqual, stub); // forward branch
494
} else {
495
cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
496
java_nio_Buffer::limit_offset(), T_INT, info);
497
__ branch(lir_cond_aboveEqual, stub); // forward branch
498
}
499
__ move(index, result);
500
}
501
502
503
504
void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp_op, CodeEmitInfo* info) {
505
LIR_Opr result_op = result;
506
LIR_Opr left_op = left;
507
LIR_Opr right_op = right;
508
509
if (TwoOperandLIRForm && left_op != result_op) {
510
assert(right_op != result_op, "malformed");
511
__ move(left_op, result_op);
512
left_op = result_op;
513
}
514
515
switch(code) {
516
case Bytecodes::_dadd:
517
case Bytecodes::_fadd:
518
case Bytecodes::_ladd:
519
case Bytecodes::_iadd: __ add(left_op, right_op, result_op); break;
520
case Bytecodes::_fmul:
521
case Bytecodes::_lmul: __ mul(left_op, right_op, result_op); break;
522
523
case Bytecodes::_dmul: __ mul(left_op, right_op, result_op, tmp_op); break;
524
525
case Bytecodes::_imul:
526
{
527
bool did_strength_reduce = false;
528
529
if (right->is_constant()) {
530
jint c = right->as_jint();
531
if (c > 0 && is_power_of_2(c)) {
532
// do not need tmp here
533
__ shift_left(left_op, exact_log2(c), result_op);
534
did_strength_reduce = true;
535
} else {
536
did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
537
}
538
}
539
// we couldn't strength reduce so just emit the multiply
540
if (!did_strength_reduce) {
541
__ mul(left_op, right_op, result_op);
542
}
543
}
544
break;
545
546
case Bytecodes::_dsub:
547
case Bytecodes::_fsub:
548
case Bytecodes::_lsub:
549
case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
550
551
case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
552
// ldiv and lrem are implemented with a direct runtime call
553
554
case Bytecodes::_ddiv: __ div(left_op, right_op, result_op, tmp_op); break;
555
556
case Bytecodes::_drem:
557
case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
558
559
default: ShouldNotReachHere();
560
}
561
}
562
563
564
void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
565
arithmetic_op(code, result, left, right, tmp);
566
}
567
568
569
void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
570
arithmetic_op(code, result, left, right, LIR_OprFact::illegalOpr, info);
571
}
572
573
574
void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
575
arithmetic_op(code, result, left, right, tmp);
576
}
577
578
579
void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
580
581
if (TwoOperandLIRForm && value != result_op
582
// Only 32bit right shifts require two operand form on S390.
583
S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
584
assert(count != result_op, "malformed");
585
__ move(value, result_op);
586
value = result_op;
587
}
588
589
assert(count->is_constant() || count->is_register(), "must be");
590
switch(code) {
591
case Bytecodes::_ishl:
592
case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
593
case Bytecodes::_ishr:
594
case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
595
case Bytecodes::_iushr:
596
case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
597
default: ShouldNotReachHere();
598
}
599
}
600
601
602
void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
603
if (TwoOperandLIRForm && left_op != result_op) {
604
assert(right_op != result_op, "malformed");
605
__ move(left_op, result_op);
606
left_op = result_op;
607
}
608
609
switch(code) {
610
case Bytecodes::_iand:
611
case Bytecodes::_land: __ logical_and(left_op, right_op, result_op); break;
612
613
case Bytecodes::_ior:
614
case Bytecodes::_lor: __ logical_or(left_op, right_op, result_op); break;
615
616
case Bytecodes::_ixor:
617
case Bytecodes::_lxor: __ logical_xor(left_op, right_op, result_op); break;
618
619
default: ShouldNotReachHere();
620
}
621
}
622
623
624
void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
625
if (!GenerateSynchronizationCode) return;
626
// for slow path, use debug info for state after successful locking
627
CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
628
__ load_stack_address_monitor(monitor_no, lock);
629
// for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
630
__ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
631
}
632
633
634
void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
635
if (!GenerateSynchronizationCode) return;
636
// setup registers
637
LIR_Opr hdr = lock;
638
lock = new_hdr;
639
CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
640
__ load_stack_address_monitor(monitor_no, lock);
641
__ unlock_object(hdr, object, lock, scratch, slow_path);
642
}
643
644
#ifndef PRODUCT
645
void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
646
if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
647
tty->print_cr(" ###class not loaded at new bci %d", new_instance->printable_bci());
648
} else if (PrintNotLoaded && (!CompilerConfig::is_c1_only_no_jvmci() && new_instance->is_unresolved())) {
649
tty->print_cr(" ###class not resolved at new bci %d", new_instance->printable_bci());
650
}
651
}
652
#endif
653
654
void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
655
klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
656
// If klass is not loaded we do not know if the klass has finalizers:
657
if (UseFastNewInstance && klass->is_loaded()
658
&& !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
659
660
Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
661
662
CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
663
664
assert(klass->is_loaded(), "must be loaded");
665
// allocate space for instance
666
assert(klass->size_helper() > 0, "illegal instance size");
667
const int instance_size = align_object_size(klass->size_helper());
668
__ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
669
oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
670
} else {
671
CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
672
__ branch(lir_cond_always, slow_path);
673
__ branch_destination(slow_path->continuation());
674
}
675
}
676
677
678
static bool is_constant_zero(Instruction* inst) {
679
IntConstant* c = inst->type()->as_IntConstant();
680
if (c) {
681
return (c->value() == 0);
682
}
683
return false;
684
}
685
686
687
static bool positive_constant(Instruction* inst) {
688
IntConstant* c = inst->type()->as_IntConstant();
689
if (c) {
690
return (c->value() >= 0);
691
}
692
return false;
693
}
694
695
696
static ciArrayKlass* as_array_klass(ciType* type) {
697
if (type != NULL && type->is_array_klass() && type->is_loaded()) {
698
return (ciArrayKlass*)type;
699
} else {
700
return NULL;
701
}
702
}
703
704
static ciType* phi_declared_type(Phi* phi) {
705
ciType* t = phi->operand_at(0)->declared_type();
706
if (t == NULL) {
707
return NULL;
708
}
709
for(int i = 1; i < phi->operand_count(); i++) {
710
if (t != phi->operand_at(i)->declared_type()) {
711
return NULL;
712
}
713
}
714
return t;
715
}
716
717
void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
718
Instruction* src = x->argument_at(0);
719
Instruction* src_pos = x->argument_at(1);
720
Instruction* dst = x->argument_at(2);
721
Instruction* dst_pos = x->argument_at(3);
722
Instruction* length = x->argument_at(4);
723
724
// first try to identify the likely type of the arrays involved
725
ciArrayKlass* expected_type = NULL;
726
bool is_exact = false, src_objarray = false, dst_objarray = false;
727
{
728
ciArrayKlass* src_exact_type = as_array_klass(src->exact_type());
729
ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
730
Phi* phi;
731
if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
732
src_declared_type = as_array_klass(phi_declared_type(phi));
733
}
734
ciArrayKlass* dst_exact_type = as_array_klass(dst->exact_type());
735
ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
736
if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
737
dst_declared_type = as_array_klass(phi_declared_type(phi));
738
}
739
740
if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
741
// the types exactly match so the type is fully known
742
is_exact = true;
743
expected_type = src_exact_type;
744
} else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
745
ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
746
ciArrayKlass* src_type = NULL;
747
if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
748
src_type = (ciArrayKlass*) src_exact_type;
749
} else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
750
src_type = (ciArrayKlass*) src_declared_type;
751
}
752
if (src_type != NULL) {
753
if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
754
is_exact = true;
755
expected_type = dst_type;
756
}
757
}
758
}
759
// at least pass along a good guess
760
if (expected_type == NULL) expected_type = dst_exact_type;
761
if (expected_type == NULL) expected_type = src_declared_type;
762
if (expected_type == NULL) expected_type = dst_declared_type;
763
764
src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
765
dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
766
}
767
768
// if a probable array type has been identified, figure out if any
769
// of the required checks for a fast case can be elided.
770
int flags = LIR_OpArrayCopy::all_flags;
771
772
if (!src_objarray)
773
flags &= ~LIR_OpArrayCopy::src_objarray;
774
if (!dst_objarray)
775
flags &= ~LIR_OpArrayCopy::dst_objarray;
776
777
if (!x->arg_needs_null_check(0))
778
flags &= ~LIR_OpArrayCopy::src_null_check;
779
if (!x->arg_needs_null_check(2))
780
flags &= ~LIR_OpArrayCopy::dst_null_check;
781
782
783
if (expected_type != NULL) {
784
Value length_limit = NULL;
785
786
IfOp* ifop = length->as_IfOp();
787
if (ifop != NULL) {
788
// look for expressions like min(v, a.length) which ends up as
789
// x > y ? y : x or x >= y ? y : x
790
if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
791
ifop->x() == ifop->fval() &&
792
ifop->y() == ifop->tval()) {
793
length_limit = ifop->y();
794
}
795
}
796
797
// try to skip null checks and range checks
798
NewArray* src_array = src->as_NewArray();
799
if (src_array != NULL) {
800
flags &= ~LIR_OpArrayCopy::src_null_check;
801
if (length_limit != NULL &&
802
src_array->length() == length_limit &&
803
is_constant_zero(src_pos)) {
804
flags &= ~LIR_OpArrayCopy::src_range_check;
805
}
806
}
807
808
NewArray* dst_array = dst->as_NewArray();
809
if (dst_array != NULL) {
810
flags &= ~LIR_OpArrayCopy::dst_null_check;
811
if (length_limit != NULL &&
812
dst_array->length() == length_limit &&
813
is_constant_zero(dst_pos)) {
814
flags &= ~LIR_OpArrayCopy::dst_range_check;
815
}
816
}
817
818
// check from incoming constant values
819
if (positive_constant(src_pos))
820
flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
821
if (positive_constant(dst_pos))
822
flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
823
if (positive_constant(length))
824
flags &= ~LIR_OpArrayCopy::length_positive_check;
825
826
// see if the range check can be elided, which might also imply
827
// that src or dst is non-null.
828
ArrayLength* al = length->as_ArrayLength();
829
if (al != NULL) {
830
if (al->array() == src) {
831
// it's the length of the source array
832
flags &= ~LIR_OpArrayCopy::length_positive_check;
833
flags &= ~LIR_OpArrayCopy::src_null_check;
834
if (is_constant_zero(src_pos))
835
flags &= ~LIR_OpArrayCopy::src_range_check;
836
}
837
if (al->array() == dst) {
838
// it's the length of the destination array
839
flags &= ~LIR_OpArrayCopy::length_positive_check;
840
flags &= ~LIR_OpArrayCopy::dst_null_check;
841
if (is_constant_zero(dst_pos))
842
flags &= ~LIR_OpArrayCopy::dst_range_check;
843
}
844
}
845
if (is_exact) {
846
flags &= ~LIR_OpArrayCopy::type_check;
847
}
848
}
849
850
IntConstant* src_int = src_pos->type()->as_IntConstant();
851
IntConstant* dst_int = dst_pos->type()->as_IntConstant();
852
if (src_int && dst_int) {
853
int s_offs = src_int->value();
854
int d_offs = dst_int->value();
855
if (src_int->value() >= dst_int->value()) {
856
flags &= ~LIR_OpArrayCopy::overlapping;
857
}
858
if (expected_type != NULL) {
859
BasicType t = expected_type->element_type()->basic_type();
860
int element_size = type2aelembytes(t);
861
if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
862
((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
863
flags &= ~LIR_OpArrayCopy::unaligned;
864
}
865
}
866
} else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
867
// src and dest positions are the same, or dst is zero so assume
868
// nonoverlapping copy.
869
flags &= ~LIR_OpArrayCopy::overlapping;
870
}
871
872
if (src == dst) {
873
// moving within a single array so no type checks are needed
874
if (flags & LIR_OpArrayCopy::type_check) {
875
flags &= ~LIR_OpArrayCopy::type_check;
876
}
877
}
878
*flagsp = flags;
879
*expected_typep = (ciArrayKlass*)expected_type;
880
}
881
882
883
LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
884
assert(opr->is_register(), "why spill if item is not register?");
885
886
if (strict_fp_requires_explicit_rounding) {
887
#ifdef IA32
888
if (UseSSE < 1 && opr->is_single_fpu()) {
889
LIR_Opr result = new_register(T_FLOAT);
890
set_vreg_flag(result, must_start_in_memory);
891
assert(opr->is_register(), "only a register can be spilled");
892
assert(opr->value_type()->is_float(), "rounding only for floats available");
893
__ roundfp(opr, LIR_OprFact::illegalOpr, result);
894
return result;
895
}
896
#else
897
Unimplemented();
898
#endif // IA32
899
}
900
return opr;
901
}
902
903
904
LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
905
assert(type2size[t] == type2size[value->type()],
906
"size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
907
if (!value->is_register()) {
908
// force into a register
909
LIR_Opr r = new_register(value->type());
910
__ move(value, r);
911
value = r;
912
}
913
914
// create a spill location
915
LIR_Opr tmp = new_register(t);
916
set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
917
918
// move from register to spill
919
__ move(value, tmp);
920
return tmp;
921
}
922
923
void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
924
if (if_instr->should_profile()) {
925
ciMethod* method = if_instr->profiled_method();
926
assert(method != NULL, "method should be set if branch is profiled");
927
ciMethodData* md = method->method_data_or_null();
928
assert(md != NULL, "Sanity");
929
ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
930
assert(data != NULL, "must have profiling data");
931
assert(data->is_BranchData(), "need BranchData for two-way branches");
932
int taken_count_offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
933
int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
934
if (if_instr->is_swapped()) {
935
int t = taken_count_offset;
936
taken_count_offset = not_taken_count_offset;
937
not_taken_count_offset = t;
938
}
939
940
LIR_Opr md_reg = new_register(T_METADATA);
941
__ metadata2reg(md->constant_encoding(), md_reg);
942
943
LIR_Opr data_offset_reg = new_pointer_register();
944
__ cmove(lir_cond(cond),
945
LIR_OprFact::intptrConst(taken_count_offset),
946
LIR_OprFact::intptrConst(not_taken_count_offset),
947
data_offset_reg, as_BasicType(if_instr->x()->type()));
948
949
// MDO cells are intptr_t, so the data_reg width is arch-dependent.
950
LIR_Opr data_reg = new_pointer_register();
951
LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
952
__ move(data_addr, data_reg);
953
// Use leal instead of add to avoid destroying condition codes on x86
954
LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
955
__ leal(LIR_OprFact::address(fake_incr_value), data_reg);
956
__ move(data_reg, data_addr);
957
}
958
}
959
960
// Phi technique:
961
// This is about passing live values from one basic block to the other.
962
// In code generated with Java it is rather rare that more than one
963
// value is on the stack from one basic block to the other.
964
// We optimize our technique for efficient passing of one value
965
// (of type long, int, double..) but it can be extended.
966
// When entering or leaving a basic block, all registers and all spill
967
// slots are release and empty. We use the released registers
968
// and spill slots to pass the live values from one block
969
// to the other. The topmost value, i.e., the value on TOS of expression
970
// stack is passed in registers. All other values are stored in spilling
971
// area. Every Phi has an index which designates its spill slot
972
// At exit of a basic block, we fill the register(s) and spill slots.
973
// At entry of a basic block, the block_prolog sets up the content of phi nodes
974
// and locks necessary registers and spilling slots.
975
976
977
// move current value to referenced phi function
978
void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
979
Phi* phi = sux_val->as_Phi();
980
// cur_val can be null without phi being null in conjunction with inlining
981
if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
982
if (phi->is_local()) {
983
for (int i = 0; i < phi->operand_count(); i++) {
984
Value op = phi->operand_at(i);
985
if (op != NULL && op->type()->is_illegal()) {
986
bailout("illegal phi operand");
987
}
988
}
989
}
990
Phi* cur_phi = cur_val->as_Phi();
991
if (cur_phi != NULL && cur_phi->is_illegal()) {
992
// Phi and local would need to get invalidated
993
// (which is unexpected for Linear Scan).
994
// But this case is very rare so we simply bail out.
995
bailout("propagation of illegal phi");
996
return;
997
}
998
LIR_Opr operand = cur_val->operand();
999
if (operand->is_illegal()) {
1000
assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1001
"these can be produced lazily");
1002
operand = operand_for_instruction(cur_val);
1003
}
1004
resolver->move(operand, operand_for_instruction(phi));
1005
}
1006
}
1007
1008
1009
// Moves all stack values into their PHI position
1010
void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1011
BlockBegin* bb = block();
1012
if (bb->number_of_sux() == 1) {
1013
BlockBegin* sux = bb->sux_at(0);
1014
assert(sux->number_of_preds() > 0, "invalid CFG");
1015
1016
// a block with only one predecessor never has phi functions
1017
if (sux->number_of_preds() > 1) {
1018
PhiResolver resolver(this);
1019
1020
ValueStack* sux_state = sux->state();
1021
Value sux_value;
1022
int index;
1023
1024
assert(cur_state->scope() == sux_state->scope(), "not matching");
1025
assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1026
assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1027
1028
for_each_stack_value(sux_state, index, sux_value) {
1029
move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1030
}
1031
1032
for_each_local_value(sux_state, index, sux_value) {
1033
move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1034
}
1035
1036
assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1037
}
1038
}
1039
}
1040
1041
1042
LIR_Opr LIRGenerator::new_register(BasicType type) {
1043
int vreg_num = _virtual_register_number;
1044
// Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
1045
// a few extra registers before we really run out which helps to avoid to trip over assertions.
1046
if (vreg_num + 20 >= LIR_OprDesc::vreg_max) {
1047
bailout("out of virtual registers in LIR generator");
1048
if (vreg_num + 2 >= LIR_OprDesc::vreg_max) {
1049
// Wrap it around and continue until bailout really happens to avoid hitting assertions.
1050
_virtual_register_number = LIR_OprDesc::vreg_base;
1051
vreg_num = LIR_OprDesc::vreg_base;
1052
}
1053
}
1054
_virtual_register_number += 1;
1055
LIR_Opr vreg = LIR_OprFact::virtual_register(vreg_num, type);
1056
assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
1057
return vreg;
1058
}
1059
1060
1061
// Try to lock using register in hint
1062
LIR_Opr LIRGenerator::rlock(Value instr) {
1063
return new_register(instr->type());
1064
}
1065
1066
1067
// does an rlock and sets result
1068
LIR_Opr LIRGenerator::rlock_result(Value x) {
1069
LIR_Opr reg = rlock(x);
1070
set_result(x, reg);
1071
return reg;
1072
}
1073
1074
1075
// does an rlock and sets result
1076
LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1077
LIR_Opr reg;
1078
switch (type) {
1079
case T_BYTE:
1080
case T_BOOLEAN:
1081
reg = rlock_byte(type);
1082
break;
1083
default:
1084
reg = rlock(x);
1085
break;
1086
}
1087
1088
set_result(x, reg);
1089
return reg;
1090
}
1091
1092
1093
//---------------------------------------------------------------------
1094
ciObject* LIRGenerator::get_jobject_constant(Value value) {
1095
ObjectType* oc = value->type()->as_ObjectType();
1096
if (oc) {
1097
return oc->constant_value();
1098
}
1099
return NULL;
1100
}
1101
1102
1103
void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1104
assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1105
assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1106
1107
// no moves are created for phi functions at the begin of exception
1108
// handlers, so assign operands manually here
1109
for_each_phi_fun(block(), phi,
1110
if (!phi->is_illegal()) { operand_for_instruction(phi); });
1111
1112
LIR_Opr thread_reg = getThreadPointer();
1113
__ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1114
exceptionOopOpr());
1115
__ move_wide(LIR_OprFact::oopConst(NULL),
1116
new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1117
__ move_wide(LIR_OprFact::oopConst(NULL),
1118
new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1119
1120
LIR_Opr result = new_register(T_OBJECT);
1121
__ move(exceptionOopOpr(), result);
1122
set_result(x, result);
1123
}
1124
1125
1126
//----------------------------------------------------------------------
1127
//----------------------------------------------------------------------
1128
//----------------------------------------------------------------------
1129
//----------------------------------------------------------------------
1130
// visitor functions
1131
//----------------------------------------------------------------------
1132
//----------------------------------------------------------------------
1133
//----------------------------------------------------------------------
1134
//----------------------------------------------------------------------
1135
1136
void LIRGenerator::do_Phi(Phi* x) {
1137
// phi functions are never visited directly
1138
ShouldNotReachHere();
1139
}
1140
1141
1142
// Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1143
void LIRGenerator::do_Constant(Constant* x) {
1144
if (x->state_before() != NULL) {
1145
// Any constant with a ValueStack requires patching so emit the patch here
1146
LIR_Opr reg = rlock_result(x);
1147
CodeEmitInfo* info = state_for(x, x->state_before());
1148
__ oop2reg_patch(NULL, reg, info);
1149
} else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1150
if (!x->is_pinned()) {
1151
// unpinned constants are handled specially so that they can be
1152
// put into registers when they are used multiple times within a
1153
// block. After the block completes their operand will be
1154
// cleared so that other blocks can't refer to that register.
1155
set_result(x, load_constant(x));
1156
} else {
1157
LIR_Opr res = x->operand();
1158
if (!res->is_valid()) {
1159
res = LIR_OprFact::value_type(x->type());
1160
}
1161
if (res->is_constant()) {
1162
LIR_Opr reg = rlock_result(x);
1163
__ move(res, reg);
1164
} else {
1165
set_result(x, res);
1166
}
1167
}
1168
} else {
1169
set_result(x, LIR_OprFact::value_type(x->type()));
1170
}
1171
}
1172
1173
1174
void LIRGenerator::do_Local(Local* x) {
1175
// operand_for_instruction has the side effect of setting the result
1176
// so there's no need to do it here.
1177
operand_for_instruction(x);
1178
}
1179
1180
1181
void LIRGenerator::do_Return(Return* x) {
1182
if (compilation()->env()->dtrace_method_probes()) {
1183
BasicTypeList signature;
1184
signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
1185
signature.append(T_METADATA); // Method*
1186
LIR_OprList* args = new LIR_OprList();
1187
args->append(getThreadPointer());
1188
LIR_Opr meth = new_register(T_METADATA);
1189
__ metadata2reg(method()->constant_encoding(), meth);
1190
args->append(meth);
1191
call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1192
}
1193
1194
if (x->type()->is_void()) {
1195
__ return_op(LIR_OprFact::illegalOpr);
1196
} else {
1197
LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1198
LIRItem result(x->result(), this);
1199
1200
result.load_item_force(reg);
1201
__ return_op(result.result());
1202
}
1203
set_no_result(x);
1204
}
1205
1206
// Examble: ref.get()
1207
// Combination of LoadField and g1 pre-write barrier
1208
void LIRGenerator::do_Reference_get(Intrinsic* x) {
1209
1210
const int referent_offset = java_lang_ref_Reference::referent_offset();
1211
1212
assert(x->number_of_arguments() == 1, "wrong type");
1213
1214
LIRItem reference(x->argument_at(0), this);
1215
reference.load_item();
1216
1217
// need to perform the null check on the reference objecy
1218
CodeEmitInfo* info = NULL;
1219
if (x->needs_null_check()) {
1220
info = state_for(x);
1221
}
1222
1223
LIR_Opr result = rlock_result(x, T_OBJECT);
1224
access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1225
reference, LIR_OprFact::intConst(referent_offset), result);
1226
}
1227
1228
// Example: clazz.isInstance(object)
1229
void LIRGenerator::do_isInstance(Intrinsic* x) {
1230
assert(x->number_of_arguments() == 2, "wrong type");
1231
1232
// TODO could try to substitute this node with an equivalent InstanceOf
1233
// if clazz is known to be a constant Class. This will pick up newly found
1234
// constants after HIR construction. I'll leave this to a future change.
1235
1236
// as a first cut, make a simple leaf call to runtime to stay platform independent.
1237
// could follow the aastore example in a future change.
1238
1239
LIRItem clazz(x->argument_at(0), this);
1240
LIRItem object(x->argument_at(1), this);
1241
clazz.load_item();
1242
object.load_item();
1243
LIR_Opr result = rlock_result(x);
1244
1245
// need to perform null check on clazz
1246
if (x->needs_null_check()) {
1247
CodeEmitInfo* info = state_for(x);
1248
__ null_check(clazz.result(), info);
1249
}
1250
1251
LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1252
CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1253
x->type(),
1254
NULL); // NULL CodeEmitInfo results in a leaf call
1255
__ move(call_result, result);
1256
}
1257
1258
// Example: object.getClass ()
1259
void LIRGenerator::do_getClass(Intrinsic* x) {
1260
assert(x->number_of_arguments() == 1, "wrong type");
1261
1262
LIRItem rcvr(x->argument_at(0), this);
1263
rcvr.load_item();
1264
LIR_Opr temp = new_register(T_METADATA);
1265
LIR_Opr result = rlock_result(x);
1266
1267
// need to perform the null check on the rcvr
1268
CodeEmitInfo* info = NULL;
1269
if (x->needs_null_check()) {
1270
info = state_for(x);
1271
}
1272
1273
// FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1274
// meaning of these two is mixed up (see JDK-8026837).
1275
__ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1276
__ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1277
// mirror = ((OopHandle)mirror)->resolve();
1278
access_load(IN_NATIVE, T_OBJECT,
1279
LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1280
}
1281
1282
// java.lang.Class::isPrimitive()
1283
void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1284
assert(x->number_of_arguments() == 1, "wrong type");
1285
1286
LIRItem rcvr(x->argument_at(0), this);
1287
rcvr.load_item();
1288
LIR_Opr temp = new_register(T_METADATA);
1289
LIR_Opr result = rlock_result(x);
1290
1291
CodeEmitInfo* info = NULL;
1292
if (x->needs_null_check()) {
1293
info = state_for(x);
1294
}
1295
1296
__ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset(), T_ADDRESS), temp, info);
1297
__ cmp(lir_cond_notEqual, temp, LIR_OprFact::metadataConst(0));
1298
__ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1299
}
1300
1301
// Example: Foo.class.getModifiers()
1302
void LIRGenerator::do_getModifiers(Intrinsic* x) {
1303
assert(x->number_of_arguments() == 1, "wrong type");
1304
1305
LIRItem receiver(x->argument_at(0), this);
1306
receiver.load_item();
1307
LIR_Opr result = rlock_result(x);
1308
1309
CodeEmitInfo* info = NULL;
1310
if (x->needs_null_check()) {
1311
info = state_for(x);
1312
}
1313
1314
// While reading off the universal constant mirror is less efficient than doing
1315
// another branch and returning the constant answer, this branchless code runs into
1316
// much less risk of confusion for C1 register allocator. The choice of the universe
1317
// object here is correct as long as it returns the same modifiers we would expect
1318
// from the primitive class itself. See spec for Class.getModifiers that provides
1319
// the typed array klasses with similar modifiers as their component types.
1320
1321
Klass* univ_klass_obj = Universe::byteArrayKlassObj();
1322
assert(univ_klass_obj->modifier_flags() == (JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC), "Sanity");
1323
LIR_Opr prim_klass = LIR_OprFact::metadataConst(univ_klass_obj);
1324
1325
LIR_Opr recv_klass = new_register(T_METADATA);
1326
__ move(new LIR_Address(receiver.result(), java_lang_Class::klass_offset(), T_ADDRESS), recv_klass, info);
1327
1328
// Check if this is a Java mirror of primitive type, and select the appropriate klass.
1329
LIR_Opr klass = new_register(T_METADATA);
1330
__ cmp(lir_cond_equal, recv_klass, LIR_OprFact::metadataConst(0));
1331
__ cmove(lir_cond_equal, prim_klass, recv_klass, klass, T_ADDRESS);
1332
1333
// Get the answer.
1334
__ move(new LIR_Address(klass, in_bytes(Klass::modifier_flags_offset()), T_INT), result);
1335
}
1336
1337
// Example: Thread.currentThread()
1338
void LIRGenerator::do_currentThread(Intrinsic* x) {
1339
assert(x->number_of_arguments() == 0, "wrong type");
1340
LIR_Opr temp = new_register(T_ADDRESS);
1341
LIR_Opr reg = rlock_result(x);
1342
__ move(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_ADDRESS), temp);
1343
// threadObj = ((OopHandle)_threadObj)->resolve();
1344
access_load(IN_NATIVE, T_OBJECT,
1345
LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), reg);
1346
}
1347
1348
void LIRGenerator::do_getObjectSize(Intrinsic* x) {
1349
assert(x->number_of_arguments() == 3, "wrong type");
1350
LIR_Opr result_reg = rlock_result(x);
1351
1352
LIRItem value(x->argument_at(2), this);
1353
value.load_item();
1354
1355
LIR_Opr klass = new_register(T_METADATA);
1356
__ move(new LIR_Address(value.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, NULL);
1357
LIR_Opr layout = new_register(T_INT);
1358
__ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1359
1360
LabelObj* L_done = new LabelObj();
1361
LabelObj* L_array = new LabelObj();
1362
1363
__ cmp(lir_cond_lessEqual, layout, 0);
1364
__ branch(lir_cond_lessEqual, L_array->label());
1365
1366
// Instance case: the layout helper gives us instance size almost directly,
1367
// but we need to mask out the _lh_instance_slow_path_bit.
1368
__ convert(Bytecodes::_i2l, layout, result_reg);
1369
1370
assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
1371
jlong mask = ~(jlong) right_n_bits(LogBytesPerLong);
1372
__ logical_and(result_reg, LIR_OprFact::longConst(mask), result_reg);
1373
1374
__ branch(lir_cond_always, L_done->label());
1375
1376
// Array case: size is round(header + element_size*arraylength).
1377
// Since arraylength is different for every array instance, we have to
1378
// compute the whole thing at runtime.
1379
1380
__ branch_destination(L_array->label());
1381
1382
int round_mask = MinObjAlignmentInBytes - 1;
1383
1384
// Figure out header sizes first.
1385
LIR_Opr hss = LIR_OprFact::intConst(Klass::_lh_header_size_shift);
1386
LIR_Opr hsm = LIR_OprFact::intConst(Klass::_lh_header_size_mask);
1387
1388
LIR_Opr header_size = new_register(T_INT);
1389
__ move(layout, header_size);
1390
LIR_Opr tmp = new_register(T_INT);
1391
__ unsigned_shift_right(header_size, hss, header_size, tmp);
1392
__ logical_and(header_size, hsm, header_size);
1393
__ add(header_size, LIR_OprFact::intConst(round_mask), header_size);
1394
1395
// Figure out the array length in bytes
1396
assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
1397
LIR_Opr l2esm = LIR_OprFact::intConst(Klass::_lh_log2_element_size_mask);
1398
__ logical_and(layout, l2esm, layout);
1399
1400
LIR_Opr length_int = new_register(T_INT);
1401
__ move(new LIR_Address(value.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), length_int);
1402
1403
#ifdef _LP64
1404
LIR_Opr length = new_register(T_LONG);
1405
__ convert(Bytecodes::_i2l, length_int, length);
1406
#endif
1407
1408
// Shift-left awkwardness. Normally it is just:
1409
// __ shift_left(length, layout, length);
1410
// But C1 cannot perform shift_left with non-constant count, so we end up
1411
// doing the per-bit loop dance here. x86_32 also does not know how to shift
1412
// longs, so we have to act on ints.
1413
LabelObj* L_shift_loop = new LabelObj();
1414
LabelObj* L_shift_exit = new LabelObj();
1415
1416
__ branch_destination(L_shift_loop->label());
1417
__ cmp(lir_cond_equal, layout, 0);
1418
__ branch(lir_cond_equal, L_shift_exit->label());
1419
1420
#ifdef _LP64
1421
__ shift_left(length, 1, length);
1422
#else
1423
__ shift_left(length_int, 1, length_int);
1424
#endif
1425
1426
__ sub(layout, LIR_OprFact::intConst(1), layout);
1427
1428
__ branch(lir_cond_always, L_shift_loop->label());
1429
__ branch_destination(L_shift_exit->label());
1430
1431
// Mix all up, round, and push to the result.
1432
#ifdef _LP64
1433
LIR_Opr header_size_long = new_register(T_LONG);
1434
__ convert(Bytecodes::_i2l, header_size, header_size_long);
1435
__ add(length, header_size_long, length);
1436
if (round_mask != 0) {
1437
__ logical_and(length, LIR_OprFact::longConst(~round_mask), length);
1438
}
1439
__ move(length, result_reg);
1440
#else
1441
__ add(length_int, header_size, length_int);
1442
if (round_mask != 0) {
1443
__ logical_and(length_int, LIR_OprFact::intConst(~round_mask), length_int);
1444
}
1445
__ convert(Bytecodes::_i2l, length_int, result_reg);
1446
#endif
1447
1448
__ branch_destination(L_done->label());
1449
}
1450
1451
void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1452
assert(x->number_of_arguments() == 1, "wrong type");
1453
LIRItem receiver(x->argument_at(0), this);
1454
1455
receiver.load_item();
1456
BasicTypeList signature;
1457
signature.append(T_OBJECT); // receiver
1458
LIR_OprList* args = new LIR_OprList();
1459
args->append(receiver.result());
1460
CodeEmitInfo* info = state_for(x, x->state());
1461
call_runtime(&signature, args,
1462
CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1463
voidType, info);
1464
1465
set_no_result(x);
1466
}
1467
1468
1469
//------------------------local access--------------------------------------
1470
1471
LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1472
if (x->operand()->is_illegal()) {
1473
Constant* c = x->as_Constant();
1474
if (c != NULL) {
1475
x->set_operand(LIR_OprFact::value_type(c->type()));
1476
} else {
1477
assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1478
// allocate a virtual register for this local or phi
1479
x->set_operand(rlock(x));
1480
_instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1481
}
1482
}
1483
return x->operand();
1484
}
1485
1486
1487
Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1488
if (opr->is_virtual()) {
1489
return instruction_for_vreg(opr->vreg_number());
1490
}
1491
return NULL;
1492
}
1493
1494
1495
Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1496
if (reg_num < _instruction_for_operand.length()) {
1497
return _instruction_for_operand.at(reg_num);
1498
}
1499
return NULL;
1500
}
1501
1502
1503
void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1504
if (_vreg_flags.size_in_bits() == 0) {
1505
BitMap2D temp(100, num_vreg_flags);
1506
_vreg_flags = temp;
1507
}
1508
_vreg_flags.at_put_grow(vreg_num, f, true);
1509
}
1510
1511
bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1512
if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1513
return false;
1514
}
1515
return _vreg_flags.at(vreg_num, f);
1516
}
1517
1518
1519
// Block local constant handling. This code is useful for keeping
1520
// unpinned constants and constants which aren't exposed in the IR in
1521
// registers. Unpinned Constant instructions have their operands
1522
// cleared when the block is finished so that other blocks can't end
1523
// up referring to their registers.
1524
1525
LIR_Opr LIRGenerator::load_constant(Constant* x) {
1526
assert(!x->is_pinned(), "only for unpinned constants");
1527
_unpinned_constants.append(x);
1528
return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1529
}
1530
1531
1532
LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1533
BasicType t = c->type();
1534
for (int i = 0; i < _constants.length(); i++) {
1535
LIR_Const* other = _constants.at(i);
1536
if (t == other->type()) {
1537
switch (t) {
1538
case T_INT:
1539
case T_FLOAT:
1540
if (c->as_jint_bits() != other->as_jint_bits()) continue;
1541
break;
1542
case T_LONG:
1543
case T_DOUBLE:
1544
if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1545
if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1546
break;
1547
case T_OBJECT:
1548
if (c->as_jobject() != other->as_jobject()) continue;
1549
break;
1550
default:
1551
break;
1552
}
1553
return _reg_for_constants.at(i);
1554
}
1555
}
1556
1557
LIR_Opr result = new_register(t);
1558
__ move((LIR_Opr)c, result);
1559
_constants.append(c);
1560
_reg_for_constants.append(result);
1561
return result;
1562
}
1563
1564
//------------------------field access--------------------------------------
1565
1566
void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1567
assert(x->number_of_arguments() == 4, "wrong type");
1568
LIRItem obj (x->argument_at(0), this); // object
1569
LIRItem offset(x->argument_at(1), this); // offset of field
1570
LIRItem cmp (x->argument_at(2), this); // value to compare with field
1571
LIRItem val (x->argument_at(3), this); // replace field with val if matches cmp
1572
assert(obj.type()->tag() == objectTag, "invalid type");
1573
assert(cmp.type()->tag() == type->tag(), "invalid type");
1574
assert(val.type()->tag() == type->tag(), "invalid type");
1575
1576
LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1577
obj, offset, cmp, val);
1578
set_result(x, result);
1579
}
1580
1581
// Comment copied form templateTable_i486.cpp
1582
// ----------------------------------------------------------------------------
1583
// Volatile variables demand their effects be made known to all CPU's in
1584
// order. Store buffers on most chips allow reads & writes to reorder; the
1585
// JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1586
// memory barrier (i.e., it's not sufficient that the interpreter does not
1587
// reorder volatile references, the hardware also must not reorder them).
1588
//
1589
// According to the new Java Memory Model (JMM):
1590
// (1) All volatiles are serialized wrt to each other.
1591
// ALSO reads & writes act as aquire & release, so:
1592
// (2) A read cannot let unrelated NON-volatile memory refs that happen after
1593
// the read float up to before the read. It's OK for non-volatile memory refs
1594
// that happen before the volatile read to float down below it.
1595
// (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1596
// that happen BEFORE the write float down to after the write. It's OK for
1597
// non-volatile memory refs that happen after the volatile write to float up
1598
// before it.
1599
//
1600
// We only put in barriers around volatile refs (they are expensive), not
1601
// _between_ memory refs (that would require us to track the flavor of the
1602
// previous memory refs). Requirements (2) and (3) require some barriers
1603
// before volatile stores and after volatile loads. These nearly cover
1604
// requirement (1) but miss the volatile-store-volatile-load case. This final
1605
// case is placed after volatile-stores although it could just as well go
1606
// before volatile-loads.
1607
1608
1609
void LIRGenerator::do_StoreField(StoreField* x) {
1610
bool needs_patching = x->needs_patching();
1611
bool is_volatile = x->field()->is_volatile();
1612
BasicType field_type = x->field_type();
1613
1614
CodeEmitInfo* info = NULL;
1615
if (needs_patching) {
1616
assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1617
info = state_for(x, x->state_before());
1618
} else if (x->needs_null_check()) {
1619
NullCheck* nc = x->explicit_null_check();
1620
if (nc == NULL) {
1621
info = state_for(x);
1622
} else {
1623
info = state_for(nc);
1624
}
1625
}
1626
1627
LIRItem object(x->obj(), this);
1628
LIRItem value(x->value(), this);
1629
1630
object.load_item();
1631
1632
if (is_volatile || needs_patching) {
1633
// load item if field is volatile (fewer special cases for volatiles)
1634
// load item if field not initialized
1635
// load item if field not constant
1636
// because of code patching we cannot inline constants
1637
if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1638
value.load_byte_item();
1639
} else {
1640
value.load_item();
1641
}
1642
} else {
1643
value.load_for_store(field_type);
1644
}
1645
1646
set_no_result(x);
1647
1648
#ifndef PRODUCT
1649
if (PrintNotLoaded && needs_patching) {
1650
tty->print_cr(" ###class not loaded at store_%s bci %d",
1651
x->is_static() ? "static" : "field", x->printable_bci());
1652
}
1653
#endif
1654
1655
if (x->needs_null_check() &&
1656
(needs_patching ||
1657
MacroAssembler::needs_explicit_null_check(x->offset()))) {
1658
// Emit an explicit null check because the offset is too large.
1659
// If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1660
// NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1661
__ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1662
}
1663
1664
DecoratorSet decorators = IN_HEAP;
1665
if (is_volatile) {
1666
decorators |= MO_SEQ_CST;
1667
}
1668
if (needs_patching) {
1669
decorators |= C1_NEEDS_PATCHING;
1670
}
1671
1672
access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1673
value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1674
}
1675
1676
void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1677
assert(x->is_pinned(),"");
1678
bool needs_range_check = x->compute_needs_range_check();
1679
bool use_length = x->length() != NULL;
1680
bool obj_store = is_reference_type(x->elt_type());
1681
bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
1682
!get_jobject_constant(x->value())->is_null_object() ||
1683
x->should_profile());
1684
1685
LIRItem array(x->array(), this);
1686
LIRItem index(x->index(), this);
1687
LIRItem value(x->value(), this);
1688
LIRItem length(this);
1689
1690
array.load_item();
1691
index.load_nonconstant();
1692
1693
if (use_length && needs_range_check) {
1694
length.set_instruction(x->length());
1695
length.load_item();
1696
1697
}
1698
if (needs_store_check || x->check_boolean()) {
1699
value.load_item();
1700
} else {
1701
value.load_for_store(x->elt_type());
1702
}
1703
1704
set_no_result(x);
1705
1706
// the CodeEmitInfo must be duplicated for each different
1707
// LIR-instruction because spilling can occur anywhere between two
1708
// instructions and so the debug information must be different
1709
CodeEmitInfo* range_check_info = state_for(x);
1710
CodeEmitInfo* null_check_info = NULL;
1711
if (x->needs_null_check()) {
1712
null_check_info = new CodeEmitInfo(range_check_info);
1713
}
1714
1715
if (GenerateRangeChecks && needs_range_check) {
1716
if (use_length) {
1717
__ cmp(lir_cond_belowEqual, length.result(), index.result());
1718
__ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1719
} else {
1720
array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1721
// range_check also does the null check
1722
null_check_info = NULL;
1723
}
1724
}
1725
1726
if (GenerateArrayStoreCheck && needs_store_check) {
1727
CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1728
array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1729
}
1730
1731
DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1732
if (x->check_boolean()) {
1733
decorators |= C1_MASK_BOOLEAN;
1734
}
1735
1736
access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1737
NULL, null_check_info);
1738
}
1739
1740
void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1741
LIRItem& base, LIR_Opr offset, LIR_Opr result,
1742
CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1743
decorators |= ACCESS_READ;
1744
LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1745
if (access.is_raw()) {
1746
_barrier_set->BarrierSetC1::load_at(access, result);
1747
} else {
1748
_barrier_set->load_at(access, result);
1749
}
1750
}
1751
1752
void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1753
LIR_Opr addr, LIR_Opr result) {
1754
decorators |= ACCESS_READ;
1755
LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1756
access.set_resolved_addr(addr);
1757
if (access.is_raw()) {
1758
_barrier_set->BarrierSetC1::load(access, result);
1759
} else {
1760
_barrier_set->load(access, result);
1761
}
1762
}
1763
1764
void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1765
LIRItem& base, LIR_Opr offset, LIR_Opr value,
1766
CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1767
decorators |= ACCESS_WRITE;
1768
LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1769
if (access.is_raw()) {
1770
_barrier_set->BarrierSetC1::store_at(access, value);
1771
} else {
1772
_barrier_set->store_at(access, value);
1773
}
1774
}
1775
1776
LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1777
LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1778
decorators |= ACCESS_READ;
1779
decorators |= ACCESS_WRITE;
1780
// Atomic operations are SEQ_CST by default
1781
decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1782
LIRAccess access(this, decorators, base, offset, type);
1783
if (access.is_raw()) {
1784
return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1785
} else {
1786
return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1787
}
1788
}
1789
1790
LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1791
LIRItem& base, LIRItem& offset, LIRItem& value) {
1792
decorators |= ACCESS_READ;
1793
decorators |= ACCESS_WRITE;
1794
// Atomic operations are SEQ_CST by default
1795
decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1796
LIRAccess access(this, decorators, base, offset, type);
1797
if (access.is_raw()) {
1798
return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1799
} else {
1800
return _barrier_set->atomic_xchg_at(access, value);
1801
}
1802
}
1803
1804
LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1805
LIRItem& base, LIRItem& offset, LIRItem& value) {
1806
decorators |= ACCESS_READ;
1807
decorators |= ACCESS_WRITE;
1808
// Atomic operations are SEQ_CST by default
1809
decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1810
LIRAccess access(this, decorators, base, offset, type);
1811
if (access.is_raw()) {
1812
return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1813
} else {
1814
return _barrier_set->atomic_add_at(access, value);
1815
}
1816
}
1817
1818
void LIRGenerator::do_LoadField(LoadField* x) {
1819
bool needs_patching = x->needs_patching();
1820
bool is_volatile = x->field()->is_volatile();
1821
BasicType field_type = x->field_type();
1822
1823
CodeEmitInfo* info = NULL;
1824
if (needs_patching) {
1825
assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1826
info = state_for(x, x->state_before());
1827
} else if (x->needs_null_check()) {
1828
NullCheck* nc = x->explicit_null_check();
1829
if (nc == NULL) {
1830
info = state_for(x);
1831
} else {
1832
info = state_for(nc);
1833
}
1834
}
1835
1836
LIRItem object(x->obj(), this);
1837
1838
object.load_item();
1839
1840
#ifndef PRODUCT
1841
if (PrintNotLoaded && needs_patching) {
1842
tty->print_cr(" ###class not loaded at load_%s bci %d",
1843
x->is_static() ? "static" : "field", x->printable_bci());
1844
}
1845
#endif
1846
1847
bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1848
if (x->needs_null_check() &&
1849
(needs_patching ||
1850
MacroAssembler::needs_explicit_null_check(x->offset()) ||
1851
stress_deopt)) {
1852
LIR_Opr obj = object.result();
1853
if (stress_deopt) {
1854
obj = new_register(T_OBJECT);
1855
__ move(LIR_OprFact::oopConst(NULL), obj);
1856
}
1857
// Emit an explicit null check because the offset is too large.
1858
// If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1859
// NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1860
__ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1861
}
1862
1863
DecoratorSet decorators = IN_HEAP;
1864
if (is_volatile) {
1865
decorators |= MO_SEQ_CST;
1866
}
1867
if (needs_patching) {
1868
decorators |= C1_NEEDS_PATCHING;
1869
}
1870
1871
LIR_Opr result = rlock_result(x, field_type);
1872
access_load_at(decorators, field_type,
1873
object, LIR_OprFact::intConst(x->offset()), result,
1874
info ? new CodeEmitInfo(info) : NULL, info);
1875
}
1876
1877
1878
//------------------------java.nio.Buffer.checkIndex------------------------
1879
1880
// int java.nio.Buffer.checkIndex(int)
1881
void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1882
// NOTE: by the time we are in checkIndex() we are guaranteed that
1883
// the buffer is non-null (because checkIndex is package-private and
1884
// only called from within other methods in the buffer).
1885
assert(x->number_of_arguments() == 2, "wrong type");
1886
LIRItem buf (x->argument_at(0), this);
1887
LIRItem index(x->argument_at(1), this);
1888
buf.load_item();
1889
index.load_item();
1890
1891
LIR_Opr result = rlock_result(x);
1892
if (GenerateRangeChecks) {
1893
CodeEmitInfo* info = state_for(x);
1894
CodeStub* stub = new RangeCheckStub(info, index.result());
1895
if (index.result()->is_constant()) {
1896
cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1897
__ branch(lir_cond_belowEqual, stub);
1898
} else {
1899
cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1900
java_nio_Buffer::limit_offset(), T_INT, info);
1901
__ branch(lir_cond_aboveEqual, stub);
1902
}
1903
__ move(index.result(), result);
1904
} else {
1905
// Just load the index into the result register
1906
__ move(index.result(), result);
1907
}
1908
}
1909
1910
1911
//------------------------array access--------------------------------------
1912
1913
1914
void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1915
LIRItem array(x->array(), this);
1916
array.load_item();
1917
LIR_Opr reg = rlock_result(x);
1918
1919
CodeEmitInfo* info = NULL;
1920
if (x->needs_null_check()) {
1921
NullCheck* nc = x->explicit_null_check();
1922
if (nc == NULL) {
1923
info = state_for(x);
1924
} else {
1925
info = state_for(nc);
1926
}
1927
if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1928
LIR_Opr obj = new_register(T_OBJECT);
1929
__ move(LIR_OprFact::oopConst(NULL), obj);
1930
__ null_check(obj, new CodeEmitInfo(info));
1931
}
1932
}
1933
__ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1934
}
1935
1936
1937
void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1938
bool use_length = x->length() != NULL;
1939
LIRItem array(x->array(), this);
1940
LIRItem index(x->index(), this);
1941
LIRItem length(this);
1942
bool needs_range_check = x->compute_needs_range_check();
1943
1944
if (use_length && needs_range_check) {
1945
length.set_instruction(x->length());
1946
length.load_item();
1947
}
1948
1949
array.load_item();
1950
if (index.is_constant() && can_inline_as_constant(x->index())) {
1951
// let it be a constant
1952
index.dont_load_item();
1953
} else {
1954
index.load_item();
1955
}
1956
1957
CodeEmitInfo* range_check_info = state_for(x);
1958
CodeEmitInfo* null_check_info = NULL;
1959
if (x->needs_null_check()) {
1960
NullCheck* nc = x->explicit_null_check();
1961
if (nc != NULL) {
1962
null_check_info = state_for(nc);
1963
} else {
1964
null_check_info = range_check_info;
1965
}
1966
if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1967
LIR_Opr obj = new_register(T_OBJECT);
1968
__ move(LIR_OprFact::oopConst(NULL), obj);
1969
__ null_check(obj, new CodeEmitInfo(null_check_info));
1970
}
1971
}
1972
1973
if (GenerateRangeChecks && needs_range_check) {
1974
if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1975
__ branch(lir_cond_always, new RangeCheckStub(range_check_info, index.result(), array.result()));
1976
} else if (use_length) {
1977
// TODO: use a (modified) version of array_range_check that does not require a
1978
// constant length to be loaded to a register
1979
__ cmp(lir_cond_belowEqual, length.result(), index.result());
1980
__ branch(lir_cond_belowEqual, new RangeCheckStub(range_check_info, index.result(), array.result()));
1981
} else {
1982
array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1983
// The range check performs the null check, so clear it out for the load
1984
null_check_info = NULL;
1985
}
1986
}
1987
1988
DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1989
1990
LIR_Opr result = rlock_result(x, x->elt_type());
1991
access_load_at(decorators, x->elt_type(),
1992
array, index.result(), result,
1993
NULL, null_check_info);
1994
}
1995
1996
1997
void LIRGenerator::do_NullCheck(NullCheck* x) {
1998
if (x->can_trap()) {
1999
LIRItem value(x->obj(), this);
2000
value.load_item();
2001
CodeEmitInfo* info = state_for(x);
2002
__ null_check(value.result(), info);
2003
}
2004
}
2005
2006
2007
void LIRGenerator::do_TypeCast(TypeCast* x) {
2008
LIRItem value(x->obj(), this);
2009
value.load_item();
2010
// the result is the same as from the node we are casting
2011
set_result(x, value.result());
2012
}
2013
2014
2015
void LIRGenerator::do_Throw(Throw* x) {
2016
LIRItem exception(x->exception(), this);
2017
exception.load_item();
2018
set_no_result(x);
2019
LIR_Opr exception_opr = exception.result();
2020
CodeEmitInfo* info = state_for(x, x->state());
2021
2022
#ifndef PRODUCT
2023
if (PrintC1Statistics) {
2024
increment_counter(Runtime1::throw_count_address(), T_INT);
2025
}
2026
#endif
2027
2028
// check if the instruction has an xhandler in any of the nested scopes
2029
bool unwind = false;
2030
if (info->exception_handlers()->length() == 0) {
2031
// this throw is not inside an xhandler
2032
unwind = true;
2033
} else {
2034
// get some idea of the throw type
2035
bool type_is_exact = true;
2036
ciType* throw_type = x->exception()->exact_type();
2037
if (throw_type == NULL) {
2038
type_is_exact = false;
2039
throw_type = x->exception()->declared_type();
2040
}
2041
if (throw_type != NULL && throw_type->is_instance_klass()) {
2042
ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2043
unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2044
}
2045
}
2046
2047
// do null check before moving exception oop into fixed register
2048
// to avoid a fixed interval with an oop during the null check.
2049
// Use a copy of the CodeEmitInfo because debug information is
2050
// different for null_check and throw.
2051
if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2052
// if the exception object wasn't created using new then it might be null.
2053
__ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2054
}
2055
2056
if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2057
// we need to go through the exception lookup path to get JVMTI
2058
// notification done
2059
unwind = false;
2060
}
2061
2062
// move exception oop into fixed register
2063
__ move(exception_opr, exceptionOopOpr());
2064
2065
if (unwind) {
2066
__ unwind_exception(exceptionOopOpr());
2067
} else {
2068
__ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2069
}
2070
}
2071
2072
2073
void LIRGenerator::do_RoundFP(RoundFP* x) {
2074
assert(strict_fp_requires_explicit_rounding, "not required");
2075
2076
LIRItem input(x->input(), this);
2077
input.load_item();
2078
LIR_Opr input_opr = input.result();
2079
assert(input_opr->is_register(), "why round if value is not in a register?");
2080
assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2081
if (input_opr->is_single_fpu()) {
2082
set_result(x, round_item(input_opr)); // This code path not currently taken
2083
} else {
2084
LIR_Opr result = new_register(T_DOUBLE);
2085
set_vreg_flag(result, must_start_in_memory);
2086
__ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2087
set_result(x, result);
2088
}
2089
}
2090
2091
// Here UnsafeGetRaw may have x->base() and x->index() be int or long
2092
// on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2093
void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2094
LIRItem base(x->base(), this);
2095
LIRItem idx(this);
2096
2097
base.load_item();
2098
if (x->has_index()) {
2099
idx.set_instruction(x->index());
2100
idx.load_nonconstant();
2101
}
2102
2103
LIR_Opr reg = rlock_result(x, x->basic_type());
2104
2105
int log2_scale = 0;
2106
if (x->has_index()) {
2107
log2_scale = x->log2_scale();
2108
}
2109
2110
assert(!x->has_index() || idx.value() == x->index(), "should match");
2111
2112
LIR_Opr base_op = base.result();
2113
LIR_Opr index_op = idx.result();
2114
#ifndef _LP64
2115
if (base_op->type() == T_LONG) {
2116
base_op = new_register(T_INT);
2117
__ convert(Bytecodes::_l2i, base.result(), base_op);
2118
}
2119
if (x->has_index()) {
2120
if (index_op->type() == T_LONG) {
2121
LIR_Opr long_index_op = index_op;
2122
if (index_op->is_constant()) {
2123
long_index_op = new_register(T_LONG);
2124
__ move(index_op, long_index_op);
2125
}
2126
index_op = new_register(T_INT);
2127
__ convert(Bytecodes::_l2i, long_index_op, index_op);
2128
} else {
2129
assert(x->index()->type()->tag() == intTag, "must be");
2130
}
2131
}
2132
// At this point base and index should be all ints.
2133
assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2134
assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2135
#else
2136
if (x->has_index()) {
2137
if (index_op->type() == T_INT) {
2138
if (!index_op->is_constant()) {
2139
index_op = new_register(T_LONG);
2140
__ convert(Bytecodes::_i2l, idx.result(), index_op);
2141
}
2142
} else {
2143
assert(index_op->type() == T_LONG, "must be");
2144
if (index_op->is_constant()) {
2145
index_op = new_register(T_LONG);
2146
__ move(idx.result(), index_op);
2147
}
2148
}
2149
}
2150
// At this point base is a long non-constant
2151
// Index is a long register or a int constant.
2152
// We allow the constant to stay an int because that would allow us a more compact encoding by
2153
// embedding an immediate offset in the address expression. If we have a long constant, we have to
2154
// move it into a register first.
2155
assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2156
assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2157
(index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2158
#endif
2159
2160
BasicType dst_type = x->basic_type();
2161
2162
LIR_Address* addr;
2163
if (index_op->is_constant()) {
2164
assert(log2_scale == 0, "must not have a scale");
2165
assert(index_op->type() == T_INT, "only int constants supported");
2166
addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2167
} else {
2168
#ifdef X86
2169
addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2170
#elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2171
addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2172
#else
2173
if (index_op->is_illegal() || log2_scale == 0) {
2174
addr = new LIR_Address(base_op, index_op, dst_type);
2175
} else {
2176
LIR_Opr tmp = new_pointer_register();
2177
__ shift_left(index_op, log2_scale, tmp);
2178
addr = new LIR_Address(base_op, tmp, dst_type);
2179
}
2180
#endif
2181
}
2182
2183
if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2184
__ unaligned_move(addr, reg);
2185
} else {
2186
if (dst_type == T_OBJECT && x->is_wide()) {
2187
__ move_wide(addr, reg);
2188
} else {
2189
__ move(addr, reg);
2190
}
2191
}
2192
}
2193
2194
2195
void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2196
int log2_scale = 0;
2197
BasicType type = x->basic_type();
2198
2199
if (x->has_index()) {
2200
log2_scale = x->log2_scale();
2201
}
2202
2203
LIRItem base(x->base(), this);
2204
LIRItem value(x->value(), this);
2205
LIRItem idx(this);
2206
2207
base.load_item();
2208
if (x->has_index()) {
2209
idx.set_instruction(x->index());
2210
idx.load_item();
2211
}
2212
2213
if (type == T_BYTE || type == T_BOOLEAN) {
2214
value.load_byte_item();
2215
} else {
2216
value.load_item();
2217
}
2218
2219
set_no_result(x);
2220
2221
LIR_Opr base_op = base.result();
2222
LIR_Opr index_op = idx.result();
2223
2224
#ifdef GENERATE_ADDRESS_IS_PREFERRED
2225
LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2226
#else
2227
#ifndef _LP64
2228
if (base_op->type() == T_LONG) {
2229
base_op = new_register(T_INT);
2230
__ convert(Bytecodes::_l2i, base.result(), base_op);
2231
}
2232
if (x->has_index()) {
2233
if (index_op->type() == T_LONG) {
2234
index_op = new_register(T_INT);
2235
__ convert(Bytecodes::_l2i, idx.result(), index_op);
2236
}
2237
}
2238
// At this point base and index should be all ints and not constants
2239
assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2240
assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2241
#else
2242
if (x->has_index()) {
2243
if (index_op->type() == T_INT) {
2244
index_op = new_register(T_LONG);
2245
__ convert(Bytecodes::_i2l, idx.result(), index_op);
2246
}
2247
}
2248
// At this point base and index are long and non-constant
2249
assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2250
assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2251
#endif
2252
2253
if (log2_scale != 0) {
2254
// temporary fix (platform dependent code without shift on Intel would be better)
2255
// TODO: ARM also allows embedded shift in the address
2256
LIR_Opr tmp = new_pointer_register();
2257
if (TwoOperandLIRForm) {
2258
__ move(index_op, tmp);
2259
index_op = tmp;
2260
}
2261
__ shift_left(index_op, log2_scale, tmp);
2262
if (!TwoOperandLIRForm) {
2263
index_op = tmp;
2264
}
2265
}
2266
2267
LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2268
#endif // !GENERATE_ADDRESS_IS_PREFERRED
2269
__ move(value.result(), addr);
2270
}
2271
2272
2273
void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2274
BasicType type = x->basic_type();
2275
LIRItem src(x->object(), this);
2276
LIRItem off(x->offset(), this);
2277
2278
off.load_item();
2279
src.load_item();
2280
2281
DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2282
2283
if (x->is_volatile()) {
2284
decorators |= MO_SEQ_CST;
2285
}
2286
if (type == T_BOOLEAN) {
2287
decorators |= C1_MASK_BOOLEAN;
2288
}
2289
if (is_reference_type(type)) {
2290
decorators |= ON_UNKNOWN_OOP_REF;
2291
}
2292
2293
LIR_Opr result = rlock_result(x, type);
2294
access_load_at(decorators, type,
2295
src, off.result(), result);
2296
}
2297
2298
2299
void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2300
BasicType type = x->basic_type();
2301
LIRItem src(x->object(), this);
2302
LIRItem off(x->offset(), this);
2303
LIRItem data(x->value(), this);
2304
2305
src.load_item();
2306
if (type == T_BOOLEAN || type == T_BYTE) {
2307
data.load_byte_item();
2308
} else {
2309
data.load_item();
2310
}
2311
off.load_item();
2312
2313
set_no_result(x);
2314
2315
DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2316
if (is_reference_type(type)) {
2317
decorators |= ON_UNKNOWN_OOP_REF;
2318
}
2319
if (x->is_volatile()) {
2320
decorators |= MO_SEQ_CST;
2321
}
2322
access_store_at(decorators, type, src, off.result(), data.result());
2323
}
2324
2325
void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
2326
BasicType type = x->basic_type();
2327
LIRItem src(x->object(), this);
2328
LIRItem off(x->offset(), this);
2329
LIRItem value(x->value(), this);
2330
2331
DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2332
2333
if (is_reference_type(type)) {
2334
decorators |= ON_UNKNOWN_OOP_REF;
2335
}
2336
2337
LIR_Opr result;
2338
if (x->is_add()) {
2339
result = access_atomic_add_at(decorators, type, src, off, value);
2340
} else {
2341
result = access_atomic_xchg_at(decorators, type, src, off, value);
2342
}
2343
set_result(x, result);
2344
}
2345
2346
void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2347
int lng = x->length();
2348
2349
for (int i = 0; i < lng; i++) {
2350
C1SwitchRange* one_range = x->at(i);
2351
int low_key = one_range->low_key();
2352
int high_key = one_range->high_key();
2353
BlockBegin* dest = one_range->sux();
2354
if (low_key == high_key) {
2355
__ cmp(lir_cond_equal, value, low_key);
2356
__ branch(lir_cond_equal, dest);
2357
} else if (high_key - low_key == 1) {
2358
__ cmp(lir_cond_equal, value, low_key);
2359
__ branch(lir_cond_equal, dest);
2360
__ cmp(lir_cond_equal, value, high_key);
2361
__ branch(lir_cond_equal, dest);
2362
} else {
2363
LabelObj* L = new LabelObj();
2364
__ cmp(lir_cond_less, value, low_key);
2365
__ branch(lir_cond_less, L->label());
2366
__ cmp(lir_cond_lessEqual, value, high_key);
2367
__ branch(lir_cond_lessEqual, dest);
2368
__ branch_destination(L->label());
2369
}
2370
}
2371
__ jump(default_sux);
2372
}
2373
2374
2375
SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2376
SwitchRangeList* res = new SwitchRangeList();
2377
int len = x->length();
2378
if (len > 0) {
2379
BlockBegin* sux = x->sux_at(0);
2380
int key = x->lo_key();
2381
BlockBegin* default_sux = x->default_sux();
2382
C1SwitchRange* range = new C1SwitchRange(key, sux);
2383
for (int i = 0; i < len; i++, key++) {
2384
BlockBegin* new_sux = x->sux_at(i);
2385
if (sux == new_sux) {
2386
// still in same range
2387
range->set_high_key(key);
2388
} else {
2389
// skip tests which explicitly dispatch to the default
2390
if (sux != default_sux) {
2391
res->append(range);
2392
}
2393
range = new C1SwitchRange(key, new_sux);
2394
}
2395
sux = new_sux;
2396
}
2397
if (res->length() == 0 || res->last() != range) res->append(range);
2398
}
2399
return res;
2400
}
2401
2402
2403
// we expect the keys to be sorted by increasing value
2404
SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2405
SwitchRangeList* res = new SwitchRangeList();
2406
int len = x->length();
2407
if (len > 0) {
2408
BlockBegin* default_sux = x->default_sux();
2409
int key = x->key_at(0);
2410
BlockBegin* sux = x->sux_at(0);
2411
C1SwitchRange* range = new C1SwitchRange(key, sux);
2412
for (int i = 1; i < len; i++) {
2413
int new_key = x->key_at(i);
2414
BlockBegin* new_sux = x->sux_at(i);
2415
if (key+1 == new_key && sux == new_sux) {
2416
// still in same range
2417
range->set_high_key(new_key);
2418
} else {
2419
// skip tests which explicitly dispatch to the default
2420
if (range->sux() != default_sux) {
2421
res->append(range);
2422
}
2423
range = new C1SwitchRange(new_key, new_sux);
2424
}
2425
key = new_key;
2426
sux = new_sux;
2427
}
2428
if (res->length() == 0 || res->last() != range) res->append(range);
2429
}
2430
return res;
2431
}
2432
2433
2434
void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2435
LIRItem tag(x->tag(), this);
2436
tag.load_item();
2437
set_no_result(x);
2438
2439
if (x->is_safepoint()) {
2440
__ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2441
}
2442
2443
// move values into phi locations
2444
move_to_phi(x->state());
2445
2446
int lo_key = x->lo_key();
2447
int len = x->length();
2448
assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2449
LIR_Opr value = tag.result();
2450
2451
if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2452
ciMethod* method = x->state()->scope()->method();
2453
ciMethodData* md = method->method_data_or_null();
2454
assert(md != NULL, "Sanity");
2455
ciProfileData* data = md->bci_to_data(x->state()->bci());
2456
assert(data != NULL, "must have profiling data");
2457
assert(data->is_MultiBranchData(), "bad profile data?");
2458
int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2459
LIR_Opr md_reg = new_register(T_METADATA);
2460
__ metadata2reg(md->constant_encoding(), md_reg);
2461
LIR_Opr data_offset_reg = new_pointer_register();
2462
LIR_Opr tmp_reg = new_pointer_register();
2463
2464
__ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2465
for (int i = 0; i < len; i++) {
2466
int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2467
__ cmp(lir_cond_equal, value, i + lo_key);
2468
__ move(data_offset_reg, tmp_reg);
2469
__ cmove(lir_cond_equal,
2470
LIR_OprFact::intptrConst(count_offset),
2471
tmp_reg,
2472
data_offset_reg, T_INT);
2473
}
2474
2475
LIR_Opr data_reg = new_pointer_register();
2476
LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2477
__ move(data_addr, data_reg);
2478
__ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2479
__ move(data_reg, data_addr);
2480
}
2481
2482
if (UseTableRanges) {
2483
do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2484
} else {
2485
for (int i = 0; i < len; i++) {
2486
__ cmp(lir_cond_equal, value, i + lo_key);
2487
__ branch(lir_cond_equal, x->sux_at(i));
2488
}
2489
__ jump(x->default_sux());
2490
}
2491
}
2492
2493
2494
void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2495
LIRItem tag(x->tag(), this);
2496
tag.load_item();
2497
set_no_result(x);
2498
2499
if (x->is_safepoint()) {
2500
__ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2501
}
2502
2503
// move values into phi locations
2504
move_to_phi(x->state());
2505
2506
LIR_Opr value = tag.result();
2507
int len = x->length();
2508
2509
if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2510
ciMethod* method = x->state()->scope()->method();
2511
ciMethodData* md = method->method_data_or_null();
2512
assert(md != NULL, "Sanity");
2513
ciProfileData* data = md->bci_to_data(x->state()->bci());
2514
assert(data != NULL, "must have profiling data");
2515
assert(data->is_MultiBranchData(), "bad profile data?");
2516
int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2517
LIR_Opr md_reg = new_register(T_METADATA);
2518
__ metadata2reg(md->constant_encoding(), md_reg);
2519
LIR_Opr data_offset_reg = new_pointer_register();
2520
LIR_Opr tmp_reg = new_pointer_register();
2521
2522
__ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2523
for (int i = 0; i < len; i++) {
2524
int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2525
__ cmp(lir_cond_equal, value, x->key_at(i));
2526
__ move(data_offset_reg, tmp_reg);
2527
__ cmove(lir_cond_equal,
2528
LIR_OprFact::intptrConst(count_offset),
2529
tmp_reg,
2530
data_offset_reg, T_INT);
2531
}
2532
2533
LIR_Opr data_reg = new_pointer_register();
2534
LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2535
__ move(data_addr, data_reg);
2536
__ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2537
__ move(data_reg, data_addr);
2538
}
2539
2540
if (UseTableRanges) {
2541
do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2542
} else {
2543
int len = x->length();
2544
for (int i = 0; i < len; i++) {
2545
__ cmp(lir_cond_equal, value, x->key_at(i));
2546
__ branch(lir_cond_equal, x->sux_at(i));
2547
}
2548
__ jump(x->default_sux());
2549
}
2550
}
2551
2552
2553
void LIRGenerator::do_Goto(Goto* x) {
2554
set_no_result(x);
2555
2556
if (block()->next()->as_OsrEntry()) {
2557
// need to free up storage used for OSR entry point
2558
LIR_Opr osrBuffer = block()->next()->operand();
2559
BasicTypeList signature;
2560
signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2561
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2562
__ move(osrBuffer, cc->args()->at(0));
2563
__ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2564
getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2565
}
2566
2567
if (x->is_safepoint()) {
2568
ValueStack* state = x->state_before() ? x->state_before() : x->state();
2569
2570
// increment backedge counter if needed
2571
CodeEmitInfo* info = state_for(x, state);
2572
increment_backedge_counter(info, x->profiled_bci());
2573
CodeEmitInfo* safepoint_info = state_for(x, state);
2574
__ safepoint(safepoint_poll_register(), safepoint_info);
2575
}
2576
2577
// Gotos can be folded Ifs, handle this case.
2578
if (x->should_profile()) {
2579
ciMethod* method = x->profiled_method();
2580
assert(method != NULL, "method should be set if branch is profiled");
2581
ciMethodData* md = method->method_data_or_null();
2582
assert(md != NULL, "Sanity");
2583
ciProfileData* data = md->bci_to_data(x->profiled_bci());
2584
assert(data != NULL, "must have profiling data");
2585
int offset;
2586
if (x->direction() == Goto::taken) {
2587
assert(data->is_BranchData(), "need BranchData for two-way branches");
2588
offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2589
} else if (x->direction() == Goto::not_taken) {
2590
assert(data->is_BranchData(), "need BranchData for two-way branches");
2591
offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2592
} else {
2593
assert(data->is_JumpData(), "need JumpData for branches");
2594
offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2595
}
2596
LIR_Opr md_reg = new_register(T_METADATA);
2597
__ metadata2reg(md->constant_encoding(), md_reg);
2598
2599
increment_counter(new LIR_Address(md_reg, offset,
2600
NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2601
}
2602
2603
// emit phi-instruction move after safepoint since this simplifies
2604
// describing the state as the safepoint.
2605
move_to_phi(x->state());
2606
2607
__ jump(x->default_sux());
2608
}
2609
2610
/**
2611
* Emit profiling code if needed for arguments, parameters, return value types
2612
*
2613
* @param md MDO the code will update at runtime
2614
* @param md_base_offset common offset in the MDO for this profile and subsequent ones
2615
* @param md_offset offset in the MDO (on top of md_base_offset) for this profile
2616
* @param profiled_k current profile
2617
* @param obj IR node for the object to be profiled
2618
* @param mdp register to hold the pointer inside the MDO (md + md_base_offset).
2619
* Set once we find an update to make and use for next ones.
2620
* @param not_null true if we know obj cannot be null
2621
* @param signature_at_call_k signature at call for obj
2622
* @param callee_signature_k signature of callee for obj
2623
* at call and callee signatures differ at method handle call
2624
* @return the only klass we know will ever be seen at this profile point
2625
*/
2626
ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2627
Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2628
ciKlass* callee_signature_k) {
2629
ciKlass* result = NULL;
2630
bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2631
bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2632
// known not to be null or null bit already set and already set to
2633
// unknown: nothing we can do to improve profiling
2634
if (!do_null && !do_update) {
2635
return result;
2636
}
2637
2638
ciKlass* exact_klass = NULL;
2639
Compilation* comp = Compilation::current();
2640
if (do_update) {
2641
// try to find exact type, using CHA if possible, so that loading
2642
// the klass from the object can be avoided
2643
ciType* type = obj->exact_type();
2644
if (type == NULL) {
2645
type = obj->declared_type();
2646
type = comp->cha_exact_type(type);
2647
}
2648
assert(type == NULL || type->is_klass(), "type should be class");
2649
exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2650
2651
do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2652
}
2653
2654
if (!do_null && !do_update) {
2655
return result;
2656
}
2657
2658
ciKlass* exact_signature_k = NULL;
2659
if (do_update) {
2660
// Is the type from the signature exact (the only one possible)?
2661
exact_signature_k = signature_at_call_k->exact_klass();
2662
if (exact_signature_k == NULL) {
2663
exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2664
} else {
2665
result = exact_signature_k;
2666
// Known statically. No need to emit any code: prevent
2667
// LIR_Assembler::emit_profile_type() from emitting useless code
2668
profiled_k = ciTypeEntries::with_status(result, profiled_k);
2669
}
2670
// exact_klass and exact_signature_k can be both non NULL but
2671
// different if exact_klass is loaded after the ciObject for
2672
// exact_signature_k is created.
2673
if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2674
// sometimes the type of the signature is better than the best type
2675
// the compiler has
2676
exact_klass = exact_signature_k;
2677
}
2678
if (callee_signature_k != NULL &&
2679
callee_signature_k != signature_at_call_k) {
2680
ciKlass* improved_klass = callee_signature_k->exact_klass();
2681
if (improved_klass == NULL) {
2682
improved_klass = comp->cha_exact_type(callee_signature_k);
2683
}
2684
if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2685
exact_klass = exact_signature_k;
2686
}
2687
}
2688
do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2689
}
2690
2691
if (!do_null && !do_update) {
2692
return result;
2693
}
2694
2695
if (mdp == LIR_OprFact::illegalOpr) {
2696
mdp = new_register(T_METADATA);
2697
__ metadata2reg(md->constant_encoding(), mdp);
2698
if (md_base_offset != 0) {
2699
LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2700
mdp = new_pointer_register();
2701
__ leal(LIR_OprFact::address(base_type_address), mdp);
2702
}
2703
}
2704
LIRItem value(obj, this);
2705
value.load_item();
2706
__ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2707
value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2708
return result;
2709
}
2710
2711
// profile parameters on entry to the root of the compilation
2712
void LIRGenerator::profile_parameters(Base* x) {
2713
if (compilation()->profile_parameters()) {
2714
CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2715
ciMethodData* md = scope()->method()->method_data_or_null();
2716
assert(md != NULL, "Sanity");
2717
2718
if (md->parameters_type_data() != NULL) {
2719
ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2720
ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
2721
LIR_Opr mdp = LIR_OprFact::illegalOpr;
2722
for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2723
LIR_Opr src = args->at(i);
2724
assert(!src->is_illegal(), "check");
2725
BasicType t = src->type();
2726
if (is_reference_type(t)) {
2727
intptr_t profiled_k = parameters->type(j);
2728
Local* local = x->state()->local_at(java_index)->as_Local();
2729
ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2730
in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2731
profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2732
// If the profile is known statically set it once for all and do not emit any code
2733
if (exact != NULL) {
2734
md->set_parameter_type(j, exact);
2735
}
2736
j++;
2737
}
2738
java_index += type2size[t];
2739
}
2740
}
2741
}
2742
}
2743
2744
void LIRGenerator::do_Base(Base* x) {
2745
__ std_entry(LIR_OprFact::illegalOpr);
2746
// Emit moves from physical registers / stack slots to virtual registers
2747
CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2748
IRScope* irScope = compilation()->hir()->top_scope();
2749
int java_index = 0;
2750
for (int i = 0; i < args->length(); i++) {
2751
LIR_Opr src = args->at(i);
2752
assert(!src->is_illegal(), "check");
2753
BasicType t = src->type();
2754
2755
// Types which are smaller than int are passed as int, so
2756
// correct the type which passed.
2757
switch (t) {
2758
case T_BYTE:
2759
case T_BOOLEAN:
2760
case T_SHORT:
2761
case T_CHAR:
2762
t = T_INT;
2763
break;
2764
default:
2765
break;
2766
}
2767
2768
LIR_Opr dest = new_register(t);
2769
__ move(src, dest);
2770
2771
// Assign new location to Local instruction for this local
2772
Local* local = x->state()->local_at(java_index)->as_Local();
2773
assert(local != NULL, "Locals for incoming arguments must have been created");
2774
#ifndef __SOFTFP__
2775
// The java calling convention passes double as long and float as int.
2776
assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2777
#endif // __SOFTFP__
2778
local->set_operand(dest);
2779
_instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2780
java_index += type2size[t];
2781
}
2782
2783
if (compilation()->env()->dtrace_method_probes()) {
2784
BasicTypeList signature;
2785
signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
2786
signature.append(T_METADATA); // Method*
2787
LIR_OprList* args = new LIR_OprList();
2788
args->append(getThreadPointer());
2789
LIR_Opr meth = new_register(T_METADATA);
2790
__ metadata2reg(method()->constant_encoding(), meth);
2791
args->append(meth);
2792
call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2793
}
2794
2795
if (method()->is_synchronized()) {
2796
LIR_Opr obj;
2797
if (method()->is_static()) {
2798
obj = new_register(T_OBJECT);
2799
__ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2800
} else {
2801
Local* receiver = x->state()->local_at(0)->as_Local();
2802
assert(receiver != NULL, "must already exist");
2803
obj = receiver->operand();
2804
}
2805
assert(obj->is_valid(), "must be valid");
2806
2807
if (method()->is_synchronized() && GenerateSynchronizationCode) {
2808
LIR_Opr lock = syncLockOpr();
2809
__ load_stack_address_monitor(0, lock);
2810
2811
CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2812
CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2813
2814
// receiver is guaranteed non-NULL so don't need CodeEmitInfo
2815
__ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2816
}
2817
}
2818
if (compilation()->age_code()) {
2819
CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2820
decrement_age(info);
2821
}
2822
// increment invocation counters if needed
2823
if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2824
profile_parameters(x);
2825
CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2826
increment_invocation_counter(info);
2827
}
2828
2829
// all blocks with a successor must end with an unconditional jump
2830
// to the successor even if they are consecutive
2831
__ jump(x->default_sux());
2832
}
2833
2834
2835
void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2836
// construct our frame and model the production of incoming pointer
2837
// to the OSR buffer.
2838
__ osr_entry(LIR_Assembler::osrBufferPointer());
2839
LIR_Opr result = rlock_result(x);
2840
__ move(LIR_Assembler::osrBufferPointer(), result);
2841
}
2842
2843
2844
void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2845
assert(args->length() == arg_list->length(),
2846
"args=%d, arg_list=%d", args->length(), arg_list->length());
2847
for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2848
LIRItem* param = args->at(i);
2849
LIR_Opr loc = arg_list->at(i);
2850
if (loc->is_register()) {
2851
param->load_item_force(loc);
2852
} else {
2853
LIR_Address* addr = loc->as_address_ptr();
2854
param->load_for_store(addr->type());
2855
if (addr->type() == T_OBJECT) {
2856
__ move_wide(param->result(), addr);
2857
} else
2858
if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2859
__ unaligned_move(param->result(), addr);
2860
} else {
2861
__ move(param->result(), addr);
2862
}
2863
}
2864
}
2865
2866
if (x->has_receiver()) {
2867
LIRItem* receiver = args->at(0);
2868
LIR_Opr loc = arg_list->at(0);
2869
if (loc->is_register()) {
2870
receiver->load_item_force(loc);
2871
} else {
2872
assert(loc->is_address(), "just checking");
2873
receiver->load_for_store(T_OBJECT);
2874
__ move_wide(receiver->result(), loc->as_address_ptr());
2875
}
2876
}
2877
}
2878
2879
2880
// Visits all arguments, returns appropriate items without loading them
2881
LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2882
LIRItemList* argument_items = new LIRItemList();
2883
if (x->has_receiver()) {
2884
LIRItem* receiver = new LIRItem(x->receiver(), this);
2885
argument_items->append(receiver);
2886
}
2887
for (int i = 0; i < x->number_of_arguments(); i++) {
2888
LIRItem* param = new LIRItem(x->argument_at(i), this);
2889
argument_items->append(param);
2890
}
2891
return argument_items;
2892
}
2893
2894
2895
// The invoke with receiver has following phases:
2896
// a) traverse and load/lock receiver;
2897
// b) traverse all arguments -> item-array (invoke_visit_argument)
2898
// c) push receiver on stack
2899
// d) load each of the items and push on stack
2900
// e) unlock receiver
2901
// f) move receiver into receiver-register %o0
2902
// g) lock result registers and emit call operation
2903
//
2904
// Before issuing a call, we must spill-save all values on stack
2905
// that are in caller-save register. "spill-save" moves those registers
2906
// either in a free callee-save register or spills them if no free
2907
// callee save register is available.
2908
//
2909
// The problem is where to invoke spill-save.
2910
// - if invoked between e) and f), we may lock callee save
2911
// register in "spill-save" that destroys the receiver register
2912
// before f) is executed
2913
// - if we rearrange f) to be earlier (by loading %o0) it
2914
// may destroy a value on the stack that is currently in %o0
2915
// and is waiting to be spilled
2916
// - if we keep the receiver locked while doing spill-save,
2917
// we cannot spill it as it is spill-locked
2918
//
2919
void LIRGenerator::do_Invoke(Invoke* x) {
2920
CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2921
2922
LIR_OprList* arg_list = cc->args();
2923
LIRItemList* args = invoke_visit_arguments(x);
2924
LIR_Opr receiver = LIR_OprFact::illegalOpr;
2925
2926
// setup result register
2927
LIR_Opr result_register = LIR_OprFact::illegalOpr;
2928
if (x->type() != voidType) {
2929
result_register = result_register_for(x->type());
2930
}
2931
2932
CodeEmitInfo* info = state_for(x, x->state());
2933
2934
invoke_load_arguments(x, args, arg_list);
2935
2936
if (x->has_receiver()) {
2937
args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2938
receiver = args->at(0)->result();
2939
}
2940
2941
// emit invoke code
2942
assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2943
2944
// JSR 292
2945
// Preserve the SP over MethodHandle call sites, if needed.
2946
ciMethod* target = x->target();
2947
bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2948
target->is_method_handle_intrinsic() ||
2949
target->is_compiled_lambda_form());
2950
if (is_method_handle_invoke) {
2951
info->set_is_method_handle_invoke(true);
2952
if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2953
__ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2954
}
2955
}
2956
2957
switch (x->code()) {
2958
case Bytecodes::_invokestatic:
2959
__ call_static(target, result_register,
2960
SharedRuntime::get_resolve_static_call_stub(),
2961
arg_list, info);
2962
break;
2963
case Bytecodes::_invokespecial:
2964
case Bytecodes::_invokevirtual:
2965
case Bytecodes::_invokeinterface:
2966
// for loaded and final (method or class) target we still produce an inline cache,
2967
// in order to be able to call mixed mode
2968
if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2969
__ call_opt_virtual(target, receiver, result_register,
2970
SharedRuntime::get_resolve_opt_virtual_call_stub(),
2971
arg_list, info);
2972
} else {
2973
__ call_icvirtual(target, receiver, result_register,
2974
SharedRuntime::get_resolve_virtual_call_stub(),
2975
arg_list, info);
2976
}
2977
break;
2978
case Bytecodes::_invokedynamic: {
2979
__ call_dynamic(target, receiver, result_register,
2980
SharedRuntime::get_resolve_static_call_stub(),
2981
arg_list, info);
2982
break;
2983
}
2984
default:
2985
fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2986
break;
2987
}
2988
2989
// JSR 292
2990
// Restore the SP after MethodHandle call sites, if needed.
2991
if (is_method_handle_invoke
2992
&& FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2993
__ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2994
}
2995
2996
if (result_register->is_valid()) {
2997
LIR_Opr result = rlock_result(x);
2998
__ move(result_register, result);
2999
}
3000
}
3001
3002
3003
void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3004
assert(x->number_of_arguments() == 1, "wrong type");
3005
LIRItem value (x->argument_at(0), this);
3006
LIR_Opr reg = rlock_result(x);
3007
value.load_item();
3008
LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3009
__ move(tmp, reg);
3010
}
3011
3012
3013
3014
// Code for : x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3015
void LIRGenerator::do_IfOp(IfOp* x) {
3016
#ifdef ASSERT
3017
{
3018
ValueTag xtag = x->x()->type()->tag();
3019
ValueTag ttag = x->tval()->type()->tag();
3020
assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3021
assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3022
assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3023
}
3024
#endif
3025
3026
LIRItem left(x->x(), this);
3027
LIRItem right(x->y(), this);
3028
left.load_item();
3029
if (can_inline_as_constant(right.value())) {
3030
right.dont_load_item();
3031
} else {
3032
right.load_item();
3033
}
3034
3035
LIRItem t_val(x->tval(), this);
3036
LIRItem f_val(x->fval(), this);
3037
t_val.dont_load_item();
3038
f_val.dont_load_item();
3039
LIR_Opr reg = rlock_result(x);
3040
3041
__ cmp(lir_cond(x->cond()), left.result(), right.result());
3042
__ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3043
}
3044
3045
#ifdef JFR_HAVE_INTRINSICS
3046
3047
void LIRGenerator::do_getEventWriter(Intrinsic* x) {
3048
LabelObj* L_end = new LabelObj();
3049
3050
// FIXME T_ADDRESS should actually be T_METADATA but it can't because the
3051
// meaning of these two is mixed up (see JDK-8026837).
3052
LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3053
in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
3054
T_ADDRESS);
3055
LIR_Opr result = rlock_result(x);
3056
__ move(LIR_OprFact::oopConst(NULL), result);
3057
LIR_Opr jobj = new_register(T_METADATA);
3058
__ move_wide(jobj_addr, jobj);
3059
__ cmp(lir_cond_equal, jobj, LIR_OprFact::metadataConst(0));
3060
__ branch(lir_cond_equal, L_end->label());
3061
3062
access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result);
3063
3064
__ branch_destination(L_end->label());
3065
}
3066
3067
#endif
3068
3069
3070
void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3071
assert(x->number_of_arguments() == 0, "wrong type");
3072
// Enforce computation of _reserved_argument_area_size which is required on some platforms.
3073
BasicTypeList signature;
3074
CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3075
LIR_Opr reg = result_register_for(x->type());
3076
__ call_runtime_leaf(routine, getThreadTemp(),
3077
reg, new LIR_OprList());
3078
LIR_Opr result = rlock_result(x);
3079
__ move(reg, result);
3080
}
3081
3082
3083
3084
void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3085
switch (x->id()) {
3086
case vmIntrinsics::_intBitsToFloat :
3087
case vmIntrinsics::_doubleToRawLongBits :
3088
case vmIntrinsics::_longBitsToDouble :
3089
case vmIntrinsics::_floatToRawIntBits : {
3090
do_FPIntrinsics(x);
3091
break;
3092
}
3093
3094
#ifdef JFR_HAVE_INTRINSICS
3095
case vmIntrinsics::_getEventWriter:
3096
do_getEventWriter(x);
3097
break;
3098
case vmIntrinsics::_counterTime:
3099
do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x);
3100
break;
3101
#endif
3102
3103
case vmIntrinsics::_currentTimeMillis:
3104
do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3105
break;
3106
3107
case vmIntrinsics::_nanoTime:
3108
do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3109
break;
3110
3111
case vmIntrinsics::_Object_init: do_RegisterFinalizer(x); break;
3112
case vmIntrinsics::_isInstance: do_isInstance(x); break;
3113
case vmIntrinsics::_isPrimitive: do_isPrimitive(x); break;
3114
case vmIntrinsics::_getModifiers: do_getModifiers(x); break;
3115
case vmIntrinsics::_getClass: do_getClass(x); break;
3116
case vmIntrinsics::_currentThread: do_currentThread(x); break;
3117
case vmIntrinsics::_getObjectSize: do_getObjectSize(x); break;
3118
3119
case vmIntrinsics::_dlog: // fall through
3120
case vmIntrinsics::_dlog10: // fall through
3121
case vmIntrinsics::_dabs: // fall through
3122
case vmIntrinsics::_dsqrt: // fall through
3123
case vmIntrinsics::_dtan: // fall through
3124
case vmIntrinsics::_dsin : // fall through
3125
case vmIntrinsics::_dcos : // fall through
3126
case vmIntrinsics::_dexp : // fall through
3127
case vmIntrinsics::_dpow : do_MathIntrinsic(x); break;
3128
case vmIntrinsics::_arraycopy: do_ArrayCopy(x); break;
3129
3130
case vmIntrinsics::_fmaD: do_FmaIntrinsic(x); break;
3131
case vmIntrinsics::_fmaF: do_FmaIntrinsic(x); break;
3132
3133
// java.nio.Buffer.checkIndex
3134
case vmIntrinsics::_checkIndex: do_NIOCheckIndex(x); break;
3135
3136
case vmIntrinsics::_compareAndSetReference:
3137
do_CompareAndSwap(x, objectType);
3138
break;
3139
case vmIntrinsics::_compareAndSetInt:
3140
do_CompareAndSwap(x, intType);
3141
break;
3142
case vmIntrinsics::_compareAndSetLong:
3143
do_CompareAndSwap(x, longType);
3144
break;
3145
3146
case vmIntrinsics::_loadFence :
3147
__ membar_acquire();
3148
break;
3149
case vmIntrinsics::_storeFence:
3150
__ membar_release();
3151
break;
3152
case vmIntrinsics::_fullFence :
3153
__ membar();
3154
break;
3155
case vmIntrinsics::_onSpinWait:
3156
__ on_spin_wait();
3157
break;
3158
case vmIntrinsics::_Reference_get:
3159
do_Reference_get(x);
3160
break;
3161
3162
case vmIntrinsics::_updateCRC32:
3163
case vmIntrinsics::_updateBytesCRC32:
3164
case vmIntrinsics::_updateByteBufferCRC32:
3165
do_update_CRC32(x);
3166
break;
3167
3168
case vmIntrinsics::_updateBytesCRC32C:
3169
case vmIntrinsics::_updateDirectByteBufferCRC32C:
3170
do_update_CRC32C(x);
3171
break;
3172
3173
case vmIntrinsics::_vectorizedMismatch:
3174
do_vectorizedMismatch(x);
3175
break;
3176
3177
case vmIntrinsics::_blackhole:
3178
do_blackhole(x);
3179
break;
3180
3181
default: ShouldNotReachHere(); break;
3182
}
3183
}
3184
3185
void LIRGenerator::profile_arguments(ProfileCall* x) {
3186
if (compilation()->profile_arguments()) {
3187
int bci = x->bci_of_invoke();
3188
ciMethodData* md = x->method()->method_data_or_null();
3189
assert(md != NULL, "Sanity");
3190
ciProfileData* data = md->bci_to_data(bci);
3191
if (data != NULL) {
3192
if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3193
(data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3194
ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3195
int base_offset = md->byte_offset_of_slot(data, extra);
3196
LIR_Opr mdp = LIR_OprFact::illegalOpr;
3197
ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3198
3199
Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3200
int start = 0;
3201
int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3202
if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3203
// first argument is not profiled at call (method handle invoke)
3204
assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3205
start = 1;
3206
}
3207
ciSignature* callee_signature = x->callee()->signature();
3208
// method handle call to virtual method
3209
bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3210
ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3211
3212
bool ignored_will_link;
3213
ciSignature* signature_at_call = NULL;
3214
x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3215
ciSignatureStream signature_at_call_stream(signature_at_call);
3216
3217
// if called through method handle invoke, some arguments may have been popped
3218
for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3219
int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3220
ciKlass* exact = profile_type(md, base_offset, off,
3221
args->type(i), x->profiled_arg_at(i+start), mdp,
3222
!x->arg_needs_null_check(i+start),
3223
signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3224
if (exact != NULL) {
3225
md->set_argument_type(bci, i, exact);
3226
}
3227
}
3228
} else {
3229
#ifdef ASSERT
3230
Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3231
int n = x->nb_profiled_args();
3232
assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3233
(x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3234
"only at JSR292 bytecodes");
3235
#endif
3236
}
3237
}
3238
}
3239
}
3240
3241
// profile parameters on entry to an inlined method
3242
void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3243
if (compilation()->profile_parameters() && x->inlined()) {
3244
ciMethodData* md = x->callee()->method_data_or_null();
3245
if (md != NULL) {
3246
ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3247
if (parameters_type_data != NULL) {
3248
ciTypeStackSlotEntries* parameters = parameters_type_data->parameters();
3249
LIR_Opr mdp = LIR_OprFact::illegalOpr;
3250
bool has_receiver = !x->callee()->is_static();
3251
ciSignature* sig = x->callee()->signature();
3252
ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3253
int i = 0; // to iterate on the Instructions
3254
Value arg = x->recv();
3255
bool not_null = false;
3256
int bci = x->bci_of_invoke();
3257
Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3258
// The first parameter is the receiver so that's what we start
3259
// with if it exists. One exception is method handle call to
3260
// virtual method: the receiver is in the args list
3261
if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3262
i = 1;
3263
arg = x->profiled_arg_at(0);
3264
not_null = !x->arg_needs_null_check(0);
3265
}
3266
int k = 0; // to iterate on the profile data
3267
for (;;) {
3268
intptr_t profiled_k = parameters->type(k);
3269
ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3270
in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3271
profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3272
// If the profile is known statically set it once for all and do not emit any code
3273
if (exact != NULL) {
3274
md->set_parameter_type(k, exact);
3275
}
3276
k++;
3277
if (k >= parameters_type_data->number_of_parameters()) {
3278
#ifdef ASSERT
3279
int extra = 0;
3280
if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3281
x->nb_profiled_args() >= TypeProfileParmsLimit &&
3282
x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3283
extra += 1;
3284
}
3285
assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3286
#endif
3287
break;
3288
}
3289
arg = x->profiled_arg_at(i);
3290
not_null = !x->arg_needs_null_check(i);
3291
i++;
3292
}
3293
}
3294
}
3295
}
3296
}
3297
3298
void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3299
// Need recv in a temporary register so it interferes with the other temporaries
3300
LIR_Opr recv = LIR_OprFact::illegalOpr;
3301
LIR_Opr mdo = new_register(T_METADATA);
3302
// tmp is used to hold the counters on SPARC
3303
LIR_Opr tmp = new_pointer_register();
3304
3305
if (x->nb_profiled_args() > 0) {
3306
profile_arguments(x);
3307
}
3308
3309
// profile parameters on inlined method entry including receiver
3310
if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3311
profile_parameters_at_call(x);
3312
}
3313
3314
if (x->recv() != NULL) {
3315
LIRItem value(x->recv(), this);
3316
value.load_item();
3317
recv = new_register(T_OBJECT);
3318
__ move(value.result(), recv);
3319
}
3320
__ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3321
}
3322
3323
void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3324
int bci = x->bci_of_invoke();
3325
ciMethodData* md = x->method()->method_data_or_null();
3326
assert(md != NULL, "Sanity");
3327
ciProfileData* data = md->bci_to_data(bci);
3328
if (data != NULL) {
3329
assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3330
ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3331
LIR_Opr mdp = LIR_OprFact::illegalOpr;
3332
3333
bool ignored_will_link;
3334
ciSignature* signature_at_call = NULL;
3335
x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3336
3337
// The offset within the MDO of the entry to update may be too large
3338
// to be used in load/store instructions on some platforms. So have
3339
// profile_type() compute the address of the profile in a register.
3340
ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3341
ret->type(), x->ret(), mdp,
3342
!x->needs_null_check(),
3343
signature_at_call->return_type()->as_klass(),
3344
x->callee()->signature()->return_type()->as_klass());
3345
if (exact != NULL) {
3346
md->set_return_type(bci, exact);
3347
}
3348
}
3349
}
3350
3351
void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3352
// We can safely ignore accessors here, since c2 will inline them anyway,
3353
// accessors are also always mature.
3354
if (!x->inlinee()->is_accessor()) {
3355
CodeEmitInfo* info = state_for(x, x->state(), true);
3356
// Notify the runtime very infrequently only to take care of counter overflows
3357
int freq_log = Tier23InlineeNotifyFreqLog;
3358
double scale;
3359
if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3360
freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3361
}
3362
increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3363
}
3364
}
3365
3366
void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3367
if (compilation()->count_backedges()) {
3368
#if defined(X86) && !defined(_LP64)
3369
// BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3370
LIR_Opr left_copy = new_register(left->type());
3371
__ move(left, left_copy);
3372
__ cmp(cond, left_copy, right);
3373
#else
3374
__ cmp(cond, left, right);
3375
#endif
3376
LIR_Opr step = new_register(T_INT);
3377
LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3378
LIR_Opr zero = LIR_OprFact::intConst(0);
3379
__ cmove(cond,
3380
(left_bci < bci) ? plus_one : zero,
3381
(right_bci < bci) ? plus_one : zero,
3382
step, left->type());
3383
increment_backedge_counter(info, step, bci);
3384
}
3385
}
3386
3387
3388
void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3389
int freq_log = 0;
3390
int level = compilation()->env()->comp_level();
3391
if (level == CompLevel_limited_profile) {
3392
freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3393
} else if (level == CompLevel_full_profile) {
3394
freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3395
} else {
3396
ShouldNotReachHere();
3397
}
3398
// Increment the appropriate invocation/backedge counter and notify the runtime.
3399
double scale;
3400
if (_method->has_option_value(CompileCommand::CompileThresholdScaling, scale)) {
3401
freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3402
}
3403
increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3404
}
3405
3406
void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3407
ciMethod* method = info->scope()->method();
3408
MethodCounters* mc_adr = method->ensure_method_counters();
3409
if (mc_adr != NULL) {
3410
LIR_Opr mc = new_pointer_register();
3411
__ move(LIR_OprFact::intptrConst(mc_adr), mc);
3412
int offset = in_bytes(MethodCounters::nmethod_age_offset());
3413
LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3414
LIR_Opr result = new_register(T_INT);
3415
__ load(counter, result);
3416
__ sub(result, LIR_OprFact::intConst(1), result);
3417
__ store(result, counter);
3418
// DeoptimizeStub will reexecute from the current state in code info.
3419
CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3420
Deoptimization::Action_make_not_entrant);
3421
__ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3422
__ branch(lir_cond_lessEqual, deopt);
3423
}
3424
}
3425
3426
3427
void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3428
ciMethod *method, LIR_Opr step, int frequency,
3429
int bci, bool backedge, bool notify) {
3430
assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3431
int level = _compilation->env()->comp_level();
3432
assert(level > CompLevel_simple, "Shouldn't be here");
3433
3434
int offset = -1;
3435
LIR_Opr counter_holder = NULL;
3436
if (level == CompLevel_limited_profile) {
3437
MethodCounters* counters_adr = method->ensure_method_counters();
3438
if (counters_adr == NULL) {
3439
bailout("method counters allocation failed");
3440
return;
3441
}
3442
counter_holder = new_pointer_register();
3443
__ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3444
offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3445
MethodCounters::invocation_counter_offset());
3446
} else if (level == CompLevel_full_profile) {
3447
counter_holder = new_register(T_METADATA);
3448
offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3449
MethodData::invocation_counter_offset());
3450
ciMethodData* md = method->method_data_or_null();
3451
assert(md != NULL, "Sanity");
3452
__ metadata2reg(md->constant_encoding(), counter_holder);
3453
} else {
3454
ShouldNotReachHere();
3455
}
3456
LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3457
LIR_Opr result = new_register(T_INT);
3458
__ load(counter, result);
3459
__ add(result, step, result);
3460
__ store(result, counter);
3461
if (notify && (!backedge || UseOnStackReplacement)) {
3462
LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3463
// The bci for info can point to cmp for if's we want the if bci
3464
CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3465
int freq = frequency << InvocationCounter::count_shift;
3466
if (freq == 0) {
3467
if (!step->is_constant()) {
3468
__ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3469
__ branch(lir_cond_notEqual, overflow);
3470
} else {
3471
__ branch(lir_cond_always, overflow);
3472
}
3473
} else {
3474
LIR_Opr mask = load_immediate(freq, T_INT);
3475
if (!step->is_constant()) {
3476
// If step is 0, make sure the overflow check below always fails
3477
__ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3478
__ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3479
}
3480
__ logical_and(result, mask, result);
3481
__ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3482
__ branch(lir_cond_equal, overflow);
3483
}
3484
__ branch_destination(overflow->continuation());
3485
}
3486
}
3487
3488
void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3489
LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3490
BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3491
3492
if (x->pass_thread()) {
3493
signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT)); // thread
3494
args->append(getThreadPointer());
3495
}
3496
3497
for (int i = 0; i < x->number_of_arguments(); i++) {
3498
Value a = x->argument_at(i);
3499
LIRItem* item = new LIRItem(a, this);
3500
item->load_item();
3501
args->append(item->result());
3502
signature->append(as_BasicType(a->type()));
3503
}
3504
3505
LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3506
if (x->type() == voidType) {
3507
set_no_result(x);
3508
} else {
3509
__ move(result, rlock_result(x));
3510
}
3511
}
3512
3513
#ifdef ASSERT
3514
void LIRGenerator::do_Assert(Assert *x) {
3515
ValueTag tag = x->x()->type()->tag();
3516
If::Condition cond = x->cond();
3517
3518
LIRItem xitem(x->x(), this);
3519
LIRItem yitem(x->y(), this);
3520
LIRItem* xin = &xitem;
3521
LIRItem* yin = &yitem;
3522
3523
assert(tag == intTag, "Only integer assertions are valid!");
3524
3525
xin->load_item();
3526
yin->dont_load_item();
3527
3528
set_no_result(x);
3529
3530
LIR_Opr left = xin->result();
3531
LIR_Opr right = yin->result();
3532
3533
__ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3534
}
3535
#endif
3536
3537
void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3538
3539
3540
Instruction *a = x->x();
3541
Instruction *b = x->y();
3542
if (!a || StressRangeCheckElimination) {
3543
assert(!b || StressRangeCheckElimination, "B must also be null");
3544
3545
CodeEmitInfo *info = state_for(x, x->state());
3546
CodeStub* stub = new PredicateFailedStub(info);
3547
3548
__ jump(stub);
3549
} else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3550
int a_int = a->type()->as_IntConstant()->value();
3551
int b_int = b->type()->as_IntConstant()->value();
3552
3553
bool ok = false;
3554
3555
switch(x->cond()) {
3556
case Instruction::eql: ok = (a_int == b_int); break;
3557
case Instruction::neq: ok = (a_int != b_int); break;
3558
case Instruction::lss: ok = (a_int < b_int); break;
3559
case Instruction::leq: ok = (a_int <= b_int); break;
3560
case Instruction::gtr: ok = (a_int > b_int); break;
3561
case Instruction::geq: ok = (a_int >= b_int); break;
3562
case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3563
case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3564
default: ShouldNotReachHere();
3565
}
3566
3567
if (ok) {
3568
3569
CodeEmitInfo *info = state_for(x, x->state());
3570
CodeStub* stub = new PredicateFailedStub(info);
3571
3572
__ jump(stub);
3573
}
3574
} else {
3575
3576
ValueTag tag = x->x()->type()->tag();
3577
If::Condition cond = x->cond();
3578
LIRItem xitem(x->x(), this);
3579
LIRItem yitem(x->y(), this);
3580
LIRItem* xin = &xitem;
3581
LIRItem* yin = &yitem;
3582
3583
assert(tag == intTag, "Only integer deoptimizations are valid!");
3584
3585
xin->load_item();
3586
yin->dont_load_item();
3587
set_no_result(x);
3588
3589
LIR_Opr left = xin->result();
3590
LIR_Opr right = yin->result();
3591
3592
CodeEmitInfo *info = state_for(x, x->state());
3593
CodeStub* stub = new PredicateFailedStub(info);
3594
3595
__ cmp(lir_cond(cond), left, right);
3596
__ branch(lir_cond(cond), stub);
3597
}
3598
}
3599
3600
void LIRGenerator::do_blackhole(Intrinsic *x) {
3601
assert(!x->has_receiver(), "Should have been checked before: only static methods here");
3602
for (int c = 0; c < x->number_of_arguments(); c++) {
3603
// Load the argument
3604
LIRItem vitem(x->argument_at(c), this);
3605
vitem.load_item();
3606
// ...and leave it unused.
3607
}
3608
}
3609
3610
LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3611
LIRItemList args(1);
3612
LIRItem value(arg1, this);
3613
args.append(&value);
3614
BasicTypeList signature;
3615
signature.append(as_BasicType(arg1->type()));
3616
3617
return call_runtime(&signature, &args, entry, result_type, info);
3618
}
3619
3620
3621
LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3622
LIRItemList args(2);
3623
LIRItem value1(arg1, this);
3624
LIRItem value2(arg2, this);
3625
args.append(&value1);
3626
args.append(&value2);
3627
BasicTypeList signature;
3628
signature.append(as_BasicType(arg1->type()));
3629
signature.append(as_BasicType(arg2->type()));
3630
3631
return call_runtime(&signature, &args, entry, result_type, info);
3632
}
3633
3634
3635
LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3636
address entry, ValueType* result_type, CodeEmitInfo* info) {
3637
// get a result register
3638
LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3639
LIR_Opr result = LIR_OprFact::illegalOpr;
3640
if (result_type->tag() != voidTag) {
3641
result = new_register(result_type);
3642
phys_reg = result_register_for(result_type);
3643
}
3644
3645
// move the arguments into the correct location
3646
CallingConvention* cc = frame_map()->c_calling_convention(signature);
3647
assert(cc->length() == args->length(), "argument mismatch");
3648
for (int i = 0; i < args->length(); i++) {
3649
LIR_Opr arg = args->at(i);
3650
LIR_Opr loc = cc->at(i);
3651
if (loc->is_register()) {
3652
__ move(arg, loc);
3653
} else {
3654
LIR_Address* addr = loc->as_address_ptr();
3655
// if (!can_store_as_constant(arg)) {
3656
// LIR_Opr tmp = new_register(arg->type());
3657
// __ move(arg, tmp);
3658
// arg = tmp;
3659
// }
3660
if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3661
__ unaligned_move(arg, addr);
3662
} else {
3663
__ move(arg, addr);
3664
}
3665
}
3666
}
3667
3668
if (info) {
3669
__ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3670
} else {
3671
__ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3672
}
3673
if (result->is_valid()) {
3674
__ move(phys_reg, result);
3675
}
3676
return result;
3677
}
3678
3679
3680
LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3681
address entry, ValueType* result_type, CodeEmitInfo* info) {
3682
// get a result register
3683
LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3684
LIR_Opr result = LIR_OprFact::illegalOpr;
3685
if (result_type->tag() != voidTag) {
3686
result = new_register(result_type);
3687
phys_reg = result_register_for(result_type);
3688
}
3689
3690
// move the arguments into the correct location
3691
CallingConvention* cc = frame_map()->c_calling_convention(signature);
3692
3693
assert(cc->length() == args->length(), "argument mismatch");
3694
for (int i = 0; i < args->length(); i++) {
3695
LIRItem* arg = args->at(i);
3696
LIR_Opr loc = cc->at(i);
3697
if (loc->is_register()) {
3698
arg->load_item_force(loc);
3699
} else {
3700
LIR_Address* addr = loc->as_address_ptr();
3701
arg->load_for_store(addr->type());
3702
if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3703
__ unaligned_move(arg->result(), addr);
3704
} else {
3705
__ move(arg->result(), addr);
3706
}
3707
}
3708
}
3709
3710
if (info) {
3711
__ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3712
} else {
3713
__ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3714
}
3715
if (result->is_valid()) {
3716
__ move(phys_reg, result);
3717
}
3718
return result;
3719
}
3720
3721
void LIRGenerator::do_MemBar(MemBar* x) {
3722
LIR_Code code = x->code();
3723
switch(code) {
3724
case lir_membar_acquire : __ membar_acquire(); break;
3725
case lir_membar_release : __ membar_release(); break;
3726
case lir_membar : __ membar(); break;
3727
case lir_membar_loadload : __ membar_loadload(); break;
3728
case lir_membar_storestore: __ membar_storestore(); break;
3729
case lir_membar_loadstore : __ membar_loadstore(); break;
3730
case lir_membar_storeload : __ membar_storeload(); break;
3731
default : ShouldNotReachHere(); break;
3732
}
3733
}
3734
3735
LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3736
LIR_Opr value_fixed = rlock_byte(T_BYTE);
3737
if (TwoOperandLIRForm) {
3738
__ move(value, value_fixed);
3739
__ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3740
} else {
3741
__ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3742
}
3743
LIR_Opr klass = new_register(T_METADATA);
3744
__ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3745
null_check_info = NULL;
3746
LIR_Opr layout = new_register(T_INT);
3747
__ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3748
int diffbit = Klass::layout_helper_boolean_diffbit();
3749
__ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3750
__ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3751
__ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3752
value = value_fixed;
3753
return value;
3754
}
3755
3756
LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3757
if (x->check_boolean()) {
3758
value = mask_boolean(array, value, null_check_info);
3759
}
3760
return value;
3761
}
3762
3763