Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/jdk17u
Path: blob/master/src/hotspot/share/code/compiledMethod.cpp
64440 views
1
/*
2
* Copyright (c) 2015, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "code/compiledIC.hpp"
27
#include "code/compiledMethod.inline.hpp"
28
#include "code/exceptionHandlerTable.hpp"
29
#include "code/scopeDesc.hpp"
30
#include "code/codeCache.hpp"
31
#include "code/icBuffer.hpp"
32
#include "gc/shared/barrierSet.hpp"
33
#include "gc/shared/barrierSetNMethod.hpp"
34
#include "gc/shared/gcBehaviours.hpp"
35
#include "interpreter/bytecode.inline.hpp"
36
#include "logging/log.hpp"
37
#include "logging/logTag.hpp"
38
#include "memory/resourceArea.hpp"
39
#include "oops/compiledICHolder.inline.hpp"
40
#include "oops/klass.inline.hpp"
41
#include "oops/methodData.hpp"
42
#include "oops/method.inline.hpp"
43
#include "prims/methodHandles.hpp"
44
#include "runtime/atomic.hpp"
45
#include "runtime/deoptimization.hpp"
46
#include "runtime/handles.inline.hpp"
47
#include "runtime/mutexLocker.hpp"
48
#include "runtime/sharedRuntime.hpp"
49
50
CompiledMethod::CompiledMethod(Method* method, const char* name, CompilerType type, const CodeBlobLayout& layout,
51
int frame_complete_offset, int frame_size, ImmutableOopMapSet* oop_maps,
52
bool caller_must_gc_arguments)
53
: CodeBlob(name, type, layout, frame_complete_offset, frame_size, oop_maps, caller_must_gc_arguments),
54
_mark_for_deoptimization_status(not_marked),
55
_method(method),
56
_gc_data(NULL)
57
{
58
init_defaults();
59
}
60
61
CompiledMethod::CompiledMethod(Method* method, const char* name, CompilerType type, int size,
62
int header_size, CodeBuffer* cb, int frame_complete_offset, int frame_size,
63
OopMapSet* oop_maps, bool caller_must_gc_arguments)
64
: CodeBlob(name, type, CodeBlobLayout((address) this, size, header_size, cb), cb,
65
frame_complete_offset, frame_size, oop_maps, caller_must_gc_arguments),
66
_mark_for_deoptimization_status(not_marked),
67
_method(method),
68
_gc_data(NULL)
69
{
70
init_defaults();
71
}
72
73
void CompiledMethod::init_defaults() {
74
{ // avoid uninitialized fields, even for short time periods
75
_scopes_data_begin = NULL;
76
_deopt_handler_begin = NULL;
77
_deopt_mh_handler_begin = NULL;
78
_exception_cache = NULL;
79
}
80
_has_unsafe_access = 0;
81
_has_method_handle_invokes = 0;
82
_has_wide_vectors = 0;
83
}
84
85
bool CompiledMethod::is_method_handle_return(address return_pc) {
86
if (!has_method_handle_invokes()) return false;
87
PcDesc* pd = pc_desc_at(return_pc);
88
if (pd == NULL)
89
return false;
90
return pd->is_method_handle_invoke();
91
}
92
93
// Returns a string version of the method state.
94
const char* CompiledMethod::state() const {
95
int state = get_state();
96
switch (state) {
97
case not_installed:
98
return "not installed";
99
case in_use:
100
return "in use";
101
case not_used:
102
return "not_used";
103
case not_entrant:
104
return "not_entrant";
105
case zombie:
106
return "zombie";
107
case unloaded:
108
return "unloaded";
109
default:
110
fatal("unexpected method state: %d", state);
111
return NULL;
112
}
113
}
114
115
//-----------------------------------------------------------------------------
116
void CompiledMethod::mark_for_deoptimization(bool inc_recompile_counts) {
117
MutexLocker ml(CompiledMethod_lock->owned_by_self() ? NULL : CompiledMethod_lock,
118
Mutex::_no_safepoint_check_flag);
119
_mark_for_deoptimization_status = (inc_recompile_counts ? deoptimize : deoptimize_noupdate);
120
}
121
122
//-----------------------------------------------------------------------------
123
124
ExceptionCache* CompiledMethod::exception_cache_acquire() const {
125
return Atomic::load_acquire(&_exception_cache);
126
}
127
128
void CompiledMethod::add_exception_cache_entry(ExceptionCache* new_entry) {
129
assert(ExceptionCache_lock->owned_by_self(),"Must hold the ExceptionCache_lock");
130
assert(new_entry != NULL,"Must be non null");
131
assert(new_entry->next() == NULL, "Must be null");
132
133
for (;;) {
134
ExceptionCache *ec = exception_cache();
135
if (ec != NULL) {
136
Klass* ex_klass = ec->exception_type();
137
if (!ex_klass->is_loader_alive()) {
138
// We must guarantee that entries are not inserted with new next pointer
139
// edges to ExceptionCache entries with dead klasses, due to bad interactions
140
// with concurrent ExceptionCache cleanup. Therefore, the inserts roll
141
// the head pointer forward to the first live ExceptionCache, so that the new
142
// next pointers always point at live ExceptionCaches, that are not removed due
143
// to concurrent ExceptionCache cleanup.
144
ExceptionCache* next = ec->next();
145
if (Atomic::cmpxchg(&_exception_cache, ec, next) == ec) {
146
CodeCache::release_exception_cache(ec);
147
}
148
continue;
149
}
150
ec = exception_cache();
151
if (ec != NULL) {
152
new_entry->set_next(ec);
153
}
154
}
155
if (Atomic::cmpxchg(&_exception_cache, ec, new_entry) == ec) {
156
return;
157
}
158
}
159
}
160
161
void CompiledMethod::clean_exception_cache() {
162
// For each nmethod, only a single thread may call this cleanup function
163
// at the same time, whether called in STW cleanup or concurrent cleanup.
164
// Note that if the GC is processing exception cache cleaning in a concurrent phase,
165
// then a single writer may contend with cleaning up the head pointer to the
166
// first ExceptionCache node that has a Klass* that is alive. That is fine,
167
// as long as there is no concurrent cleanup of next pointers from concurrent writers.
168
// And the concurrent writers do not clean up next pointers, only the head.
169
// Also note that concurent readers will walk through Klass* pointers that are not
170
// alive. That does not cause ABA problems, because Klass* is deleted after
171
// a handshake with all threads, after all stale ExceptionCaches have been
172
// unlinked. That is also when the CodeCache::exception_cache_purge_list()
173
// is deleted, with all ExceptionCache entries that were cleaned concurrently.
174
// That similarly implies that CAS operations on ExceptionCache entries do not
175
// suffer from ABA problems as unlinking and deletion is separated by a global
176
// handshake operation.
177
ExceptionCache* prev = NULL;
178
ExceptionCache* curr = exception_cache_acquire();
179
180
while (curr != NULL) {
181
ExceptionCache* next = curr->next();
182
183
if (!curr->exception_type()->is_loader_alive()) {
184
if (prev == NULL) {
185
// Try to clean head; this is contended by concurrent inserts, that
186
// both lazily clean the head, and insert entries at the head. If
187
// the CAS fails, the operation is restarted.
188
if (Atomic::cmpxchg(&_exception_cache, curr, next) != curr) {
189
prev = NULL;
190
curr = exception_cache_acquire();
191
continue;
192
}
193
} else {
194
// It is impossible to during cleanup connect the next pointer to
195
// an ExceptionCache that has not been published before a safepoint
196
// prior to the cleanup. Therefore, release is not required.
197
prev->set_next(next);
198
}
199
// prev stays the same.
200
201
CodeCache::release_exception_cache(curr);
202
} else {
203
prev = curr;
204
}
205
206
curr = next;
207
}
208
}
209
210
// public method for accessing the exception cache
211
// These are the public access methods.
212
address CompiledMethod::handler_for_exception_and_pc(Handle exception, address pc) {
213
// We never grab a lock to read the exception cache, so we may
214
// have false negatives. This is okay, as it can only happen during
215
// the first few exception lookups for a given nmethod.
216
ExceptionCache* ec = exception_cache_acquire();
217
while (ec != NULL) {
218
address ret_val;
219
if ((ret_val = ec->match(exception,pc)) != NULL) {
220
return ret_val;
221
}
222
ec = ec->next();
223
}
224
return NULL;
225
}
226
227
void CompiledMethod::add_handler_for_exception_and_pc(Handle exception, address pc, address handler) {
228
// There are potential race conditions during exception cache updates, so we
229
// must own the ExceptionCache_lock before doing ANY modifications. Because
230
// we don't lock during reads, it is possible to have several threads attempt
231
// to update the cache with the same data. We need to check for already inserted
232
// copies of the current data before adding it.
233
234
MutexLocker ml(ExceptionCache_lock);
235
ExceptionCache* target_entry = exception_cache_entry_for_exception(exception);
236
237
if (target_entry == NULL || !target_entry->add_address_and_handler(pc,handler)) {
238
target_entry = new ExceptionCache(exception,pc,handler);
239
add_exception_cache_entry(target_entry);
240
}
241
}
242
243
// private method for handling exception cache
244
// These methods are private, and used to manipulate the exception cache
245
// directly.
246
ExceptionCache* CompiledMethod::exception_cache_entry_for_exception(Handle exception) {
247
ExceptionCache* ec = exception_cache_acquire();
248
while (ec != NULL) {
249
if (ec->match_exception_with_space(exception)) {
250
return ec;
251
}
252
ec = ec->next();
253
}
254
return NULL;
255
}
256
257
//-------------end of code for ExceptionCache--------------
258
259
bool CompiledMethod::is_at_poll_return(address pc) {
260
RelocIterator iter(this, pc, pc+1);
261
while (iter.next()) {
262
if (iter.type() == relocInfo::poll_return_type)
263
return true;
264
}
265
return false;
266
}
267
268
269
bool CompiledMethod::is_at_poll_or_poll_return(address pc) {
270
RelocIterator iter(this, pc, pc+1);
271
while (iter.next()) {
272
relocInfo::relocType t = iter.type();
273
if (t == relocInfo::poll_return_type || t == relocInfo::poll_type)
274
return true;
275
}
276
return false;
277
}
278
279
void CompiledMethod::verify_oop_relocations() {
280
// Ensure sure that the code matches the current oop values
281
RelocIterator iter(this, NULL, NULL);
282
while (iter.next()) {
283
if (iter.type() == relocInfo::oop_type) {
284
oop_Relocation* reloc = iter.oop_reloc();
285
if (!reloc->oop_is_immediate()) {
286
reloc->verify_oop_relocation();
287
}
288
}
289
}
290
}
291
292
293
ScopeDesc* CompiledMethod::scope_desc_at(address pc) {
294
PcDesc* pd = pc_desc_at(pc);
295
guarantee(pd != NULL, "scope must be present");
296
return new ScopeDesc(this, pd);
297
}
298
299
ScopeDesc* CompiledMethod::scope_desc_near(address pc) {
300
PcDesc* pd = pc_desc_near(pc);
301
guarantee(pd != NULL, "scope must be present");
302
return new ScopeDesc(this, pd);
303
}
304
305
address CompiledMethod::oops_reloc_begin() const {
306
// If the method is not entrant or zombie then a JMP is plastered over the
307
// first few bytes. If an oop in the old code was there, that oop
308
// should not get GC'd. Skip the first few bytes of oops on
309
// not-entrant methods.
310
if (frame_complete_offset() != CodeOffsets::frame_never_safe &&
311
code_begin() + frame_complete_offset() >
312
verified_entry_point() + NativeJump::instruction_size)
313
{
314
// If we have a frame_complete_offset after the native jump, then there
315
// is no point trying to look for oops before that. This is a requirement
316
// for being allowed to scan oops concurrently.
317
return code_begin() + frame_complete_offset();
318
}
319
320
// It is not safe to read oops concurrently using entry barriers, if their
321
// location depend on whether the nmethod is entrant or not.
322
assert(BarrierSet::barrier_set()->barrier_set_nmethod() == NULL, "Not safe oop scan");
323
324
address low_boundary = verified_entry_point();
325
if (!is_in_use() && is_nmethod()) {
326
low_boundary += NativeJump::instruction_size;
327
// %%% Note: On SPARC we patch only a 4-byte trap, not a full NativeJump.
328
// This means that the low_boundary is going to be a little too high.
329
// This shouldn't matter, since oops of non-entrant methods are never used.
330
// In fact, why are we bothering to look at oops in a non-entrant method??
331
}
332
return low_boundary;
333
}
334
335
int CompiledMethod::verify_icholder_relocations() {
336
ResourceMark rm;
337
int count = 0;
338
339
RelocIterator iter(this);
340
while(iter.next()) {
341
if (iter.type() == relocInfo::virtual_call_type) {
342
if (CompiledIC::is_icholder_call_site(iter.virtual_call_reloc(), this)) {
343
CompiledIC *ic = CompiledIC_at(&iter);
344
if (TraceCompiledIC) {
345
tty->print("noticed icholder " INTPTR_FORMAT " ", p2i(ic->cached_icholder()));
346
ic->print();
347
}
348
assert(ic->cached_icholder() != NULL, "must be non-NULL");
349
count++;
350
}
351
}
352
}
353
354
return count;
355
}
356
357
// Method that knows how to preserve outgoing arguments at call. This method must be
358
// called with a frame corresponding to a Java invoke
359
void CompiledMethod::preserve_callee_argument_oops(frame fr, const RegisterMap *reg_map, OopClosure* f) {
360
if (method() != NULL && !method()->is_native()) {
361
address pc = fr.pc();
362
SimpleScopeDesc ssd(this, pc);
363
if (ssd.is_optimized_linkToNative()) return; // call was replaced
364
Bytecode_invoke call(methodHandle(Thread::current(), ssd.method()), ssd.bci());
365
bool has_receiver = call.has_receiver();
366
bool has_appendix = call.has_appendix();
367
Symbol* signature = call.signature();
368
369
// The method attached by JIT-compilers should be used, if present.
370
// Bytecode can be inaccurate in such case.
371
Method* callee = attached_method_before_pc(pc);
372
if (callee != NULL) {
373
has_receiver = !(callee->access_flags().is_static());
374
has_appendix = false;
375
signature = callee->signature();
376
}
377
378
fr.oops_compiled_arguments_do(signature, has_receiver, has_appendix, reg_map, f);
379
}
380
}
381
382
Method* CompiledMethod::attached_method(address call_instr) {
383
assert(code_contains(call_instr), "not part of the nmethod");
384
RelocIterator iter(this, call_instr, call_instr + 1);
385
while (iter.next()) {
386
if (iter.addr() == call_instr) {
387
switch(iter.type()) {
388
case relocInfo::static_call_type: return iter.static_call_reloc()->method_value();
389
case relocInfo::opt_virtual_call_type: return iter.opt_virtual_call_reloc()->method_value();
390
case relocInfo::virtual_call_type: return iter.virtual_call_reloc()->method_value();
391
default: break;
392
}
393
}
394
}
395
return NULL; // not found
396
}
397
398
Method* CompiledMethod::attached_method_before_pc(address pc) {
399
if (NativeCall::is_call_before(pc)) {
400
NativeCall* ncall = nativeCall_before(pc);
401
return attached_method(ncall->instruction_address());
402
}
403
return NULL; // not a call
404
}
405
406
void CompiledMethod::clear_inline_caches() {
407
assert(SafepointSynchronize::is_at_safepoint(), "cleaning of IC's only allowed at safepoint");
408
if (is_zombie()) {
409
return;
410
}
411
412
RelocIterator iter(this);
413
while (iter.next()) {
414
iter.reloc()->clear_inline_cache();
415
}
416
}
417
418
// Clear IC callsites, releasing ICStubs of all compiled ICs
419
// as well as any associated CompiledICHolders.
420
void CompiledMethod::clear_ic_callsites() {
421
assert(CompiledICLocker::is_safe(this), "mt unsafe call");
422
ResourceMark rm;
423
RelocIterator iter(this);
424
while(iter.next()) {
425
if (iter.type() == relocInfo::virtual_call_type) {
426
CompiledIC* ic = CompiledIC_at(&iter);
427
ic->set_to_clean(false);
428
}
429
}
430
}
431
432
#ifdef ASSERT
433
// Check class_loader is alive for this bit of metadata.
434
class CheckClass : public MetadataClosure {
435
void do_metadata(Metadata* md) {
436
Klass* klass = NULL;
437
if (md->is_klass()) {
438
klass = ((Klass*)md);
439
} else if (md->is_method()) {
440
klass = ((Method*)md)->method_holder();
441
} else if (md->is_methodData()) {
442
klass = ((MethodData*)md)->method()->method_holder();
443
} else {
444
md->print();
445
ShouldNotReachHere();
446
}
447
assert(klass->is_loader_alive(), "must be alive");
448
}
449
};
450
#endif // ASSERT
451
452
453
bool CompiledMethod::clean_ic_if_metadata_is_dead(CompiledIC *ic) {
454
if (ic->is_clean()) {
455
return true;
456
}
457
if (ic->is_icholder_call()) {
458
// The only exception is compiledICHolder metdata which may
459
// yet be marked below. (We check this further below).
460
CompiledICHolder* cichk_metdata = ic->cached_icholder();
461
462
if (cichk_metdata->is_loader_alive()) {
463
return true;
464
}
465
} else {
466
Metadata* ic_metdata = ic->cached_metadata();
467
if (ic_metdata != NULL) {
468
if (ic_metdata->is_klass()) {
469
if (((Klass*)ic_metdata)->is_loader_alive()) {
470
return true;
471
}
472
} else if (ic_metdata->is_method()) {
473
Method* method = (Method*)ic_metdata;
474
assert(!method->is_old(), "old method should have been cleaned");
475
if (method->method_holder()->is_loader_alive()) {
476
return true;
477
}
478
} else {
479
ShouldNotReachHere();
480
}
481
} else {
482
// This inline cache is a megamorphic vtable call. Those ICs never hold
483
// any Metadata and should therefore never be cleaned by this function.
484
return true;
485
}
486
}
487
488
return ic->set_to_clean();
489
}
490
491
// Clean references to unloaded nmethods at addr from this one, which is not unloaded.
492
template <class CompiledICorStaticCall>
493
static bool clean_if_nmethod_is_unloaded(CompiledICorStaticCall *ic, address addr, CompiledMethod* from,
494
bool clean_all) {
495
// Ok, to lookup references to zombies here
496
CodeBlob *cb = CodeCache::find_blob_unsafe(addr);
497
CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
498
if (nm != NULL) {
499
// Clean inline caches pointing to both zombie and not_entrant methods
500
if (clean_all || !nm->is_in_use() || nm->is_unloading() || (nm->method()->code() != nm)) {
501
// Inline cache cleaning should only be initiated on CompiledMethods that have been
502
// observed to be is_alive(). However, with concurrent code cache unloading, it is
503
// possible that by now, the state has become !is_alive. This can happen in two ways:
504
// 1) It can be racingly flipped to unloaded if the nmethod // being cleaned (from the
505
// sweeper) is_unloading(). This is fine, because if that happens, then the inline
506
// caches have already been cleaned under the same CompiledICLocker that we now hold during
507
// inline cache cleaning, and we will simply walk the inline caches again, and likely not
508
// find much of interest to clean. However, this race prevents us from asserting that the
509
// nmethod is_alive(). The is_unloading() function is completely monotonic; once set due
510
// to an oop dying, it remains set forever until freed. Because of that, all unloaded
511
// nmethods are is_unloading(), but notably, an unloaded nmethod may also subsequently
512
// become zombie (when the sweeper converts it to zombie).
513
// 2) It can be racingly flipped to zombie if the nmethod being cleaned (by the concurrent
514
// GC) cleans a zombie nmethod that is concurrently made zombie by the sweeper. In this
515
// scenario, the sweeper will first transition the nmethod to zombie, and then when
516
// unregistering from the GC, it will wait until the GC is done. The GC will then clean
517
// the inline caches *with IC stubs*, even though no IC stubs are needed. This is fine,
518
// as long as the IC stubs are guaranteed to be released until the next safepoint, where
519
// IC finalization requires live IC stubs to not be associated with zombie nmethods.
520
// This is guaranteed, because the sweeper does not have a single safepoint check until
521
// after it completes the whole transition function; it will wake up after the GC is
522
// done with concurrent code cache cleaning (which blocks out safepoints using the
523
// suspendible threads set), and then call clear_ic_callsites, which will release the
524
// associated IC stubs, before a subsequent safepoint poll can be reached. This
525
// guarantees that the spuriously created IC stubs are released appropriately before
526
// IC finalization in a safepoint gets to run. Therefore, this race is fine. This is also
527
// valid in a scenario where an inline cache of a zombie nmethod gets a spurious IC stub,
528
// and then when cleaning another inline cache, fails to request an IC stub because we
529
// exhausted the IC stub buffer. In this scenario, the GC will request a safepoint after
530
// yielding the suspendible therad set, effectively unblocking safepoints. Before such
531
// a safepoint can be reached, the sweeper similarly has to wake up, clear the IC stubs,
532
// and reach the next safepoint poll, after the whole transition function has completed.
533
// Due to the various races that can cause an nmethod to first be is_alive() and then
534
// racingly become !is_alive(), it is unfortunately not possible to assert the nmethod
535
// is_alive(), !is_unloaded() or !is_zombie() here.
536
if (!ic->set_to_clean(!from->is_unloading())) {
537
return false;
538
}
539
assert(ic->is_clean(), "nmethod " PTR_FORMAT "not clean %s", p2i(from), from->method()->name_and_sig_as_C_string());
540
}
541
}
542
return true;
543
}
544
545
static bool clean_if_nmethod_is_unloaded(CompiledIC *ic, CompiledMethod* from,
546
bool clean_all) {
547
return clean_if_nmethod_is_unloaded(ic, ic->ic_destination(), from, clean_all);
548
}
549
550
static bool clean_if_nmethod_is_unloaded(CompiledStaticCall *csc, CompiledMethod* from,
551
bool clean_all) {
552
return clean_if_nmethod_is_unloaded(csc, csc->destination(), from, clean_all);
553
}
554
555
// Cleans caches in nmethods that point to either classes that are unloaded
556
// or nmethods that are unloaded.
557
//
558
// Can be called either in parallel by G1 currently or after all
559
// nmethods are unloaded. Return postponed=true in the parallel case for
560
// inline caches found that point to nmethods that are not yet visited during
561
// the do_unloading walk.
562
bool CompiledMethod::unload_nmethod_caches(bool unloading_occurred) {
563
ResourceMark rm;
564
565
// Exception cache only needs to be called if unloading occurred
566
if (unloading_occurred) {
567
clean_exception_cache();
568
}
569
570
if (!cleanup_inline_caches_impl(unloading_occurred, false)) {
571
return false;
572
}
573
574
#ifdef ASSERT
575
// Check that the metadata embedded in the nmethod is alive
576
CheckClass check_class;
577
metadata_do(&check_class);
578
#endif
579
return true;
580
}
581
582
void CompiledMethod::run_nmethod_entry_barrier() {
583
BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
584
if (bs_nm != NULL) {
585
// We want to keep an invariant that nmethods found through iterations of a Thread's
586
// nmethods found in safepoints have gone through an entry barrier and are not armed.
587
// By calling this nmethod entry barrier, it plays along and acts
588
// like any other nmethod found on the stack of a thread (fewer surprises).
589
nmethod* nm = as_nmethod_or_null();
590
if (nm != NULL) {
591
bool alive = bs_nm->nmethod_entry_barrier(nm);
592
assert(alive, "should be alive");
593
}
594
}
595
}
596
597
void CompiledMethod::cleanup_inline_caches(bool clean_all) {
598
for (;;) {
599
ICRefillVerifier ic_refill_verifier;
600
{ CompiledICLocker ic_locker(this);
601
if (cleanup_inline_caches_impl(false, clean_all)) {
602
return;
603
}
604
}
605
// Call this nmethod entry barrier from the sweeper.
606
run_nmethod_entry_barrier();
607
InlineCacheBuffer::refill_ic_stubs();
608
}
609
}
610
611
// Called to clean up after class unloading for live nmethods and from the sweeper
612
// for all methods.
613
bool CompiledMethod::cleanup_inline_caches_impl(bool unloading_occurred, bool clean_all) {
614
assert(CompiledICLocker::is_safe(this), "mt unsafe call");
615
ResourceMark rm;
616
617
// Find all calls in an nmethod and clear the ones that point to non-entrant,
618
// zombie and unloaded nmethods.
619
RelocIterator iter(this, oops_reloc_begin());
620
bool is_in_static_stub = false;
621
while(iter.next()) {
622
623
switch (iter.type()) {
624
625
case relocInfo::virtual_call_type:
626
if (unloading_occurred) {
627
// If class unloading occurred we first clear ICs where the cached metadata
628
// is referring to an unloaded klass or method.
629
if (!clean_ic_if_metadata_is_dead(CompiledIC_at(&iter))) {
630
return false;
631
}
632
}
633
634
if (!clean_if_nmethod_is_unloaded(CompiledIC_at(&iter), this, clean_all)) {
635
return false;
636
}
637
break;
638
639
case relocInfo::opt_virtual_call_type:
640
if (!clean_if_nmethod_is_unloaded(CompiledIC_at(&iter), this, clean_all)) {
641
return false;
642
}
643
break;
644
645
case relocInfo::static_call_type:
646
if (!clean_if_nmethod_is_unloaded(compiledStaticCall_at(iter.reloc()), this, clean_all)) {
647
return false;
648
}
649
break;
650
651
case relocInfo::static_stub_type: {
652
is_in_static_stub = true;
653
break;
654
}
655
656
case relocInfo::metadata_type: {
657
// Only the metadata relocations contained in static/opt virtual call stubs
658
// contains the Method* passed to c2i adapters. It is the only metadata
659
// relocation that needs to be walked, as it is the one metadata relocation
660
// that violates the invariant that all metadata relocations have an oop
661
// in the compiled method (due to deferred resolution and code patching).
662
663
// This causes dead metadata to remain in compiled methods that are not
664
// unloading. Unless these slippery metadata relocations of the static
665
// stubs are at least cleared, subsequent class redefinition operations
666
// will access potentially free memory, and JavaThread execution
667
// concurrent to class unloading may call c2i adapters with dead methods.
668
if (!is_in_static_stub) {
669
// The first metadata relocation after a static stub relocation is the
670
// metadata relocation of the static stub used to pass the Method* to
671
// c2i adapters.
672
continue;
673
}
674
is_in_static_stub = false;
675
if (is_unloading()) {
676
// If the nmethod itself is dying, then it may point at dead metadata.
677
// Nobody should follow that metadata; it is strictly unsafe.
678
continue;
679
}
680
metadata_Relocation* r = iter.metadata_reloc();
681
Metadata* md = r->metadata_value();
682
if (md != NULL && md->is_method()) {
683
Method* method = static_cast<Method*>(md);
684
if (!method->method_holder()->is_loader_alive()) {
685
Atomic::store(r->metadata_addr(), (Method*)NULL);
686
687
if (!r->metadata_is_immediate()) {
688
r->fix_metadata_relocation();
689
}
690
}
691
}
692
break;
693
}
694
695
default:
696
break;
697
}
698
}
699
700
return true;
701
}
702
703
address CompiledMethod::continuation_for_implicit_exception(address pc, bool for_div0_check) {
704
// Exception happened outside inline-cache check code => we are inside
705
// an active nmethod => use cpc to determine a return address
706
int exception_offset = pc - code_begin();
707
int cont_offset = ImplicitExceptionTable(this).continuation_offset( exception_offset );
708
#ifdef ASSERT
709
if (cont_offset == 0) {
710
Thread* thread = Thread::current();
711
ResourceMark rm(thread);
712
CodeBlob* cb = CodeCache::find_blob(pc);
713
assert(cb != NULL && cb == this, "");
714
ttyLocker ttyl;
715
tty->print_cr("implicit exception happened at " INTPTR_FORMAT, p2i(pc));
716
print();
717
method()->print_codes();
718
print_code();
719
print_pcs();
720
}
721
#endif
722
if (cont_offset == 0) {
723
// Let the normal error handling report the exception
724
return NULL;
725
}
726
if (cont_offset == exception_offset) {
727
#if INCLUDE_JVMCI
728
Deoptimization::DeoptReason deopt_reason = for_div0_check ? Deoptimization::Reason_div0_check : Deoptimization::Reason_null_check;
729
JavaThread *thread = JavaThread::current();
730
thread->set_jvmci_implicit_exception_pc(pc);
731
thread->set_pending_deoptimization(Deoptimization::make_trap_request(deopt_reason,
732
Deoptimization::Action_reinterpret));
733
return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
734
#else
735
ShouldNotReachHere();
736
#endif
737
}
738
return code_begin() + cont_offset;
739
}
740
741
class HasEvolDependency : public MetadataClosure {
742
bool _has_evol_dependency;
743
public:
744
HasEvolDependency() : _has_evol_dependency(false) {}
745
void do_metadata(Metadata* md) {
746
if (md->is_method()) {
747
Method* method = (Method*)md;
748
if (method->is_old()) {
749
_has_evol_dependency = true;
750
}
751
}
752
}
753
bool has_evol_dependency() const { return _has_evol_dependency; }
754
};
755
756
bool CompiledMethod::has_evol_metadata() {
757
// Check the metadata in relocIter and CompiledIC and also deoptimize
758
// any nmethod that has reference to old methods.
759
HasEvolDependency check_evol;
760
metadata_do(&check_evol);
761
if (check_evol.has_evol_dependency() && log_is_enabled(Debug, redefine, class, nmethod)) {
762
ResourceMark rm;
763
log_debug(redefine, class, nmethod)
764
("Found evol dependency of nmethod %s.%s(%s) compile_id=%d on in nmethod metadata",
765
_method->method_holder()->external_name(),
766
_method->name()->as_C_string(),
767
_method->signature()->as_C_string(),
768
compile_id());
769
}
770
return check_evol.has_evol_dependency();
771
}
772
773