Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/jdk17u
Path: blob/master/src/hotspot/share/gc/g1/g1CollectedHeap.cpp
66644 views
1
/*
2
* Copyright (c) 2001, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "classfile/classLoaderDataGraph.hpp"
27
#include "classfile/metadataOnStackMark.hpp"
28
#include "classfile/stringTable.hpp"
29
#include "code/codeCache.hpp"
30
#include "code/icBuffer.hpp"
31
#include "compiler/oopMap.hpp"
32
#include "gc/g1/g1Allocator.inline.hpp"
33
#include "gc/g1/g1Arguments.hpp"
34
#include "gc/g1/g1BarrierSet.hpp"
35
#include "gc/g1/g1CollectedHeap.inline.hpp"
36
#include "gc/g1/g1CollectionSet.hpp"
37
#include "gc/g1/g1CollectorState.hpp"
38
#include "gc/g1/g1ConcurrentRefine.hpp"
39
#include "gc/g1/g1ConcurrentRefineThread.hpp"
40
#include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
41
#include "gc/g1/g1DirtyCardQueue.hpp"
42
#include "gc/g1/g1EvacStats.inline.hpp"
43
#include "gc/g1/g1FullCollector.hpp"
44
#include "gc/g1/g1GCParPhaseTimesTracker.hpp"
45
#include "gc/g1/g1GCPhaseTimes.hpp"
46
#include "gc/g1/g1GCPauseType.hpp"
47
#include "gc/g1/g1HeapSizingPolicy.hpp"
48
#include "gc/g1/g1HeapTransition.hpp"
49
#include "gc/g1/g1HeapVerifier.hpp"
50
#include "gc/g1/g1HotCardCache.hpp"
51
#include "gc/g1/g1InitLogger.hpp"
52
#include "gc/g1/g1MemoryPool.hpp"
53
#include "gc/g1/g1OopClosures.inline.hpp"
54
#include "gc/g1/g1ParallelCleaning.hpp"
55
#include "gc/g1/g1ParScanThreadState.inline.hpp"
56
#include "gc/g1/g1PeriodicGCTask.hpp"
57
#include "gc/g1/g1Policy.hpp"
58
#include "gc/g1/g1RedirtyCardsQueue.hpp"
59
#include "gc/g1/g1RegionToSpaceMapper.hpp"
60
#include "gc/g1/g1RemSet.hpp"
61
#include "gc/g1/g1RootClosures.hpp"
62
#include "gc/g1/g1RootProcessor.hpp"
63
#include "gc/g1/g1SATBMarkQueueSet.hpp"
64
#include "gc/g1/g1ThreadLocalData.hpp"
65
#include "gc/g1/g1Trace.hpp"
66
#include "gc/g1/g1ServiceThread.hpp"
67
#include "gc/g1/g1UncommitRegionTask.hpp"
68
#include "gc/g1/g1VMOperations.hpp"
69
#include "gc/g1/g1YoungGCPostEvacuateTasks.hpp"
70
#include "gc/g1/heapRegion.inline.hpp"
71
#include "gc/g1/heapRegionRemSet.hpp"
72
#include "gc/g1/heapRegionSet.inline.hpp"
73
#include "gc/shared/concurrentGCBreakpoints.hpp"
74
#include "gc/shared/gcBehaviours.hpp"
75
#include "gc/shared/gcHeapSummary.hpp"
76
#include "gc/shared/gcId.hpp"
77
#include "gc/shared/gcLocker.hpp"
78
#include "gc/shared/gcTimer.hpp"
79
#include "gc/shared/gcTraceTime.inline.hpp"
80
#include "gc/shared/generationSpec.hpp"
81
#include "gc/shared/isGCActiveMark.hpp"
82
#include "gc/shared/locationPrinter.inline.hpp"
83
#include "gc/shared/oopStorageParState.hpp"
84
#include "gc/shared/preservedMarks.inline.hpp"
85
#include "gc/shared/suspendibleThreadSet.hpp"
86
#include "gc/shared/referenceProcessor.inline.hpp"
87
#include "gc/shared/taskTerminator.hpp"
88
#include "gc/shared/taskqueue.inline.hpp"
89
#include "gc/shared/tlab_globals.hpp"
90
#include "gc/shared/weakProcessor.inline.hpp"
91
#include "gc/shared/workerPolicy.hpp"
92
#include "logging/log.hpp"
93
#include "memory/allocation.hpp"
94
#include "memory/iterator.hpp"
95
#include "memory/heapInspection.hpp"
96
#include "memory/metaspaceUtils.hpp"
97
#include "memory/resourceArea.hpp"
98
#include "memory/universe.hpp"
99
#include "oops/access.inline.hpp"
100
#include "oops/compressedOops.inline.hpp"
101
#include "oops/oop.inline.hpp"
102
#include "runtime/atomic.hpp"
103
#include "runtime/handles.inline.hpp"
104
#include "runtime/init.hpp"
105
#include "runtime/java.hpp"
106
#include "runtime/orderAccess.hpp"
107
#include "runtime/threadSMR.hpp"
108
#include "runtime/vmThread.hpp"
109
#include "utilities/align.hpp"
110
#include "utilities/autoRestore.hpp"
111
#include "utilities/bitMap.inline.hpp"
112
#include "utilities/globalDefinitions.hpp"
113
#include "utilities/stack.inline.hpp"
114
115
size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
116
117
// INVARIANTS/NOTES
118
//
119
// All allocation activity covered by the G1CollectedHeap interface is
120
// serialized by acquiring the HeapLock. This happens in mem_allocate
121
// and allocate_new_tlab, which are the "entry" points to the
122
// allocation code from the rest of the JVM. (Note that this does not
123
// apply to TLAB allocation, which is not part of this interface: it
124
// is done by clients of this interface.)
125
126
void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
127
HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
128
}
129
130
void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
131
// The from card cache is not the memory that is actually committed. So we cannot
132
// take advantage of the zero_filled parameter.
133
reset_from_card_cache(start_idx, num_regions);
134
}
135
136
Tickspan G1CollectedHeap::run_task_timed(AbstractGangTask* task) {
137
Ticks start = Ticks::now();
138
workers()->run_task(task);
139
return Ticks::now() - start;
140
}
141
142
void G1CollectedHeap::run_batch_task(G1BatchedGangTask* cl) {
143
uint num_workers = MAX2(1u, MIN2(cl->num_workers_estimate(), workers()->active_workers()));
144
cl->set_max_workers(num_workers);
145
workers()->run_task(cl, num_workers);
146
}
147
148
HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
149
MemRegion mr) {
150
return new HeapRegion(hrs_index, bot(), mr);
151
}
152
153
// Private methods.
154
155
HeapRegion* G1CollectedHeap::new_region(size_t word_size,
156
HeapRegionType type,
157
bool do_expand,
158
uint node_index) {
159
assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
160
"the only time we use this to allocate a humongous region is "
161
"when we are allocating a single humongous region");
162
163
HeapRegion* res = _hrm.allocate_free_region(type, node_index);
164
165
if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
166
// Currently, only attempts to allocate GC alloc regions set
167
// do_expand to true. So, we should only reach here during a
168
// safepoint. If this assumption changes we might have to
169
// reconsider the use of _expand_heap_after_alloc_failure.
170
assert(SafepointSynchronize::is_at_safepoint(), "invariant");
171
172
log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
173
word_size * HeapWordSize);
174
175
assert(word_size * HeapWordSize < HeapRegion::GrainBytes,
176
"This kind of expansion should never be more than one region. Size: " SIZE_FORMAT,
177
word_size * HeapWordSize);
178
if (expand_single_region(node_index)) {
179
// Given that expand_single_region() succeeded in expanding the heap, and we
180
// always expand the heap by an amount aligned to the heap
181
// region size, the free list should in theory not be empty.
182
// In either case allocate_free_region() will check for NULL.
183
res = _hrm.allocate_free_region(type, node_index);
184
} else {
185
_expand_heap_after_alloc_failure = false;
186
}
187
}
188
return res;
189
}
190
191
HeapWord*
192
G1CollectedHeap::humongous_obj_allocate_initialize_regions(HeapRegion* first_hr,
193
uint num_regions,
194
size_t word_size) {
195
assert(first_hr != NULL, "pre-condition");
196
assert(is_humongous(word_size), "word_size should be humongous");
197
assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
198
199
// Index of last region in the series.
200
uint first = first_hr->hrm_index();
201
uint last = first + num_regions - 1;
202
203
// We need to initialize the region(s) we just discovered. This is
204
// a bit tricky given that it can happen concurrently with
205
// refinement threads refining cards on these regions and
206
// potentially wanting to refine the BOT as they are scanning
207
// those cards (this can happen shortly after a cleanup; see CR
208
// 6991377). So we have to set up the region(s) carefully and in
209
// a specific order.
210
211
// The word size sum of all the regions we will allocate.
212
size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
213
assert(word_size <= word_size_sum, "sanity");
214
215
// The passed in hr will be the "starts humongous" region. The header
216
// of the new object will be placed at the bottom of this region.
217
HeapWord* new_obj = first_hr->bottom();
218
// This will be the new top of the new object.
219
HeapWord* obj_top = new_obj + word_size;
220
221
// First, we need to zero the header of the space that we will be
222
// allocating. When we update top further down, some refinement
223
// threads might try to scan the region. By zeroing the header we
224
// ensure that any thread that will try to scan the region will
225
// come across the zero klass word and bail out.
226
//
227
// NOTE: It would not have been correct to have used
228
// CollectedHeap::fill_with_object() and make the space look like
229
// an int array. The thread that is doing the allocation will
230
// later update the object header to a potentially different array
231
// type and, for a very short period of time, the klass and length
232
// fields will be inconsistent. This could cause a refinement
233
// thread to calculate the object size incorrectly.
234
Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
235
236
// Next, pad out the unused tail of the last region with filler
237
// objects, for improved usage accounting.
238
// How many words we use for filler objects.
239
size_t word_fill_size = word_size_sum - word_size;
240
241
// How many words memory we "waste" which cannot hold a filler object.
242
size_t words_not_fillable = 0;
243
244
if (word_fill_size >= min_fill_size()) {
245
fill_with_objects(obj_top, word_fill_size);
246
} else if (word_fill_size > 0) {
247
// We have space to fill, but we cannot fit an object there.
248
words_not_fillable = word_fill_size;
249
word_fill_size = 0;
250
}
251
252
// We will set up the first region as "starts humongous". This
253
// will also update the BOT covering all the regions to reflect
254
// that there is a single object that starts at the bottom of the
255
// first region.
256
first_hr->set_starts_humongous(obj_top, word_fill_size);
257
_policy->remset_tracker()->update_at_allocate(first_hr);
258
// Then, if there are any, we will set up the "continues
259
// humongous" regions.
260
HeapRegion* hr = NULL;
261
for (uint i = first + 1; i <= last; ++i) {
262
hr = region_at(i);
263
hr->set_continues_humongous(first_hr);
264
_policy->remset_tracker()->update_at_allocate(hr);
265
}
266
267
// Up to this point no concurrent thread would have been able to
268
// do any scanning on any region in this series. All the top
269
// fields still point to bottom, so the intersection between
270
// [bottom,top] and [card_start,card_end] will be empty. Before we
271
// update the top fields, we'll do a storestore to make sure that
272
// no thread sees the update to top before the zeroing of the
273
// object header and the BOT initialization.
274
OrderAccess::storestore();
275
276
// Now, we will update the top fields of the "continues humongous"
277
// regions except the last one.
278
for (uint i = first; i < last; ++i) {
279
hr = region_at(i);
280
hr->set_top(hr->end());
281
}
282
283
hr = region_at(last);
284
// If we cannot fit a filler object, we must set top to the end
285
// of the humongous object, otherwise we cannot iterate the heap
286
// and the BOT will not be complete.
287
hr->set_top(hr->end() - words_not_fillable);
288
289
assert(hr->bottom() < obj_top && obj_top <= hr->end(),
290
"obj_top should be in last region");
291
292
_verifier->check_bitmaps("Humongous Region Allocation", first_hr);
293
294
assert(words_not_fillable == 0 ||
295
first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
296
"Miscalculation in humongous allocation");
297
298
increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
299
300
for (uint i = first; i <= last; ++i) {
301
hr = region_at(i);
302
_humongous_set.add(hr);
303
_hr_printer.alloc(hr);
304
}
305
306
return new_obj;
307
}
308
309
size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
310
assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
311
return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
312
}
313
314
// If could fit into free regions w/o expansion, try.
315
// Otherwise, if can expand, do so.
316
// Otherwise, if using ex regions might help, try with ex given back.
317
HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
318
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
319
320
_verifier->verify_region_sets_optional();
321
322
uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
323
324
// Policy: First try to allocate a humongous object in the free list.
325
HeapRegion* humongous_start = _hrm.allocate_humongous(obj_regions);
326
if (humongous_start == NULL) {
327
// Policy: We could not find enough regions for the humongous object in the
328
// free list. Look through the heap to find a mix of free and uncommitted regions.
329
// If so, expand the heap and allocate the humongous object.
330
humongous_start = _hrm.expand_and_allocate_humongous(obj_regions);
331
if (humongous_start != NULL) {
332
// We managed to find a region by expanding the heap.
333
log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: " SIZE_FORMAT "B",
334
word_size * HeapWordSize);
335
policy()->record_new_heap_size(num_regions());
336
} else {
337
// Policy: Potentially trigger a defragmentation GC.
338
}
339
}
340
341
HeapWord* result = NULL;
342
if (humongous_start != NULL) {
343
result = humongous_obj_allocate_initialize_regions(humongous_start, obj_regions, word_size);
344
assert(result != NULL, "it should always return a valid result");
345
346
// A successful humongous object allocation changes the used space
347
// information of the old generation so we need to recalculate the
348
// sizes and update the jstat counters here.
349
g1mm()->update_sizes();
350
}
351
352
_verifier->verify_region_sets_optional();
353
354
return result;
355
}
356
357
HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
358
size_t requested_size,
359
size_t* actual_size) {
360
assert_heap_not_locked_and_not_at_safepoint();
361
assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
362
363
return attempt_allocation(min_size, requested_size, actual_size);
364
}
365
366
HeapWord*
367
G1CollectedHeap::mem_allocate(size_t word_size,
368
bool* gc_overhead_limit_was_exceeded) {
369
assert_heap_not_locked_and_not_at_safepoint();
370
371
if (is_humongous(word_size)) {
372
return attempt_allocation_humongous(word_size);
373
}
374
size_t dummy = 0;
375
return attempt_allocation(word_size, word_size, &dummy);
376
}
377
378
HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
379
ResourceMark rm; // For retrieving the thread names in log messages.
380
381
// Make sure you read the note in attempt_allocation_humongous().
382
383
assert_heap_not_locked_and_not_at_safepoint();
384
assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
385
"be called for humongous allocation requests");
386
387
// We should only get here after the first-level allocation attempt
388
// (attempt_allocation()) failed to allocate.
389
390
// We will loop until a) we manage to successfully perform the
391
// allocation or b) we successfully schedule a collection which
392
// fails to perform the allocation. b) is the only case when we'll
393
// return NULL.
394
HeapWord* result = NULL;
395
for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
396
bool should_try_gc;
397
bool preventive_collection_required = false;
398
uint gc_count_before;
399
400
{
401
MutexLocker x(Heap_lock);
402
403
// Now that we have the lock, we first retry the allocation in case another
404
// thread changed the region while we were waiting to acquire the lock.
405
size_t actual_size;
406
result = _allocator->attempt_allocation(word_size, word_size, &actual_size);
407
if (result != NULL) {
408
return result;
409
}
410
411
preventive_collection_required = policy()->preventive_collection_required(1);
412
if (!preventive_collection_required) {
413
// We've already attempted a lock-free allocation above, so we don't want to
414
// do it again. Let's jump straight to replacing the active region.
415
result = _allocator->attempt_allocation_using_new_region(word_size);
416
if (result != NULL) {
417
return result;
418
}
419
420
// If the GCLocker is active and we are bound for a GC, try expanding young gen.
421
// This is different to when only GCLocker::needs_gc() is set: try to avoid
422
// waiting because the GCLocker is active to not wait too long.
423
if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
424
// No need for an ergo message here, can_expand_young_list() does this when
425
// it returns true.
426
result = _allocator->attempt_allocation_force(word_size);
427
if (result != NULL) {
428
return result;
429
}
430
}
431
}
432
433
// Only try a GC if the GCLocker does not signal the need for a GC. Wait until
434
// the GCLocker initiated GC has been performed and then retry. This includes
435
// the case when the GC Locker is not active but has not been performed.
436
should_try_gc = !GCLocker::needs_gc();
437
// Read the GC count while still holding the Heap_lock.
438
gc_count_before = total_collections();
439
}
440
441
if (should_try_gc) {
442
GCCause::Cause gc_cause = preventive_collection_required ? GCCause::_g1_preventive_collection
443
: GCCause::_g1_inc_collection_pause;
444
bool succeeded;
445
result = do_collection_pause(word_size, gc_count_before, &succeeded, gc_cause);
446
if (result != NULL) {
447
assert(succeeded, "only way to get back a non-NULL result");
448
log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
449
Thread::current()->name(), p2i(result));
450
return result;
451
}
452
453
if (succeeded) {
454
// We successfully scheduled a collection which failed to allocate. No
455
// point in trying to allocate further. We'll just return NULL.
456
log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
457
SIZE_FORMAT " words", Thread::current()->name(), word_size);
458
return NULL;
459
}
460
log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
461
Thread::current()->name(), word_size);
462
} else {
463
// Failed to schedule a collection.
464
if (gclocker_retry_count > GCLockerRetryAllocationCount) {
465
log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
466
SIZE_FORMAT " words", Thread::current()->name(), word_size);
467
return NULL;
468
}
469
log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
470
// The GCLocker is either active or the GCLocker initiated
471
// GC has not yet been performed. Stall until it is and
472
// then retry the allocation.
473
GCLocker::stall_until_clear();
474
gclocker_retry_count += 1;
475
}
476
477
// We can reach here if we were unsuccessful in scheduling a
478
// collection (because another thread beat us to it) or if we were
479
// stalled due to the GC locker. In either can we should retry the
480
// allocation attempt in case another thread successfully
481
// performed a collection and reclaimed enough space. We do the
482
// first attempt (without holding the Heap_lock) here and the
483
// follow-on attempt will be at the start of the next loop
484
// iteration (after taking the Heap_lock).
485
size_t dummy = 0;
486
result = _allocator->attempt_allocation(word_size, word_size, &dummy);
487
if (result != NULL) {
488
return result;
489
}
490
491
// Give a warning if we seem to be looping forever.
492
if ((QueuedAllocationWarningCount > 0) &&
493
(try_count % QueuedAllocationWarningCount == 0)) {
494
log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
495
Thread::current()->name(), try_count, word_size);
496
}
497
}
498
499
ShouldNotReachHere();
500
return NULL;
501
}
502
503
void G1CollectedHeap::begin_archive_alloc_range(bool open) {
504
assert_at_safepoint_on_vm_thread();
505
if (_archive_allocator == NULL) {
506
_archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
507
}
508
}
509
510
bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
511
// Allocations in archive regions cannot be of a size that would be considered
512
// humongous even for a minimum-sized region, because G1 region sizes/boundaries
513
// may be different at archive-restore time.
514
return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
515
}
516
517
HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
518
assert_at_safepoint_on_vm_thread();
519
assert(_archive_allocator != NULL, "_archive_allocator not initialized");
520
if (is_archive_alloc_too_large(word_size)) {
521
return NULL;
522
}
523
return _archive_allocator->archive_mem_allocate(word_size);
524
}
525
526
void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
527
size_t end_alignment_in_bytes) {
528
assert_at_safepoint_on_vm_thread();
529
assert(_archive_allocator != NULL, "_archive_allocator not initialized");
530
531
// Call complete_archive to do the real work, filling in the MemRegion
532
// array with the archive regions.
533
_archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
534
delete _archive_allocator;
535
_archive_allocator = NULL;
536
}
537
538
bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
539
assert(ranges != NULL, "MemRegion array NULL");
540
assert(count != 0, "No MemRegions provided");
541
MemRegion reserved = _hrm.reserved();
542
for (size_t i = 0; i < count; i++) {
543
if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
544
return false;
545
}
546
}
547
return true;
548
}
549
550
bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
551
size_t count,
552
bool open) {
553
assert(!is_init_completed(), "Expect to be called at JVM init time");
554
assert(ranges != NULL, "MemRegion array NULL");
555
assert(count != 0, "No MemRegions provided");
556
MutexLocker x(Heap_lock);
557
558
MemRegion reserved = _hrm.reserved();
559
HeapWord* prev_last_addr = NULL;
560
HeapRegion* prev_last_region = NULL;
561
562
// Temporarily disable pretouching of heap pages. This interface is used
563
// when mmap'ing archived heap data in, so pre-touching is wasted.
564
FlagSetting fs(AlwaysPreTouch, false);
565
566
// For each specified MemRegion range, allocate the corresponding G1
567
// regions and mark them as archive regions. We expect the ranges
568
// in ascending starting address order, without overlap.
569
for (size_t i = 0; i < count; i++) {
570
MemRegion curr_range = ranges[i];
571
HeapWord* start_address = curr_range.start();
572
size_t word_size = curr_range.word_size();
573
HeapWord* last_address = curr_range.last();
574
size_t commits = 0;
575
576
guarantee(reserved.contains(start_address) && reserved.contains(last_address),
577
"MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
578
p2i(start_address), p2i(last_address));
579
guarantee(start_address > prev_last_addr,
580
"Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
581
p2i(start_address), p2i(prev_last_addr));
582
prev_last_addr = last_address;
583
584
// Check for ranges that start in the same G1 region in which the previous
585
// range ended, and adjust the start address so we don't try to allocate
586
// the same region again. If the current range is entirely within that
587
// region, skip it, just adjusting the recorded top.
588
HeapRegion* start_region = _hrm.addr_to_region(start_address);
589
if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
590
start_address = start_region->end();
591
if (start_address > last_address) {
592
increase_used(word_size * HeapWordSize);
593
start_region->set_top(last_address + 1);
594
continue;
595
}
596
start_region->set_top(start_address);
597
curr_range = MemRegion(start_address, last_address + 1);
598
start_region = _hrm.addr_to_region(start_address);
599
}
600
601
// Perform the actual region allocation, exiting if it fails.
602
// Then note how much new space we have allocated.
603
if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
604
return false;
605
}
606
increase_used(word_size * HeapWordSize);
607
if (commits != 0) {
608
log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
609
HeapRegion::GrainWords * HeapWordSize * commits);
610
611
}
612
613
// Mark each G1 region touched by the range as archive, add it to
614
// the old set, and set top.
615
HeapRegion* curr_region = _hrm.addr_to_region(start_address);
616
HeapRegion* last_region = _hrm.addr_to_region(last_address);
617
prev_last_region = last_region;
618
619
while (curr_region != NULL) {
620
assert(curr_region->is_empty() && !curr_region->is_pinned(),
621
"Region already in use (index %u)", curr_region->hrm_index());
622
if (open) {
623
curr_region->set_open_archive();
624
} else {
625
curr_region->set_closed_archive();
626
}
627
_hr_printer.alloc(curr_region);
628
_archive_set.add(curr_region);
629
HeapWord* top;
630
HeapRegion* next_region;
631
if (curr_region != last_region) {
632
top = curr_region->end();
633
next_region = _hrm.next_region_in_heap(curr_region);
634
} else {
635
top = last_address + 1;
636
next_region = NULL;
637
}
638
curr_region->set_top(top);
639
curr_region = next_region;
640
}
641
}
642
return true;
643
}
644
645
void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
646
assert(!is_init_completed(), "Expect to be called at JVM init time");
647
assert(ranges != NULL, "MemRegion array NULL");
648
assert(count != 0, "No MemRegions provided");
649
MemRegion reserved = _hrm.reserved();
650
HeapWord *prev_last_addr = NULL;
651
HeapRegion* prev_last_region = NULL;
652
653
// For each MemRegion, create filler objects, if needed, in the G1 regions
654
// that contain the address range. The address range actually within the
655
// MemRegion will not be modified. That is assumed to have been initialized
656
// elsewhere, probably via an mmap of archived heap data.
657
MutexLocker x(Heap_lock);
658
for (size_t i = 0; i < count; i++) {
659
HeapWord* start_address = ranges[i].start();
660
HeapWord* last_address = ranges[i].last();
661
662
assert(reserved.contains(start_address) && reserved.contains(last_address),
663
"MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
664
p2i(start_address), p2i(last_address));
665
assert(start_address > prev_last_addr,
666
"Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
667
p2i(start_address), p2i(prev_last_addr));
668
669
HeapRegion* start_region = _hrm.addr_to_region(start_address);
670
HeapRegion* last_region = _hrm.addr_to_region(last_address);
671
HeapWord* bottom_address = start_region->bottom();
672
673
// Check for a range beginning in the same region in which the
674
// previous one ended.
675
if (start_region == prev_last_region) {
676
bottom_address = prev_last_addr + 1;
677
}
678
679
// Verify that the regions were all marked as archive regions by
680
// alloc_archive_regions.
681
HeapRegion* curr_region = start_region;
682
while (curr_region != NULL) {
683
guarantee(curr_region->is_archive(),
684
"Expected archive region at index %u", curr_region->hrm_index());
685
if (curr_region != last_region) {
686
curr_region = _hrm.next_region_in_heap(curr_region);
687
} else {
688
curr_region = NULL;
689
}
690
}
691
692
prev_last_addr = last_address;
693
prev_last_region = last_region;
694
695
// Fill the memory below the allocated range with dummy object(s),
696
// if the region bottom does not match the range start, or if the previous
697
// range ended within the same G1 region, and there is a gap.
698
assert(start_address >= bottom_address, "bottom address should not be greater than start address");
699
if (start_address > bottom_address) {
700
size_t fill_size = pointer_delta(start_address, bottom_address);
701
G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
702
increase_used(fill_size * HeapWordSize);
703
}
704
}
705
}
706
707
inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
708
size_t desired_word_size,
709
size_t* actual_word_size) {
710
assert_heap_not_locked_and_not_at_safepoint();
711
assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
712
"be called for humongous allocation requests");
713
714
HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
715
716
if (result == NULL) {
717
*actual_word_size = desired_word_size;
718
result = attempt_allocation_slow(desired_word_size);
719
}
720
721
assert_heap_not_locked();
722
if (result != NULL) {
723
assert(*actual_word_size != 0, "Actual size must have been set here");
724
dirty_young_block(result, *actual_word_size);
725
} else {
726
*actual_word_size = 0;
727
}
728
729
return result;
730
}
731
732
void G1CollectedHeap::populate_archive_regions_bot_part(MemRegion* ranges, size_t count) {
733
assert(!is_init_completed(), "Expect to be called at JVM init time");
734
assert(ranges != NULL, "MemRegion array NULL");
735
assert(count != 0, "No MemRegions provided");
736
737
HeapWord* st = ranges[0].start();
738
HeapWord* last = ranges[count-1].last();
739
HeapRegion* hr_st = _hrm.addr_to_region(st);
740
HeapRegion* hr_last = _hrm.addr_to_region(last);
741
742
HeapRegion* hr_curr = hr_st;
743
while (hr_curr != NULL) {
744
hr_curr->update_bot();
745
if (hr_curr != hr_last) {
746
hr_curr = _hrm.next_region_in_heap(hr_curr);
747
} else {
748
hr_curr = NULL;
749
}
750
}
751
}
752
753
void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
754
assert(!is_init_completed(), "Expect to be called at JVM init time");
755
assert(ranges != NULL, "MemRegion array NULL");
756
assert(count != 0, "No MemRegions provided");
757
MemRegion reserved = _hrm.reserved();
758
HeapWord* prev_last_addr = NULL;
759
HeapRegion* prev_last_region = NULL;
760
size_t size_used = 0;
761
uint shrink_count = 0;
762
763
// For each Memregion, free the G1 regions that constitute it, and
764
// notify mark-sweep that the range is no longer to be considered 'archive.'
765
MutexLocker x(Heap_lock);
766
for (size_t i = 0; i < count; i++) {
767
HeapWord* start_address = ranges[i].start();
768
HeapWord* last_address = ranges[i].last();
769
770
assert(reserved.contains(start_address) && reserved.contains(last_address),
771
"MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
772
p2i(start_address), p2i(last_address));
773
assert(start_address > prev_last_addr,
774
"Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
775
p2i(start_address), p2i(prev_last_addr));
776
size_used += ranges[i].byte_size();
777
prev_last_addr = last_address;
778
779
HeapRegion* start_region = _hrm.addr_to_region(start_address);
780
HeapRegion* last_region = _hrm.addr_to_region(last_address);
781
782
// Check for ranges that start in the same G1 region in which the previous
783
// range ended, and adjust the start address so we don't try to free
784
// the same region again. If the current range is entirely within that
785
// region, skip it.
786
if (start_region == prev_last_region) {
787
start_address = start_region->end();
788
if (start_address > last_address) {
789
continue;
790
}
791
start_region = _hrm.addr_to_region(start_address);
792
}
793
prev_last_region = last_region;
794
795
// After verifying that each region was marked as an archive region by
796
// alloc_archive_regions, set it free and empty and uncommit it.
797
HeapRegion* curr_region = start_region;
798
while (curr_region != NULL) {
799
guarantee(curr_region->is_archive(),
800
"Expected archive region at index %u", curr_region->hrm_index());
801
uint curr_index = curr_region->hrm_index();
802
_archive_set.remove(curr_region);
803
curr_region->set_free();
804
curr_region->set_top(curr_region->bottom());
805
if (curr_region != last_region) {
806
curr_region = _hrm.next_region_in_heap(curr_region);
807
} else {
808
curr_region = NULL;
809
}
810
811
_hrm.shrink_at(curr_index, 1);
812
shrink_count++;
813
}
814
}
815
816
if (shrink_count != 0) {
817
log_debug(gc, ergo, heap)("Attempt heap shrinking (archive regions). Total size: " SIZE_FORMAT "B",
818
HeapRegion::GrainWords * HeapWordSize * shrink_count);
819
// Explicit uncommit.
820
uncommit_regions(shrink_count);
821
}
822
decrease_used(size_used);
823
}
824
825
HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
826
ResourceMark rm; // For retrieving the thread names in log messages.
827
828
// The structure of this method has a lot of similarities to
829
// attempt_allocation_slow(). The reason these two were not merged
830
// into a single one is that such a method would require several "if
831
// allocation is not humongous do this, otherwise do that"
832
// conditional paths which would obscure its flow. In fact, an early
833
// version of this code did use a unified method which was harder to
834
// follow and, as a result, it had subtle bugs that were hard to
835
// track down. So keeping these two methods separate allows each to
836
// be more readable. It will be good to keep these two in sync as
837
// much as possible.
838
839
assert_heap_not_locked_and_not_at_safepoint();
840
assert(is_humongous(word_size), "attempt_allocation_humongous() "
841
"should only be called for humongous allocations");
842
843
// Humongous objects can exhaust the heap quickly, so we should check if we
844
// need to start a marking cycle at each humongous object allocation. We do
845
// the check before we do the actual allocation. The reason for doing it
846
// before the allocation is that we avoid having to keep track of the newly
847
// allocated memory while we do a GC.
848
if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
849
word_size)) {
850
collect(GCCause::_g1_humongous_allocation);
851
}
852
853
// We will loop until a) we manage to successfully perform the
854
// allocation or b) we successfully schedule a collection which
855
// fails to perform the allocation. b) is the only case when we'll
856
// return NULL.
857
HeapWord* result = NULL;
858
for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
859
bool should_try_gc;
860
bool preventive_collection_required = false;
861
uint gc_count_before;
862
863
864
{
865
MutexLocker x(Heap_lock);
866
867
size_t size_in_regions = humongous_obj_size_in_regions(word_size);
868
preventive_collection_required = policy()->preventive_collection_required((uint)size_in_regions);
869
if (!preventive_collection_required) {
870
// Given that humongous objects are not allocated in young
871
// regions, we'll first try to do the allocation without doing a
872
// collection hoping that there's enough space in the heap.
873
result = humongous_obj_allocate(word_size);
874
if (result != NULL) {
875
policy()->old_gen_alloc_tracker()->
876
add_allocated_humongous_bytes_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
877
return result;
878
}
879
}
880
881
// Only try a GC if the GCLocker does not signal the need for a GC. Wait until
882
// the GCLocker initiated GC has been performed and then retry. This includes
883
// the case when the GC Locker is not active but has not been performed.
884
should_try_gc = !GCLocker::needs_gc();
885
// Read the GC count while still holding the Heap_lock.
886
gc_count_before = total_collections();
887
}
888
889
if (should_try_gc) {
890
GCCause::Cause gc_cause = preventive_collection_required ? GCCause::_g1_preventive_collection
891
: GCCause::_g1_humongous_allocation;
892
bool succeeded;
893
result = do_collection_pause(word_size, gc_count_before, &succeeded, gc_cause);
894
if (result != NULL) {
895
assert(succeeded, "only way to get back a non-NULL result");
896
log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
897
Thread::current()->name(), p2i(result));
898
size_t size_in_regions = humongous_obj_size_in_regions(word_size);
899
policy()->old_gen_alloc_tracker()->
900
record_collection_pause_humongous_allocation(size_in_regions * HeapRegion::GrainBytes);
901
return result;
902
}
903
904
if (succeeded) {
905
// We successfully scheduled a collection which failed to allocate. No
906
// point in trying to allocate further. We'll just return NULL.
907
log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
908
SIZE_FORMAT " words", Thread::current()->name(), word_size);
909
return NULL;
910
}
911
log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
912
Thread::current()->name(), word_size);
913
} else {
914
// Failed to schedule a collection.
915
if (gclocker_retry_count > GCLockerRetryAllocationCount) {
916
log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
917
SIZE_FORMAT " words", Thread::current()->name(), word_size);
918
return NULL;
919
}
920
log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
921
// The GCLocker is either active or the GCLocker initiated
922
// GC has not yet been performed. Stall until it is and
923
// then retry the allocation.
924
GCLocker::stall_until_clear();
925
gclocker_retry_count += 1;
926
}
927
928
929
// We can reach here if we were unsuccessful in scheduling a
930
// collection (because another thread beat us to it) or if we were
931
// stalled due to the GC locker. In either can we should retry the
932
// allocation attempt in case another thread successfully
933
// performed a collection and reclaimed enough space.
934
// Humongous object allocation always needs a lock, so we wait for the retry
935
// in the next iteration of the loop, unlike for the regular iteration case.
936
// Give a warning if we seem to be looping forever.
937
938
if ((QueuedAllocationWarningCount > 0) &&
939
(try_count % QueuedAllocationWarningCount == 0)) {
940
log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
941
Thread::current()->name(), try_count, word_size);
942
}
943
}
944
945
ShouldNotReachHere();
946
return NULL;
947
}
948
949
HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
950
bool expect_null_mutator_alloc_region) {
951
assert_at_safepoint_on_vm_thread();
952
assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
953
"the current alloc region was unexpectedly found to be non-NULL");
954
955
if (!is_humongous(word_size)) {
956
return _allocator->attempt_allocation_locked(word_size);
957
} else {
958
HeapWord* result = humongous_obj_allocate(word_size);
959
if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
960
collector_state()->set_initiate_conc_mark_if_possible(true);
961
}
962
return result;
963
}
964
965
ShouldNotReachHere();
966
}
967
968
class PostCompactionPrinterClosure: public HeapRegionClosure {
969
private:
970
G1HRPrinter* _hr_printer;
971
public:
972
bool do_heap_region(HeapRegion* hr) {
973
assert(!hr->is_young(), "not expecting to find young regions");
974
_hr_printer->post_compaction(hr);
975
return false;
976
}
977
978
PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
979
: _hr_printer(hr_printer) { }
980
};
981
982
void G1CollectedHeap::print_hrm_post_compaction() {
983
if (_hr_printer.is_active()) {
984
PostCompactionPrinterClosure cl(hr_printer());
985
heap_region_iterate(&cl);
986
}
987
}
988
989
void G1CollectedHeap::abort_concurrent_cycle() {
990
// If we start the compaction before the CM threads finish
991
// scanning the root regions we might trip them over as we'll
992
// be moving objects / updating references. So let's wait until
993
// they are done. By telling them to abort, they should complete
994
// early.
995
_cm->root_regions()->abort();
996
_cm->root_regions()->wait_until_scan_finished();
997
998
// Disable discovery and empty the discovered lists
999
// for the CM ref processor.
1000
_ref_processor_cm->disable_discovery();
1001
_ref_processor_cm->abandon_partial_discovery();
1002
_ref_processor_cm->verify_no_references_recorded();
1003
1004
// Abandon current iterations of concurrent marking and concurrent
1005
// refinement, if any are in progress.
1006
concurrent_mark()->concurrent_cycle_abort();
1007
}
1008
1009
void G1CollectedHeap::prepare_heap_for_full_collection() {
1010
// Make sure we'll choose a new allocation region afterwards.
1011
_allocator->release_mutator_alloc_regions();
1012
_allocator->abandon_gc_alloc_regions();
1013
1014
// We may have added regions to the current incremental collection
1015
// set between the last GC or pause and now. We need to clear the
1016
// incremental collection set and then start rebuilding it afresh
1017
// after this full GC.
1018
abandon_collection_set(collection_set());
1019
1020
_hrm.remove_all_free_regions();
1021
}
1022
1023
void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1024
assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1025
assert_used_and_recalculate_used_equal(this);
1026
_verifier->verify_region_sets_optional();
1027
_verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1028
_verifier->check_bitmaps("Full GC Start");
1029
}
1030
1031
void G1CollectedHeap::prepare_heap_for_mutators() {
1032
// Delete metaspaces for unloaded class loaders and clean up loader_data graph
1033
ClassLoaderDataGraph::purge(/*at_safepoint*/true);
1034
DEBUG_ONLY(MetaspaceUtils::verify();)
1035
1036
// Prepare heap for normal collections.
1037
assert(num_free_regions() == 0, "we should not have added any free regions");
1038
rebuild_region_sets(false /* free_list_only */);
1039
abort_refinement();
1040
resize_heap_if_necessary();
1041
uncommit_regions_if_necessary();
1042
1043
// Rebuild the strong code root lists for each region
1044
rebuild_strong_code_roots();
1045
1046
// Purge code root memory
1047
purge_code_root_memory();
1048
1049
// Start a new incremental collection set for the next pause
1050
start_new_collection_set();
1051
1052
_allocator->init_mutator_alloc_regions();
1053
1054
// Post collection state updates.
1055
MetaspaceGC::compute_new_size();
1056
}
1057
1058
void G1CollectedHeap::abort_refinement() {
1059
if (_hot_card_cache->use_cache()) {
1060
_hot_card_cache->reset_hot_cache();
1061
}
1062
1063
// Discard all remembered set updates and reset refinement statistics.
1064
G1BarrierSet::dirty_card_queue_set().abandon_logs();
1065
assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
1066
"DCQS should be empty");
1067
concurrent_refine()->get_and_reset_refinement_stats();
1068
}
1069
1070
void G1CollectedHeap::verify_after_full_collection() {
1071
_hrm.verify_optional();
1072
_verifier->verify_region_sets_optional();
1073
_verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1074
1075
// This call implicitly verifies that the next bitmap is clear after Full GC.
1076
_verifier->check_bitmaps("Full GC End");
1077
1078
// At this point there should be no regions in the
1079
// entire heap tagged as young.
1080
assert(check_young_list_empty(), "young list should be empty at this point");
1081
1082
// Note: since we've just done a full GC, concurrent
1083
// marking is no longer active. Therefore we need not
1084
// re-enable reference discovery for the CM ref processor.
1085
// That will be done at the start of the next marking cycle.
1086
// We also know that the STW processor should no longer
1087
// discover any new references.
1088
assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1089
assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1090
_ref_processor_stw->verify_no_references_recorded();
1091
_ref_processor_cm->verify_no_references_recorded();
1092
}
1093
1094
void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1095
// Post collection logging.
1096
// We should do this after we potentially resize the heap so
1097
// that all the COMMIT / UNCOMMIT events are generated before
1098
// the compaction events.
1099
print_hrm_post_compaction();
1100
heap_transition->print();
1101
print_heap_after_gc();
1102
print_heap_regions();
1103
}
1104
1105
bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1106
bool clear_all_soft_refs,
1107
bool do_maximum_compaction) {
1108
assert_at_safepoint_on_vm_thread();
1109
1110
if (GCLocker::check_active_before_gc()) {
1111
// Full GC was not completed.
1112
return false;
1113
}
1114
1115
const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1116
soft_ref_policy()->should_clear_all_soft_refs();
1117
1118
G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs, do_maximum_compaction);
1119
GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1120
1121
collector.prepare_collection();
1122
collector.collect();
1123
collector.complete_collection();
1124
1125
// Full collection was successfully completed.
1126
return true;
1127
}
1128
1129
void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1130
// Currently, there is no facility in the do_full_collection(bool) API to notify
1131
// the caller that the collection did not succeed (e.g., because it was locked
1132
// out by the GC locker). So, right now, we'll ignore the return value.
1133
// When clear_all_soft_refs is set we want to do a maximum compaction
1134
// not leaving any dead wood.
1135
bool do_maximum_compaction = clear_all_soft_refs;
1136
bool dummy = do_full_collection(true, /* explicit_gc */
1137
clear_all_soft_refs,
1138
do_maximum_compaction);
1139
}
1140
1141
bool G1CollectedHeap::upgrade_to_full_collection() {
1142
GCCauseSetter compaction(this, GCCause::_g1_compaction_pause);
1143
log_info(gc, ergo)("Attempting full compaction clearing soft references");
1144
bool success = do_full_collection(false /* explicit gc */,
1145
true /* clear_all_soft_refs */,
1146
false /* do_maximum_compaction */);
1147
// do_full_collection only fails if blocked by GC locker and that can't
1148
// be the case here since we only call this when already completed one gc.
1149
assert(success, "invariant");
1150
return success;
1151
}
1152
1153
void G1CollectedHeap::resize_heap_if_necessary() {
1154
assert_at_safepoint_on_vm_thread();
1155
1156
bool should_expand;
1157
size_t resize_amount = _heap_sizing_policy->full_collection_resize_amount(should_expand);
1158
1159
if (resize_amount == 0) {
1160
return;
1161
} else if (should_expand) {
1162
expand(resize_amount, _workers);
1163
} else {
1164
shrink(resize_amount);
1165
}
1166
}
1167
1168
HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1169
bool do_gc,
1170
bool maximum_compaction,
1171
bool expect_null_mutator_alloc_region,
1172
bool* gc_succeeded) {
1173
*gc_succeeded = true;
1174
// Let's attempt the allocation first.
1175
HeapWord* result =
1176
attempt_allocation_at_safepoint(word_size,
1177
expect_null_mutator_alloc_region);
1178
if (result != NULL) {
1179
return result;
1180
}
1181
1182
// In a G1 heap, we're supposed to keep allocation from failing by
1183
// incremental pauses. Therefore, at least for now, we'll favor
1184
// expansion over collection. (This might change in the future if we can
1185
// do something smarter than full collection to satisfy a failed alloc.)
1186
result = expand_and_allocate(word_size);
1187
if (result != NULL) {
1188
return result;
1189
}
1190
1191
if (do_gc) {
1192
GCCauseSetter compaction(this, GCCause::_g1_compaction_pause);
1193
// Expansion didn't work, we'll try to do a Full GC.
1194
// If maximum_compaction is set we clear all soft references and don't
1195
// allow any dead wood to be left on the heap.
1196
if (maximum_compaction) {
1197
log_info(gc, ergo)("Attempting maximum full compaction clearing soft references");
1198
} else {
1199
log_info(gc, ergo)("Attempting full compaction");
1200
}
1201
*gc_succeeded = do_full_collection(false, /* explicit_gc */
1202
maximum_compaction /* clear_all_soft_refs */ ,
1203
maximum_compaction /* do_maximum_compaction */);
1204
}
1205
1206
return NULL;
1207
}
1208
1209
HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1210
bool* succeeded) {
1211
assert_at_safepoint_on_vm_thread();
1212
1213
// Attempts to allocate followed by Full GC.
1214
HeapWord* result =
1215
satisfy_failed_allocation_helper(word_size,
1216
true, /* do_gc */
1217
false, /* maximum_collection */
1218
false, /* expect_null_mutator_alloc_region */
1219
succeeded);
1220
1221
if (result != NULL || !*succeeded) {
1222
return result;
1223
}
1224
1225
// Attempts to allocate followed by Full GC that will collect all soft references.
1226
result = satisfy_failed_allocation_helper(word_size,
1227
true, /* do_gc */
1228
true, /* maximum_collection */
1229
true, /* expect_null_mutator_alloc_region */
1230
succeeded);
1231
1232
if (result != NULL || !*succeeded) {
1233
return result;
1234
}
1235
1236
// Attempts to allocate, no GC
1237
result = satisfy_failed_allocation_helper(word_size,
1238
false, /* do_gc */
1239
false, /* maximum_collection */
1240
true, /* expect_null_mutator_alloc_region */
1241
succeeded);
1242
1243
if (result != NULL) {
1244
return result;
1245
}
1246
1247
assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1248
"Flag should have been handled and cleared prior to this point");
1249
1250
// What else? We might try synchronous finalization later. If the total
1251
// space available is large enough for the allocation, then a more
1252
// complete compaction phase than we've tried so far might be
1253
// appropriate.
1254
return NULL;
1255
}
1256
1257
// Attempting to expand the heap sufficiently
1258
// to support an allocation of the given "word_size". If
1259
// successful, perform the allocation and return the address of the
1260
// allocated block, or else "NULL".
1261
1262
HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1263
assert_at_safepoint_on_vm_thread();
1264
1265
_verifier->verify_region_sets_optional();
1266
1267
size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1268
log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1269
word_size * HeapWordSize);
1270
1271
1272
if (expand(expand_bytes, _workers)) {
1273
_hrm.verify_optional();
1274
_verifier->verify_region_sets_optional();
1275
return attempt_allocation_at_safepoint(word_size,
1276
false /* expect_null_mutator_alloc_region */);
1277
}
1278
return NULL;
1279
}
1280
1281
bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1282
size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1283
aligned_expand_bytes = align_up(aligned_expand_bytes,
1284
HeapRegion::GrainBytes);
1285
1286
log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1287
expand_bytes, aligned_expand_bytes);
1288
1289
if (is_maximal_no_gc()) {
1290
log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1291
return false;
1292
}
1293
1294
double expand_heap_start_time_sec = os::elapsedTime();
1295
uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1296
assert(regions_to_expand > 0, "Must expand by at least one region");
1297
1298
uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1299
if (expand_time_ms != NULL) {
1300
*expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1301
}
1302
1303
if (expanded_by > 0) {
1304
size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1305
assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1306
policy()->record_new_heap_size(num_regions());
1307
} else {
1308
log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1309
1310
// The expansion of the virtual storage space was unsuccessful.
1311
// Let's see if it was because we ran out of swap.
1312
if (G1ExitOnExpansionFailure &&
1313
_hrm.available() >= regions_to_expand) {
1314
// We had head room...
1315
vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1316
}
1317
}
1318
return regions_to_expand > 0;
1319
}
1320
1321
bool G1CollectedHeap::expand_single_region(uint node_index) {
1322
uint expanded_by = _hrm.expand_on_preferred_node(node_index);
1323
1324
if (expanded_by == 0) {
1325
assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm.available());
1326
log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1327
return false;
1328
}
1329
1330
policy()->record_new_heap_size(num_regions());
1331
return true;
1332
}
1333
1334
void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1335
size_t aligned_shrink_bytes =
1336
ReservedSpace::page_align_size_down(shrink_bytes);
1337
aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1338
HeapRegion::GrainBytes);
1339
uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1340
1341
uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1342
size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1343
1344
log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1345
shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1346
if (num_regions_removed > 0) {
1347
log_debug(gc, heap)("Uncommittable regions after shrink: %u", num_regions_removed);
1348
policy()->record_new_heap_size(num_regions());
1349
} else {
1350
log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1351
}
1352
}
1353
1354
void G1CollectedHeap::shrink(size_t shrink_bytes) {
1355
_verifier->verify_region_sets_optional();
1356
1357
// We should only reach here at the end of a Full GC or during Remark which
1358
// means we should not not be holding to any GC alloc regions. The method
1359
// below will make sure of that and do any remaining clean up.
1360
_allocator->abandon_gc_alloc_regions();
1361
1362
// Instead of tearing down / rebuilding the free lists here, we
1363
// could instead use the remove_all_pending() method on free_list to
1364
// remove only the ones that we need to remove.
1365
_hrm.remove_all_free_regions();
1366
shrink_helper(shrink_bytes);
1367
rebuild_region_sets(true /* free_list_only */);
1368
1369
_hrm.verify_optional();
1370
_verifier->verify_region_sets_optional();
1371
}
1372
1373
class OldRegionSetChecker : public HeapRegionSetChecker {
1374
public:
1375
void check_mt_safety() {
1376
// Master Old Set MT safety protocol:
1377
// (a) If we're at a safepoint, operations on the master old set
1378
// should be invoked:
1379
// - by the VM thread (which will serialize them), or
1380
// - by the GC workers while holding the FreeList_lock, if we're
1381
// at a safepoint for an evacuation pause (this lock is taken
1382
// anyway when an GC alloc region is retired so that a new one
1383
// is allocated from the free list), or
1384
// - by the GC workers while holding the OldSets_lock, if we're at a
1385
// safepoint for a cleanup pause.
1386
// (b) If we're not at a safepoint, operations on the master old set
1387
// should be invoked while holding the Heap_lock.
1388
1389
if (SafepointSynchronize::is_at_safepoint()) {
1390
guarantee(Thread::current()->is_VM_thread() ||
1391
FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1392
"master old set MT safety protocol at a safepoint");
1393
} else {
1394
guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1395
}
1396
}
1397
bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1398
const char* get_description() { return "Old Regions"; }
1399
};
1400
1401
class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1402
public:
1403
void check_mt_safety() {
1404
guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1405
"May only change archive regions during initialization or safepoint.");
1406
}
1407
bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1408
const char* get_description() { return "Archive Regions"; }
1409
};
1410
1411
class HumongousRegionSetChecker : public HeapRegionSetChecker {
1412
public:
1413
void check_mt_safety() {
1414
// Humongous Set MT safety protocol:
1415
// (a) If we're at a safepoint, operations on the master humongous
1416
// set should be invoked by either the VM thread (which will
1417
// serialize them) or by the GC workers while holding the
1418
// OldSets_lock.
1419
// (b) If we're not at a safepoint, operations on the master
1420
// humongous set should be invoked while holding the Heap_lock.
1421
1422
if (SafepointSynchronize::is_at_safepoint()) {
1423
guarantee(Thread::current()->is_VM_thread() ||
1424
OldSets_lock->owned_by_self(),
1425
"master humongous set MT safety protocol at a safepoint");
1426
} else {
1427
guarantee(Heap_lock->owned_by_self(),
1428
"master humongous set MT safety protocol outside a safepoint");
1429
}
1430
}
1431
bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1432
const char* get_description() { return "Humongous Regions"; }
1433
};
1434
1435
G1CollectedHeap::G1CollectedHeap() :
1436
CollectedHeap(),
1437
_service_thread(NULL),
1438
_periodic_gc_task(NULL),
1439
_workers(NULL),
1440
_card_table(NULL),
1441
_collection_pause_end(Ticks::now()),
1442
_soft_ref_policy(),
1443
_old_set("Old Region Set", new OldRegionSetChecker()),
1444
_archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1445
_humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1446
_bot(NULL),
1447
_listener(),
1448
_numa(G1NUMA::create()),
1449
_hrm(),
1450
_allocator(NULL),
1451
_verifier(NULL),
1452
_summary_bytes_used(0),
1453
_bytes_used_during_gc(0),
1454
_archive_allocator(NULL),
1455
_survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1456
_old_evac_stats("Old", OldPLABSize, PLABWeight),
1457
_expand_heap_after_alloc_failure(true),
1458
_g1mm(NULL),
1459
_humongous_reclaim_candidates(),
1460
_num_humongous_objects(0),
1461
_num_humongous_reclaim_candidates(0),
1462
_hr_printer(),
1463
_collector_state(),
1464
_old_marking_cycles_started(0),
1465
_old_marking_cycles_completed(0),
1466
_eden(),
1467
_survivor(),
1468
_gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1469
_gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1470
_policy(new G1Policy(_gc_timer_stw)),
1471
_heap_sizing_policy(NULL),
1472
_collection_set(this, _policy),
1473
_hot_card_cache(NULL),
1474
_rem_set(NULL),
1475
_cm(NULL),
1476
_cm_thread(NULL),
1477
_cr(NULL),
1478
_task_queues(NULL),
1479
_num_regions_failed_evacuation(0),
1480
_regions_failed_evacuation(NULL),
1481
_evacuation_failed_info_array(NULL),
1482
_preserved_marks_set(true /* in_c_heap */),
1483
#ifndef PRODUCT
1484
_evacuation_failure_alot_for_current_gc(false),
1485
_evacuation_failure_alot_gc_number(0),
1486
_evacuation_failure_alot_count(0),
1487
#endif
1488
_ref_processor_stw(NULL),
1489
_is_alive_closure_stw(this),
1490
_is_subject_to_discovery_stw(this),
1491
_ref_processor_cm(NULL),
1492
_is_alive_closure_cm(this),
1493
_is_subject_to_discovery_cm(this),
1494
_region_attr() {
1495
1496
_verifier = new G1HeapVerifier(this);
1497
1498
_allocator = new G1Allocator(this);
1499
1500
_heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1501
1502
_humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1503
1504
// Override the default _filler_array_max_size so that no humongous filler
1505
// objects are created.
1506
_filler_array_max_size = _humongous_object_threshold_in_words;
1507
1508
uint n_queues = ParallelGCThreads;
1509
_task_queues = new G1ScannerTasksQueueSet(n_queues);
1510
1511
_evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1512
1513
for (uint i = 0; i < n_queues; i++) {
1514
G1ScannerTasksQueue* q = new G1ScannerTasksQueue();
1515
q->initialize();
1516
_task_queues->register_queue(i, q);
1517
::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1518
}
1519
1520
// Initialize the G1EvacuationFailureALot counters and flags.
1521
NOT_PRODUCT(reset_evacuation_should_fail();)
1522
_gc_tracer_stw->initialize();
1523
1524
guarantee(_task_queues != NULL, "task_queues allocation failure.");
1525
}
1526
1527
G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1528
size_t size,
1529
size_t translation_factor) {
1530
size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1531
// Allocate a new reserved space, preferring to use large pages.
1532
ReservedSpace rs(size, preferred_page_size);
1533
size_t page_size = rs.page_size();
1534
G1RegionToSpaceMapper* result =
1535
G1RegionToSpaceMapper::create_mapper(rs,
1536
size,
1537
page_size,
1538
HeapRegion::GrainBytes,
1539
translation_factor,
1540
mtGC);
1541
1542
os::trace_page_sizes_for_requested_size(description,
1543
size,
1544
page_size,
1545
preferred_page_size,
1546
rs.base(),
1547
rs.size());
1548
1549
return result;
1550
}
1551
1552
jint G1CollectedHeap::initialize_concurrent_refinement() {
1553
jint ecode = JNI_OK;
1554
_cr = G1ConcurrentRefine::create(&ecode);
1555
return ecode;
1556
}
1557
1558
jint G1CollectedHeap::initialize_service_thread() {
1559
_service_thread = new G1ServiceThread();
1560
if (_service_thread->osthread() == NULL) {
1561
vm_shutdown_during_initialization("Could not create G1ServiceThread");
1562
return JNI_ENOMEM;
1563
}
1564
return JNI_OK;
1565
}
1566
1567
jint G1CollectedHeap::initialize() {
1568
1569
// Necessary to satisfy locking discipline assertions.
1570
1571
MutexLocker x(Heap_lock);
1572
1573
// While there are no constraints in the GC code that HeapWordSize
1574
// be any particular value, there are multiple other areas in the
1575
// system which believe this to be true (e.g. oop->object_size in some
1576
// cases incorrectly returns the size in wordSize units rather than
1577
// HeapWordSize).
1578
guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1579
1580
size_t init_byte_size = InitialHeapSize;
1581
size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1582
1583
// Ensure that the sizes are properly aligned.
1584
Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1585
Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1586
Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1587
1588
// Reserve the maximum.
1589
1590
// When compressed oops are enabled, the preferred heap base
1591
// is calculated by subtracting the requested size from the
1592
// 32Gb boundary and using the result as the base address for
1593
// heap reservation. If the requested size is not aligned to
1594
// HeapRegion::GrainBytes (i.e. the alignment that is passed
1595
// into the ReservedHeapSpace constructor) then the actual
1596
// base of the reserved heap may end up differing from the
1597
// address that was requested (i.e. the preferred heap base).
1598
// If this happens then we could end up using a non-optimal
1599
// compressed oops mode.
1600
1601
ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1602
HeapAlignment);
1603
1604
initialize_reserved_region(heap_rs);
1605
1606
// Create the barrier set for the entire reserved region.
1607
G1CardTable* ct = new G1CardTable(heap_rs.region());
1608
ct->initialize();
1609
G1BarrierSet* bs = new G1BarrierSet(ct);
1610
bs->initialize();
1611
assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1612
BarrierSet::set_barrier_set(bs);
1613
_card_table = ct;
1614
1615
{
1616
G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1617
satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1618
satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1619
}
1620
1621
// Create the hot card cache.
1622
_hot_card_cache = new G1HotCardCache(this);
1623
1624
// Create space mappers.
1625
size_t page_size = heap_rs.page_size();
1626
G1RegionToSpaceMapper* heap_storage =
1627
G1RegionToSpaceMapper::create_mapper(heap_rs,
1628
heap_rs.size(),
1629
page_size,
1630
HeapRegion::GrainBytes,
1631
1,
1632
mtJavaHeap);
1633
if(heap_storage == NULL) {
1634
vm_shutdown_during_initialization("Could not initialize G1 heap");
1635
return JNI_ERR;
1636
}
1637
1638
os::trace_page_sizes("Heap",
1639
MinHeapSize,
1640
reserved_byte_size,
1641
page_size,
1642
heap_rs.base(),
1643
heap_rs.size());
1644
heap_storage->set_mapping_changed_listener(&_listener);
1645
1646
// Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1647
G1RegionToSpaceMapper* bot_storage =
1648
create_aux_memory_mapper("Block Offset Table",
1649
G1BlockOffsetTable::compute_size(heap_rs.size() / HeapWordSize),
1650
G1BlockOffsetTable::heap_map_factor());
1651
1652
G1RegionToSpaceMapper* cardtable_storage =
1653
create_aux_memory_mapper("Card Table",
1654
G1CardTable::compute_size(heap_rs.size() / HeapWordSize),
1655
G1CardTable::heap_map_factor());
1656
1657
G1RegionToSpaceMapper* card_counts_storage =
1658
create_aux_memory_mapper("Card Counts Table",
1659
G1CardCounts::compute_size(heap_rs.size() / HeapWordSize),
1660
G1CardCounts::heap_map_factor());
1661
1662
size_t bitmap_size = G1CMBitMap::compute_size(heap_rs.size());
1663
G1RegionToSpaceMapper* prev_bitmap_storage =
1664
create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1665
G1RegionToSpaceMapper* next_bitmap_storage =
1666
create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1667
1668
_hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1669
_card_table->initialize(cardtable_storage);
1670
1671
// Do later initialization work for concurrent refinement.
1672
_hot_card_cache->initialize(card_counts_storage);
1673
1674
// 6843694 - ensure that the maximum region index can fit
1675
// in the remembered set structures.
1676
const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1677
guarantee((max_reserved_regions() - 1) <= max_region_idx, "too many regions");
1678
1679
// The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1680
// start within the first card.
1681
guarantee(heap_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1682
G1FromCardCache::initialize(max_reserved_regions());
1683
// Also create a G1 rem set.
1684
_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1685
_rem_set->initialize(max_reserved_regions());
1686
1687
size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1688
guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1689
guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1690
"too many cards per region");
1691
1692
FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1693
1694
_bot = new G1BlockOffsetTable(reserved(), bot_storage);
1695
1696
{
1697
size_t granularity = HeapRegion::GrainBytes;
1698
1699
_region_attr.initialize(reserved(), granularity);
1700
_humongous_reclaim_candidates.initialize(reserved(), granularity);
1701
}
1702
1703
_workers = new WorkGang("GC Thread", ParallelGCThreads,
1704
true /* are_GC_task_threads */,
1705
false /* are_ConcurrentGC_threads */);
1706
if (_workers == NULL) {
1707
return JNI_ENOMEM;
1708
}
1709
_workers->initialize_workers();
1710
1711
_numa->set_region_info(HeapRegion::GrainBytes, page_size);
1712
1713
// Create the G1ConcurrentMark data structure and thread.
1714
// (Must do this late, so that "max_[reserved_]regions" is defined.)
1715
_cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1716
_cm_thread = _cm->cm_thread();
1717
1718
// Now expand into the initial heap size.
1719
if (!expand(init_byte_size, _workers)) {
1720
vm_shutdown_during_initialization("Failed to allocate initial heap.");
1721
return JNI_ENOMEM;
1722
}
1723
1724
// Perform any initialization actions delegated to the policy.
1725
policy()->init(this, &_collection_set);
1726
1727
jint ecode = initialize_concurrent_refinement();
1728
if (ecode != JNI_OK) {
1729
return ecode;
1730
}
1731
1732
ecode = initialize_service_thread();
1733
if (ecode != JNI_OK) {
1734
return ecode;
1735
}
1736
1737
// Initialize and schedule sampling task on service thread.
1738
_rem_set->initialize_sampling_task(service_thread());
1739
1740
// Create and schedule the periodic gc task on the service thread.
1741
_periodic_gc_task = new G1PeriodicGCTask("Periodic GC Task");
1742
_service_thread->register_task(_periodic_gc_task);
1743
1744
{
1745
G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1746
dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone());
1747
dcqs.set_max_cards(concurrent_refine()->red_zone());
1748
}
1749
1750
// Here we allocate the dummy HeapRegion that is required by the
1751
// G1AllocRegion class.
1752
HeapRegion* dummy_region = _hrm.get_dummy_region();
1753
1754
// We'll re-use the same region whether the alloc region will
1755
// require BOT updates or not and, if it doesn't, then a non-young
1756
// region will complain that it cannot support allocations without
1757
// BOT updates. So we'll tag the dummy region as eden to avoid that.
1758
dummy_region->set_eden();
1759
// Make sure it's full.
1760
dummy_region->set_top(dummy_region->end());
1761
G1AllocRegion::setup(this, dummy_region);
1762
1763
_allocator->init_mutator_alloc_regions();
1764
1765
// Do create of the monitoring and management support so that
1766
// values in the heap have been properly initialized.
1767
_g1mm = new G1MonitoringSupport(this);
1768
1769
_preserved_marks_set.init(ParallelGCThreads);
1770
1771
_collection_set.initialize(max_reserved_regions());
1772
1773
_regions_failed_evacuation = NEW_C_HEAP_ARRAY(volatile bool, max_regions(), mtGC);
1774
1775
G1InitLogger::print();
1776
1777
return JNI_OK;
1778
}
1779
1780
void G1CollectedHeap::stop() {
1781
// Stop all concurrent threads. We do this to make sure these threads
1782
// do not continue to execute and access resources (e.g. logging)
1783
// that are destroyed during shutdown.
1784
_cr->stop();
1785
_service_thread->stop();
1786
_cm_thread->stop();
1787
}
1788
1789
void G1CollectedHeap::safepoint_synchronize_begin() {
1790
SuspendibleThreadSet::synchronize();
1791
}
1792
1793
void G1CollectedHeap::safepoint_synchronize_end() {
1794
SuspendibleThreadSet::desynchronize();
1795
}
1796
1797
void G1CollectedHeap::post_initialize() {
1798
CollectedHeap::post_initialize();
1799
ref_processing_init();
1800
}
1801
1802
void G1CollectedHeap::ref_processing_init() {
1803
// Reference processing in G1 currently works as follows:
1804
//
1805
// * There are two reference processor instances. One is
1806
// used to record and process discovered references
1807
// during concurrent marking; the other is used to
1808
// record and process references during STW pauses
1809
// (both full and incremental).
1810
// * Both ref processors need to 'span' the entire heap as
1811
// the regions in the collection set may be dotted around.
1812
//
1813
// * For the concurrent marking ref processor:
1814
// * Reference discovery is enabled at concurrent start.
1815
// * Reference discovery is disabled and the discovered
1816
// references processed etc during remarking.
1817
// * Reference discovery is MT (see below).
1818
// * Reference discovery requires a barrier (see below).
1819
// * Reference processing may or may not be MT
1820
// (depending on the value of ParallelRefProcEnabled
1821
// and ParallelGCThreads).
1822
// * A full GC disables reference discovery by the CM
1823
// ref processor and abandons any entries on it's
1824
// discovered lists.
1825
//
1826
// * For the STW processor:
1827
// * Non MT discovery is enabled at the start of a full GC.
1828
// * Processing and enqueueing during a full GC is non-MT.
1829
// * During a full GC, references are processed after marking.
1830
//
1831
// * Discovery (may or may not be MT) is enabled at the start
1832
// of an incremental evacuation pause.
1833
// * References are processed near the end of a STW evacuation pause.
1834
// * For both types of GC:
1835
// * Discovery is atomic - i.e. not concurrent.
1836
// * Reference discovery will not need a barrier.
1837
1838
// Concurrent Mark ref processor
1839
_ref_processor_cm =
1840
new ReferenceProcessor(&_is_subject_to_discovery_cm,
1841
ParallelGCThreads, // degree of mt processing
1842
(ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1843
MAX2(ParallelGCThreads, ConcGCThreads), // degree of mt discovery
1844
false, // Reference discovery is not atomic
1845
&_is_alive_closure_cm); // is alive closure
1846
1847
// STW ref processor
1848
_ref_processor_stw =
1849
new ReferenceProcessor(&_is_subject_to_discovery_stw,
1850
ParallelGCThreads, // degree of mt processing
1851
(ParallelGCThreads > 1), // mt discovery
1852
ParallelGCThreads, // degree of mt discovery
1853
true, // Reference discovery is atomic
1854
&_is_alive_closure_stw); // is alive closure
1855
}
1856
1857
SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1858
return &_soft_ref_policy;
1859
}
1860
1861
size_t G1CollectedHeap::capacity() const {
1862
return _hrm.length() * HeapRegion::GrainBytes;
1863
}
1864
1865
size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1866
return _hrm.total_free_bytes();
1867
}
1868
1869
void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) {
1870
_hot_card_cache->drain(cl, worker_id);
1871
}
1872
1873
// Computes the sum of the storage used by the various regions.
1874
size_t G1CollectedHeap::used() const {
1875
size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1876
if (_archive_allocator != NULL) {
1877
result += _archive_allocator->used();
1878
}
1879
return result;
1880
}
1881
1882
size_t G1CollectedHeap::used_unlocked() const {
1883
return _summary_bytes_used;
1884
}
1885
1886
class SumUsedClosure: public HeapRegionClosure {
1887
size_t _used;
1888
public:
1889
SumUsedClosure() : _used(0) {}
1890
bool do_heap_region(HeapRegion* r) {
1891
_used += r->used();
1892
return false;
1893
}
1894
size_t result() { return _used; }
1895
};
1896
1897
size_t G1CollectedHeap::recalculate_used() const {
1898
SumUsedClosure blk;
1899
heap_region_iterate(&blk);
1900
return blk.result();
1901
}
1902
1903
bool G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1904
switch (cause) {
1905
case GCCause::_java_lang_system_gc: return ExplicitGCInvokesConcurrent;
1906
case GCCause::_dcmd_gc_run: return ExplicitGCInvokesConcurrent;
1907
case GCCause::_wb_conc_mark: return true;
1908
default : return false;
1909
}
1910
}
1911
1912
bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1913
switch (cause) {
1914
case GCCause::_g1_humongous_allocation: return true;
1915
case GCCause::_g1_periodic_collection: return G1PeriodicGCInvokesConcurrent;
1916
case GCCause::_wb_breakpoint: return true;
1917
default: return is_user_requested_concurrent_full_gc(cause);
1918
}
1919
}
1920
1921
#ifndef PRODUCT
1922
void G1CollectedHeap::allocate_dummy_regions() {
1923
// Let's fill up most of the region
1924
size_t word_size = HeapRegion::GrainWords - 1024;
1925
// And as a result the region we'll allocate will be humongous.
1926
guarantee(is_humongous(word_size), "sanity");
1927
1928
// _filler_array_max_size is set to humongous object threshold
1929
// but temporarily change it to use CollectedHeap::fill_with_object().
1930
AutoModifyRestore<size_t> temporarily(_filler_array_max_size, word_size);
1931
1932
for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
1933
// Let's use the existing mechanism for the allocation
1934
HeapWord* dummy_obj = humongous_obj_allocate(word_size);
1935
if (dummy_obj != NULL) {
1936
MemRegion mr(dummy_obj, word_size);
1937
CollectedHeap::fill_with_object(mr);
1938
} else {
1939
// If we can't allocate once, we probably cannot allocate
1940
// again. Let's get out of the loop.
1941
break;
1942
}
1943
}
1944
}
1945
#endif // !PRODUCT
1946
1947
void G1CollectedHeap::increment_old_marking_cycles_started() {
1948
assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
1949
_old_marking_cycles_started == _old_marking_cycles_completed + 1,
1950
"Wrong marking cycle count (started: %d, completed: %d)",
1951
_old_marking_cycles_started, _old_marking_cycles_completed);
1952
1953
_old_marking_cycles_started++;
1954
}
1955
1956
void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent,
1957
bool whole_heap_examined) {
1958
MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag);
1959
1960
// We assume that if concurrent == true, then the caller is a
1961
// concurrent thread that was joined the Suspendible Thread
1962
// Set. If there's ever a cheap way to check this, we should add an
1963
// assert here.
1964
1965
// Given that this method is called at the end of a Full GC or of a
1966
// concurrent cycle, and those can be nested (i.e., a Full GC can
1967
// interrupt a concurrent cycle), the number of full collections
1968
// completed should be either one (in the case where there was no
1969
// nesting) or two (when a Full GC interrupted a concurrent cycle)
1970
// behind the number of full collections started.
1971
1972
// This is the case for the inner caller, i.e. a Full GC.
1973
assert(concurrent ||
1974
(_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
1975
(_old_marking_cycles_started == _old_marking_cycles_completed + 2),
1976
"for inner caller (Full GC): _old_marking_cycles_started = %u "
1977
"is inconsistent with _old_marking_cycles_completed = %u",
1978
_old_marking_cycles_started, _old_marking_cycles_completed);
1979
1980
// This is the case for the outer caller, i.e. the concurrent cycle.
1981
assert(!concurrent ||
1982
(_old_marking_cycles_started == _old_marking_cycles_completed + 1),
1983
"for outer caller (concurrent cycle): "
1984
"_old_marking_cycles_started = %u "
1985
"is inconsistent with _old_marking_cycles_completed = %u",
1986
_old_marking_cycles_started, _old_marking_cycles_completed);
1987
1988
_old_marking_cycles_completed += 1;
1989
if (whole_heap_examined) {
1990
// Signal that we have completed a visit to all live objects.
1991
record_whole_heap_examined_timestamp();
1992
}
1993
1994
// We need to clear the "in_progress" flag in the CM thread before
1995
// we wake up any waiters (especially when ExplicitInvokesConcurrent
1996
// is set) so that if a waiter requests another System.gc() it doesn't
1997
// incorrectly see that a marking cycle is still in progress.
1998
if (concurrent) {
1999
_cm_thread->set_idle();
2000
}
2001
2002
// Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent)
2003
// for a full GC to finish that their wait is over.
2004
ml.notify_all();
2005
}
2006
2007
void G1CollectedHeap::collect(GCCause::Cause cause) {
2008
try_collect(cause);
2009
}
2010
2011
// Return true if (x < y) with allowance for wraparound.
2012
static bool gc_counter_less_than(uint x, uint y) {
2013
return (x - y) > (UINT_MAX/2);
2014
}
2015
2016
// LOG_COLLECT_CONCURRENTLY(cause, msg, args...)
2017
// Macro so msg printing is format-checked.
2018
#define LOG_COLLECT_CONCURRENTLY(cause, ...) \
2019
do { \
2020
LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt; \
2021
if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) { \
2022
ResourceMark rm; /* For thread name. */ \
2023
LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \
2024
LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \
2025
Thread::current()->name(), \
2026
GCCause::to_string(cause)); \
2027
LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__); \
2028
} \
2029
} while (0)
2030
2031
#define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \
2032
LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result))
2033
2034
bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause,
2035
uint gc_counter,
2036
uint old_marking_started_before) {
2037
assert_heap_not_locked();
2038
assert(should_do_concurrent_full_gc(cause),
2039
"Non-concurrent cause %s", GCCause::to_string(cause));
2040
2041
for (uint i = 1; true; ++i) {
2042
// Try to schedule concurrent start evacuation pause that will
2043
// start a concurrent cycle.
2044
LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i);
2045
VM_G1TryInitiateConcMark op(gc_counter,
2046
cause,
2047
policy()->max_pause_time_ms());
2048
VMThread::execute(&op);
2049
2050
// Request is trivially finished.
2051
if (cause == GCCause::_g1_periodic_collection) {
2052
LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded());
2053
return op.gc_succeeded();
2054
}
2055
2056
// If VMOp skipped initiating concurrent marking cycle because
2057
// we're terminating, then we're done.
2058
if (op.terminating()) {
2059
LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating");
2060
return false;
2061
}
2062
2063
// Lock to get consistent set of values.
2064
uint old_marking_started_after;
2065
uint old_marking_completed_after;
2066
{
2067
MutexLocker ml(Heap_lock);
2068
// Update gc_counter for retrying VMOp if needed. Captured here to be
2069
// consistent with the values we use below for termination tests. If
2070
// a retry is needed after a possible wait, and another collection
2071
// occurs in the meantime, it will cause our retry to be skipped and
2072
// we'll recheck for termination with updated conditions from that
2073
// more recent collection. That's what we want, rather than having
2074
// our retry possibly perform an unnecessary collection.
2075
gc_counter = total_collections();
2076
old_marking_started_after = _old_marking_cycles_started;
2077
old_marking_completed_after = _old_marking_cycles_completed;
2078
}
2079
2080
if (cause == GCCause::_wb_breakpoint) {
2081
if (op.gc_succeeded()) {
2082
LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2083
return true;
2084
}
2085
// When _wb_breakpoint there can't be another cycle or deferred.
2086
assert(!op.cycle_already_in_progress(), "invariant");
2087
assert(!op.whitebox_attached(), "invariant");
2088
// Concurrent cycle attempt might have been cancelled by some other
2089
// collection, so retry. Unlike other cases below, we want to retry
2090
// even if cancelled by a STW full collection, because we really want
2091
// to start a concurrent cycle.
2092
if (old_marking_started_before != old_marking_started_after) {
2093
LOG_COLLECT_CONCURRENTLY(cause, "ignoring STW full GC");
2094
old_marking_started_before = old_marking_started_after;
2095
}
2096
} else if (!GCCause::is_user_requested_gc(cause)) {
2097
// For an "automatic" (not user-requested) collection, we just need to
2098
// ensure that progress is made.
2099
//
2100
// Request is finished if any of
2101
// (1) the VMOp successfully performed a GC,
2102
// (2) a concurrent cycle was already in progress,
2103
// (3) whitebox is controlling concurrent cycles,
2104
// (4) a new cycle was started (by this thread or some other), or
2105
// (5) a Full GC was performed.
2106
// Cases (4) and (5) are detected together by a change to
2107
// _old_marking_cycles_started.
2108
//
2109
// Note that (1) does not imply (4). If we're still in the mixed
2110
// phase of an earlier concurrent collection, the request to make the
2111
// collection a concurrent start won't be honored. If we don't check for
2112
// both conditions we'll spin doing back-to-back collections.
2113
if (op.gc_succeeded() ||
2114
op.cycle_already_in_progress() ||
2115
op.whitebox_attached() ||
2116
(old_marking_started_before != old_marking_started_after)) {
2117
LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2118
return true;
2119
}
2120
} else { // User-requested GC.
2121
// For a user-requested collection, we want to ensure that a complete
2122
// full collection has been performed before returning, but without
2123
// waiting for more than needed.
2124
2125
// For user-requested GCs (unlike non-UR), a successful VMOp implies a
2126
// new cycle was started. That's good, because it's not clear what we
2127
// should do otherwise. Trying again just does back to back GCs.
2128
// Can't wait for someone else to start a cycle. And returning fails
2129
// to meet the goal of ensuring a full collection was performed.
2130
assert(!op.gc_succeeded() ||
2131
(old_marking_started_before != old_marking_started_after),
2132
"invariant: succeeded %s, started before %u, started after %u",
2133
BOOL_TO_STR(op.gc_succeeded()),
2134
old_marking_started_before, old_marking_started_after);
2135
2136
// Request is finished if a full collection (concurrent or stw)
2137
// was started after this request and has completed, e.g.
2138
// started_before < completed_after.
2139
if (gc_counter_less_than(old_marking_started_before,
2140
old_marking_completed_after)) {
2141
LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2142
return true;
2143
}
2144
2145
if (old_marking_started_after != old_marking_completed_after) {
2146
// If there is an in-progress cycle (possibly started by us), then
2147
// wait for that cycle to complete, e.g.
2148
// while completed_now < started_after.
2149
LOG_COLLECT_CONCURRENTLY(cause, "wait");
2150
MonitorLocker ml(G1OldGCCount_lock);
2151
while (gc_counter_less_than(_old_marking_cycles_completed,
2152
old_marking_started_after)) {
2153
ml.wait();
2154
}
2155
// Request is finished if the collection we just waited for was
2156
// started after this request.
2157
if (old_marking_started_before != old_marking_started_after) {
2158
LOG_COLLECT_CONCURRENTLY(cause, "complete after wait");
2159
return true;
2160
}
2161
}
2162
2163
// If VMOp was successful then it started a new cycle that the above
2164
// wait &etc should have recognized as finishing this request. This
2165
// differs from a non-user-request, where gc_succeeded does not imply
2166
// a new cycle was started.
2167
assert(!op.gc_succeeded(), "invariant");
2168
2169
if (op.cycle_already_in_progress()) {
2170
// If VMOp failed because a cycle was already in progress, it
2171
// is now complete. But it didn't finish this user-requested
2172
// GC, so try again.
2173
LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress");
2174
continue;
2175
} else if (op.whitebox_attached()) {
2176
// If WhiteBox wants control, wait for notification of a state
2177
// change in the controller, then try again. Don't wait for
2178
// release of control, since collections may complete while in
2179
// control. Note: This won't recognize a STW full collection
2180
// while waiting; we can't wait on multiple monitors.
2181
LOG_COLLECT_CONCURRENTLY(cause, "whitebox control stall");
2182
MonitorLocker ml(ConcurrentGCBreakpoints::monitor());
2183
if (ConcurrentGCBreakpoints::is_controlled()) {
2184
ml.wait();
2185
}
2186
continue;
2187
}
2188
}
2189
2190
// Collection failed and should be retried.
2191
assert(op.transient_failure(), "invariant");
2192
2193
if (GCLocker::is_active_and_needs_gc()) {
2194
// If GCLocker is active, wait until clear before retrying.
2195
LOG_COLLECT_CONCURRENTLY(cause, "gc-locker stall");
2196
GCLocker::stall_until_clear();
2197
}
2198
2199
LOG_COLLECT_CONCURRENTLY(cause, "retry");
2200
}
2201
}
2202
2203
bool G1CollectedHeap::try_collect(GCCause::Cause cause) {
2204
assert_heap_not_locked();
2205
2206
// Lock to get consistent set of values.
2207
uint gc_count_before;
2208
uint full_gc_count_before;
2209
uint old_marking_started_before;
2210
{
2211
MutexLocker ml(Heap_lock);
2212
gc_count_before = total_collections();
2213
full_gc_count_before = total_full_collections();
2214
old_marking_started_before = _old_marking_cycles_started;
2215
}
2216
2217
if (should_do_concurrent_full_gc(cause)) {
2218
return try_collect_concurrently(cause,
2219
gc_count_before,
2220
old_marking_started_before);
2221
} else if (GCLocker::should_discard(cause, gc_count_before)) {
2222
// Indicate failure to be consistent with VMOp failure due to
2223
// another collection slipping in after our gc_count but before
2224
// our request is processed.
2225
return false;
2226
} else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2227
DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2228
2229
// Schedule a standard evacuation pause. We're setting word_size
2230
// to 0 which means that we are not requesting a post-GC allocation.
2231
VM_G1CollectForAllocation op(0, /* word_size */
2232
gc_count_before,
2233
cause,
2234
policy()->max_pause_time_ms());
2235
VMThread::execute(&op);
2236
return op.gc_succeeded();
2237
} else {
2238
// Schedule a Full GC.
2239
VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2240
VMThread::execute(&op);
2241
return op.gc_succeeded();
2242
}
2243
}
2244
2245
bool G1CollectedHeap::is_in(const void* p) const {
2246
return is_in_reserved(p) && _hrm.is_available(addr_to_region((HeapWord*)p));
2247
}
2248
2249
// Iteration functions.
2250
2251
// Iterates an ObjectClosure over all objects within a HeapRegion.
2252
2253
class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2254
ObjectClosure* _cl;
2255
public:
2256
IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2257
bool do_heap_region(HeapRegion* r) {
2258
if (!r->is_continues_humongous()) {
2259
r->object_iterate(_cl);
2260
}
2261
return false;
2262
}
2263
};
2264
2265
void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2266
IterateObjectClosureRegionClosure blk(cl);
2267
heap_region_iterate(&blk);
2268
}
2269
2270
class G1ParallelObjectIterator : public ParallelObjectIterator {
2271
private:
2272
G1CollectedHeap* _heap;
2273
HeapRegionClaimer _claimer;
2274
2275
public:
2276
G1ParallelObjectIterator(uint thread_num) :
2277
_heap(G1CollectedHeap::heap()),
2278
_claimer(thread_num == 0 ? G1CollectedHeap::heap()->workers()->active_workers() : thread_num) {}
2279
2280
virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
2281
_heap->object_iterate_parallel(cl, worker_id, &_claimer);
2282
}
2283
};
2284
2285
ParallelObjectIterator* G1CollectedHeap::parallel_object_iterator(uint thread_num) {
2286
return new G1ParallelObjectIterator(thread_num);
2287
}
2288
2289
void G1CollectedHeap::object_iterate_parallel(ObjectClosure* cl, uint worker_id, HeapRegionClaimer* claimer) {
2290
IterateObjectClosureRegionClosure blk(cl);
2291
heap_region_par_iterate_from_worker_offset(&blk, claimer, worker_id);
2292
}
2293
2294
void G1CollectedHeap::keep_alive(oop obj) {
2295
G1BarrierSet::enqueue(obj);
2296
}
2297
2298
void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2299
_hrm.iterate(cl);
2300
}
2301
2302
void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2303
HeapRegionClaimer *hrclaimer,
2304
uint worker_id) const {
2305
_hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2306
}
2307
2308
void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2309
HeapRegionClaimer *hrclaimer) const {
2310
_hrm.par_iterate(cl, hrclaimer, 0);
2311
}
2312
2313
void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2314
_collection_set.iterate(cl);
2315
}
2316
2317
void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2318
_collection_set.par_iterate(cl, hr_claimer, worker_id, workers()->active_workers());
2319
}
2320
2321
void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2322
_collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers());
2323
}
2324
2325
HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2326
HeapRegion* hr = heap_region_containing(addr);
2327
return hr->block_start(addr);
2328
}
2329
2330
bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2331
HeapRegion* hr = heap_region_containing(addr);
2332
return hr->block_is_obj(addr);
2333
}
2334
2335
size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2336
return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2337
}
2338
2339
size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2340
return _eden.length() * HeapRegion::GrainBytes;
2341
}
2342
2343
// For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2344
// must be equal to the humongous object limit.
2345
size_t G1CollectedHeap::max_tlab_size() const {
2346
return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2347
}
2348
2349
size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2350
return _allocator->unsafe_max_tlab_alloc();
2351
}
2352
2353
size_t G1CollectedHeap::max_capacity() const {
2354
return max_regions() * HeapRegion::GrainBytes;
2355
}
2356
2357
void G1CollectedHeap::prepare_for_verify() {
2358
_verifier->prepare_for_verify();
2359
}
2360
2361
void G1CollectedHeap::verify(VerifyOption vo) {
2362
_verifier->verify(vo);
2363
}
2364
2365
bool G1CollectedHeap::supports_concurrent_gc_breakpoints() const {
2366
return true;
2367
}
2368
2369
bool G1CollectedHeap::is_archived_object(oop object) const {
2370
return object != NULL && heap_region_containing(object)->is_archive();
2371
}
2372
2373
class PrintRegionClosure: public HeapRegionClosure {
2374
outputStream* _st;
2375
public:
2376
PrintRegionClosure(outputStream* st) : _st(st) {}
2377
bool do_heap_region(HeapRegion* r) {
2378
r->print_on(_st);
2379
return false;
2380
}
2381
};
2382
2383
bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2384
const HeapRegion* hr,
2385
const VerifyOption vo) const {
2386
switch (vo) {
2387
case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2388
case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2389
case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2390
default: ShouldNotReachHere();
2391
}
2392
return false; // keep some compilers happy
2393
}
2394
2395
bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2396
const VerifyOption vo) const {
2397
switch (vo) {
2398
case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2399
case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2400
case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2401
default: ShouldNotReachHere();
2402
}
2403
return false; // keep some compilers happy
2404
}
2405
2406
void G1CollectedHeap::print_heap_regions() const {
2407
LogTarget(Trace, gc, heap, region) lt;
2408
if (lt.is_enabled()) {
2409
LogStream ls(lt);
2410
print_regions_on(&ls);
2411
}
2412
}
2413
2414
void G1CollectedHeap::print_on(outputStream* st) const {
2415
size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2416
st->print(" %-20s", "garbage-first heap");
2417
st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2418
capacity()/K, heap_used/K);
2419
st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2420
p2i(_hrm.reserved().start()),
2421
p2i(_hrm.reserved().end()));
2422
st->cr();
2423
st->print(" region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2424
uint young_regions = young_regions_count();
2425
st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2426
(size_t) young_regions * HeapRegion::GrainBytes / K);
2427
uint survivor_regions = survivor_regions_count();
2428
st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2429
(size_t) survivor_regions * HeapRegion::GrainBytes / K);
2430
st->cr();
2431
if (_numa->is_enabled()) {
2432
uint num_nodes = _numa->num_active_nodes();
2433
st->print(" remaining free region(s) on each NUMA node: ");
2434
const int* node_ids = _numa->node_ids();
2435
for (uint node_index = 0; node_index < num_nodes; node_index++) {
2436
uint num_free_regions = _hrm.num_free_regions(node_index);
2437
st->print("%d=%u ", node_ids[node_index], num_free_regions);
2438
}
2439
st->cr();
2440
}
2441
MetaspaceUtils::print_on(st);
2442
}
2443
2444
void G1CollectedHeap::print_regions_on(outputStream* st) const {
2445
st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2446
"HS=humongous(starts), HC=humongous(continues), "
2447
"CS=collection set, F=free, "
2448
"OA=open archive, CA=closed archive, "
2449
"TAMS=top-at-mark-start (previous, next)");
2450
PrintRegionClosure blk(st);
2451
heap_region_iterate(&blk);
2452
}
2453
2454
void G1CollectedHeap::print_extended_on(outputStream* st) const {
2455
print_on(st);
2456
2457
// Print the per-region information.
2458
st->cr();
2459
print_regions_on(st);
2460
}
2461
2462
void G1CollectedHeap::print_on_error(outputStream* st) const {
2463
this->CollectedHeap::print_on_error(st);
2464
2465
if (_cm != NULL) {
2466
st->cr();
2467
_cm->print_on_error(st);
2468
}
2469
}
2470
2471
void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2472
workers()->threads_do(tc);
2473
tc->do_thread(_cm_thread);
2474
_cm->threads_do(tc);
2475
_cr->threads_do(tc);
2476
tc->do_thread(_service_thread);
2477
}
2478
2479
void G1CollectedHeap::print_tracing_info() const {
2480
rem_set()->print_summary_info();
2481
concurrent_mark()->print_summary_info();
2482
}
2483
2484
#ifndef PRODUCT
2485
// Helpful for debugging RSet issues.
2486
2487
class PrintRSetsClosure : public HeapRegionClosure {
2488
private:
2489
const char* _msg;
2490
size_t _occupied_sum;
2491
2492
public:
2493
bool do_heap_region(HeapRegion* r) {
2494
HeapRegionRemSet* hrrs = r->rem_set();
2495
size_t occupied = hrrs->occupied();
2496
_occupied_sum += occupied;
2497
2498
tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2499
if (occupied == 0) {
2500
tty->print_cr(" RSet is empty");
2501
} else {
2502
hrrs->print();
2503
}
2504
tty->print_cr("----------");
2505
return false;
2506
}
2507
2508
PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2509
tty->cr();
2510
tty->print_cr("========================================");
2511
tty->print_cr("%s", msg);
2512
tty->cr();
2513
}
2514
2515
~PrintRSetsClosure() {
2516
tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2517
tty->print_cr("========================================");
2518
tty->cr();
2519
}
2520
};
2521
2522
void G1CollectedHeap::print_cset_rsets() {
2523
PrintRSetsClosure cl("Printing CSet RSets");
2524
collection_set_iterate_all(&cl);
2525
}
2526
2527
void G1CollectedHeap::print_all_rsets() {
2528
PrintRSetsClosure cl("Printing All RSets");;
2529
heap_region_iterate(&cl);
2530
}
2531
#endif // PRODUCT
2532
2533
bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2534
return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2535
}
2536
2537
G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2538
2539
size_t eden_used_bytes = _eden.used_bytes();
2540
size_t survivor_used_bytes = _survivor.used_bytes();
2541
size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2542
2543
size_t eden_capacity_bytes =
2544
(policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2545
2546
VirtualSpaceSummary heap_summary = create_heap_space_summary();
2547
return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2548
eden_capacity_bytes, survivor_used_bytes, num_regions());
2549
}
2550
2551
G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2552
return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2553
stats->unused(), stats->used(), stats->region_end_waste(),
2554
stats->regions_filled(), stats->direct_allocated(),
2555
stats->failure_used(), stats->failure_waste());
2556
}
2557
2558
void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2559
const G1HeapSummary& heap_summary = create_g1_heap_summary();
2560
gc_tracer->report_gc_heap_summary(when, heap_summary);
2561
2562
const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2563
gc_tracer->report_metaspace_summary(when, metaspace_summary);
2564
}
2565
2566
void G1CollectedHeap::gc_prologue(bool full) {
2567
assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2568
2569
// This summary needs to be printed before incrementing total collections.
2570
rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2571
2572
// Update common counters.
2573
increment_total_collections(full /* full gc */);
2574
if (full || collector_state()->in_concurrent_start_gc()) {
2575
increment_old_marking_cycles_started();
2576
}
2577
2578
// Fill TLAB's and such
2579
{
2580
Ticks start = Ticks::now();
2581
ensure_parsability(true);
2582
Tickspan dt = Ticks::now() - start;
2583
phase_times()->record_prepare_tlab_time_ms(dt.seconds() * MILLIUNITS);
2584
}
2585
2586
if (!full) {
2587
// Flush dirty card queues to qset, so later phases don't need to account
2588
// for partially filled per-thread queues and such. Not needed for full
2589
// collections, which ignore those logs.
2590
Ticks start = Ticks::now();
2591
G1BarrierSet::dirty_card_queue_set().concatenate_logs();
2592
Tickspan dt = Ticks::now() - start;
2593
phase_times()->record_concatenate_dirty_card_logs_time_ms(dt.seconds() * MILLIUNITS);
2594
}
2595
}
2596
2597
void G1CollectedHeap::gc_epilogue(bool full) {
2598
// Update common counters.
2599
if (full) {
2600
// Update the number of full collections that have been completed.
2601
increment_old_marking_cycles_completed(false /* concurrent */, true /* liveness_completed */);
2602
}
2603
2604
// We are at the end of the GC. Total collections has already been increased.
2605
rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2606
2607
#if COMPILER2_OR_JVMCI
2608
assert(DerivedPointerTable::is_empty(), "derived pointer present");
2609
#endif
2610
2611
double start = os::elapsedTime();
2612
resize_all_tlabs();
2613
phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2614
2615
MemoryService::track_memory_usage();
2616
// We have just completed a GC. Update the soft reference
2617
// policy with the new heap occupancy
2618
Universe::heap()->update_capacity_and_used_at_gc();
2619
2620
// Print NUMA statistics.
2621
_numa->print_statistics();
2622
2623
_collection_pause_end = Ticks::now();
2624
}
2625
2626
uint G1CollectedHeap::uncommit_regions(uint region_limit) {
2627
return _hrm.uncommit_inactive_regions(region_limit);
2628
}
2629
2630
bool G1CollectedHeap::has_uncommittable_regions() {
2631
return _hrm.has_inactive_regions();
2632
}
2633
2634
void G1CollectedHeap::uncommit_regions_if_necessary() {
2635
if (has_uncommittable_regions()) {
2636
G1UncommitRegionTask::enqueue();
2637
}
2638
}
2639
2640
void G1CollectedHeap::verify_numa_regions(const char* desc) {
2641
LogTarget(Trace, gc, heap, verify) lt;
2642
2643
if (lt.is_enabled()) {
2644
LogStream ls(lt);
2645
// Iterate all heap regions to print matching between preferred numa id and actual numa id.
2646
G1NodeIndexCheckClosure cl(desc, _numa, &ls);
2647
heap_region_iterate(&cl);
2648
}
2649
}
2650
2651
HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2652
uint gc_count_before,
2653
bool* succeeded,
2654
GCCause::Cause gc_cause) {
2655
assert_heap_not_locked_and_not_at_safepoint();
2656
VM_G1CollectForAllocation op(word_size,
2657
gc_count_before,
2658
gc_cause,
2659
policy()->max_pause_time_ms());
2660
VMThread::execute(&op);
2661
2662
HeapWord* result = op.result();
2663
bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2664
assert(result == NULL || ret_succeeded,
2665
"the result should be NULL if the VM did not succeed");
2666
*succeeded = ret_succeeded;
2667
2668
assert_heap_not_locked();
2669
return result;
2670
}
2671
2672
void G1CollectedHeap::start_concurrent_cycle(bool concurrent_operation_is_full_mark) {
2673
assert(!_cm_thread->in_progress(), "Can not start concurrent operation while in progress");
2674
2675
MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2676
if (concurrent_operation_is_full_mark) {
2677
_cm->post_concurrent_mark_start();
2678
_cm_thread->start_full_mark();
2679
} else {
2680
_cm->post_concurrent_undo_start();
2681
_cm_thread->start_undo_mark();
2682
}
2683
CGC_lock->notify();
2684
}
2685
2686
bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2687
// We don't nominate objects with many remembered set entries, on
2688
// the assumption that such objects are likely still live.
2689
HeapRegionRemSet* rem_set = r->rem_set();
2690
2691
return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2692
rem_set->occupancy_less_or_equal_than(G1EagerReclaimRemSetThreshold) :
2693
G1EagerReclaimHumongousObjects && rem_set->is_empty();
2694
}
2695
2696
#ifndef PRODUCT
2697
void G1CollectedHeap::verify_region_attr_remset_update() {
2698
class VerifyRegionAttrRemSet : public HeapRegionClosure {
2699
public:
2700
virtual bool do_heap_region(HeapRegion* r) {
2701
G1CollectedHeap* g1h = G1CollectedHeap::heap();
2702
bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update();
2703
assert(r->rem_set()->is_tracked() == needs_remset_update,
2704
"Region %u remset tracking status (%s) different to region attribute (%s)",
2705
r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update));
2706
return false;
2707
}
2708
} cl;
2709
heap_region_iterate(&cl);
2710
}
2711
#endif
2712
2713
class VerifyRegionRemSetClosure : public HeapRegionClosure {
2714
public:
2715
bool do_heap_region(HeapRegion* hr) {
2716
if (!hr->is_archive() && !hr->is_continues_humongous()) {
2717
hr->verify_rem_set();
2718
}
2719
return false;
2720
}
2721
};
2722
2723
uint G1CollectedHeap::num_task_queues() const {
2724
return _task_queues->size();
2725
}
2726
2727
#if TASKQUEUE_STATS
2728
void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2729
st->print_raw_cr("GC Task Stats");
2730
st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2731
st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2732
}
2733
2734
void G1CollectedHeap::print_taskqueue_stats() const {
2735
if (!log_is_enabled(Trace, gc, task, stats)) {
2736
return;
2737
}
2738
Log(gc, task, stats) log;
2739
ResourceMark rm;
2740
LogStream ls(log.trace());
2741
outputStream* st = &ls;
2742
2743
print_taskqueue_stats_hdr(st);
2744
2745
TaskQueueStats totals;
2746
const uint n = num_task_queues();
2747
for (uint i = 0; i < n; ++i) {
2748
st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2749
totals += task_queue(i)->stats;
2750
}
2751
st->print_raw("tot "); totals.print(st); st->cr();
2752
2753
DEBUG_ONLY(totals.verify());
2754
}
2755
2756
void G1CollectedHeap::reset_taskqueue_stats() {
2757
const uint n = num_task_queues();
2758
for (uint i = 0; i < n; ++i) {
2759
task_queue(i)->stats.reset();
2760
}
2761
}
2762
#endif // TASKQUEUE_STATS
2763
2764
void G1CollectedHeap::wait_for_root_region_scanning() {
2765
double scan_wait_start = os::elapsedTime();
2766
// We have to wait until the CM threads finish scanning the
2767
// root regions as it's the only way to ensure that all the
2768
// objects on them have been correctly scanned before we start
2769
// moving them during the GC.
2770
bool waited = _cm->root_regions()->wait_until_scan_finished();
2771
double wait_time_ms = 0.0;
2772
if (waited) {
2773
double scan_wait_end = os::elapsedTime();
2774
wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2775
}
2776
phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2777
}
2778
2779
class G1PrintCollectionSetClosure : public HeapRegionClosure {
2780
private:
2781
G1HRPrinter* _hr_printer;
2782
public:
2783
G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2784
2785
virtual bool do_heap_region(HeapRegion* r) {
2786
_hr_printer->cset(r);
2787
return false;
2788
}
2789
};
2790
2791
void G1CollectedHeap::start_new_collection_set() {
2792
double start = os::elapsedTime();
2793
2794
collection_set()->start_incremental_building();
2795
2796
clear_region_attr();
2797
2798
guarantee(_eden.length() == 0, "eden should have been cleared");
2799
policy()->transfer_survivors_to_cset(survivor());
2800
2801
// We redo the verification but now wrt to the new CSet which
2802
// has just got initialized after the previous CSet was freed.
2803
_cm->verify_no_collection_set_oops();
2804
2805
phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2806
}
2807
2808
void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
2809
2810
_collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
2811
evacuation_info.set_collectionset_regions(collection_set()->region_length() +
2812
collection_set()->optional_region_length());
2813
2814
_cm->verify_no_collection_set_oops();
2815
2816
if (_hr_printer.is_active()) {
2817
G1PrintCollectionSetClosure cl(&_hr_printer);
2818
_collection_set.iterate(&cl);
2819
_collection_set.iterate_optional(&cl);
2820
}
2821
}
2822
2823
G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2824
if (collector_state()->in_concurrent_start_gc()) {
2825
return G1HeapVerifier::G1VerifyConcurrentStart;
2826
} else if (collector_state()->in_young_only_phase()) {
2827
return G1HeapVerifier::G1VerifyYoungNormal;
2828
} else {
2829
return G1HeapVerifier::G1VerifyMixed;
2830
}
2831
}
2832
2833
void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2834
if (VerifyRememberedSets) {
2835
log_info(gc, verify)("[Verifying RemSets before GC]");
2836
VerifyRegionRemSetClosure v_cl;
2837
heap_region_iterate(&v_cl);
2838
}
2839
_verifier->verify_before_gc(type);
2840
_verifier->check_bitmaps("GC Start");
2841
verify_numa_regions("GC Start");
2842
}
2843
2844
void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2845
if (VerifyRememberedSets) {
2846
log_info(gc, verify)("[Verifying RemSets after GC]");
2847
VerifyRegionRemSetClosure v_cl;
2848
heap_region_iterate(&v_cl);
2849
}
2850
_verifier->verify_after_gc(type);
2851
_verifier->check_bitmaps("GC End");
2852
verify_numa_regions("GC End");
2853
}
2854
2855
void G1CollectedHeap::expand_heap_after_young_collection(){
2856
size_t expand_bytes = _heap_sizing_policy->young_collection_expansion_amount();
2857
if (expand_bytes > 0) {
2858
// No need for an ergo logging here,
2859
// expansion_amount() does this when it returns a value > 0.
2860
double expand_ms = 0.0;
2861
if (!expand(expand_bytes, _workers, &expand_ms)) {
2862
// We failed to expand the heap. Cannot do anything about it.
2863
}
2864
phase_times()->record_expand_heap_time(expand_ms);
2865
}
2866
}
2867
2868
void G1CollectedHeap::set_young_gc_name(char* young_gc_name) {
2869
G1GCPauseType pause_type =
2870
// The strings for all Concurrent Start pauses are the same, so the parameter
2871
// does not matter here.
2872
collector_state()->young_gc_pause_type(false /* concurrent_operation_is_full_mark */);
2873
snprintf(young_gc_name,
2874
MaxYoungGCNameLength,
2875
"Pause Young (%s)",
2876
G1GCPauseTypeHelper::to_string(pause_type));
2877
}
2878
2879
bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2880
assert_at_safepoint_on_vm_thread();
2881
guarantee(!is_gc_active(), "collection is not reentrant");
2882
2883
if (GCLocker::check_active_before_gc()) {
2884
return false;
2885
}
2886
2887
do_collection_pause_at_safepoint_helper(target_pause_time_ms);
2888
return true;
2889
}
2890
2891
void G1CollectedHeap::gc_tracer_report_gc_start() {
2892
_gc_timer_stw->register_gc_start();
2893
_gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2894
}
2895
2896
void G1CollectedHeap::gc_tracer_report_gc_end(bool concurrent_operation_is_full_mark,
2897
G1EvacuationInfo& evacuation_info) {
2898
_gc_tracer_stw->report_evacuation_info(&evacuation_info);
2899
_gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
2900
2901
_gc_timer_stw->register_gc_end();
2902
_gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(),
2903
_gc_timer_stw->time_partitions());
2904
}
2905
2906
void G1CollectedHeap::do_collection_pause_at_safepoint_helper(double target_pause_time_ms) {
2907
GCIdMark gc_id_mark;
2908
2909
SvcGCMarker sgcm(SvcGCMarker::MINOR);
2910
ResourceMark rm;
2911
2912
policy()->note_gc_start();
2913
2914
gc_tracer_report_gc_start();
2915
2916
wait_for_root_region_scanning();
2917
2918
print_heap_before_gc();
2919
print_heap_regions();
2920
trace_heap_before_gc(_gc_tracer_stw);
2921
2922
_verifier->verify_region_sets_optional();
2923
_verifier->verify_dirty_young_regions();
2924
2925
// We should not be doing concurrent start unless the concurrent mark thread is running
2926
if (!_cm_thread->should_terminate()) {
2927
// This call will decide whether this pause is a concurrent start
2928
// pause. If it is, in_concurrent_start_gc() will return true
2929
// for the duration of this pause.
2930
policy()->decide_on_conc_mark_initiation();
2931
}
2932
2933
// We do not allow concurrent start to be piggy-backed on a mixed GC.
2934
assert(!collector_state()->in_concurrent_start_gc() ||
2935
collector_state()->in_young_only_phase(), "sanity");
2936
// We also do not allow mixed GCs during marking.
2937
assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2938
2939
// Record whether this pause may need to trigger a concurrent operation. Later,
2940
// when we signal the G1ConcurrentMarkThread, the collector state has already
2941
// been reset for the next pause.
2942
bool should_start_concurrent_mark_operation = collector_state()->in_concurrent_start_gc();
2943
bool concurrent_operation_is_full_mark = false;
2944
2945
// Inner scope for scope based logging, timers, and stats collection
2946
{
2947
G1EvacuationInfo evacuation_info;
2948
2949
GCTraceCPUTime tcpu;
2950
2951
char young_gc_name[MaxYoungGCNameLength];
2952
set_young_gc_name(young_gc_name);
2953
2954
GCTraceTime(Info, gc) tm(young_gc_name, NULL, gc_cause(), true);
2955
2956
uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
2957
workers()->active_workers(),
2958
Threads::number_of_non_daemon_threads());
2959
active_workers = workers()->update_active_workers(active_workers);
2960
log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2961
2962
G1MonitoringScope ms(g1mm(),
2963
false /* full_gc */,
2964
collector_state()->in_mixed_phase() /* all_memory_pools_affected */);
2965
2966
G1HeapTransition heap_transition(this);
2967
2968
{
2969
IsGCActiveMark x;
2970
2971
gc_prologue(false);
2972
2973
G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
2974
verify_before_young_collection(verify_type);
2975
2976
{
2977
// The elapsed time induced by the start time below deliberately elides
2978
// the possible verification above.
2979
double sample_start_time_sec = os::elapsedTime();
2980
2981
// Please see comment in g1CollectedHeap.hpp and
2982
// G1CollectedHeap::ref_processing_init() to see how
2983
// reference processing currently works in G1.
2984
_ref_processor_stw->enable_discovery();
2985
2986
// We want to temporarily turn off discovery by the
2987
// CM ref processor, if necessary, and turn it back on
2988
// on again later if we do. Using a scoped
2989
// NoRefDiscovery object will do this.
2990
NoRefDiscovery no_cm_discovery(_ref_processor_cm);
2991
2992
policy()->record_collection_pause_start(sample_start_time_sec);
2993
2994
// Forget the current allocation region (we might even choose it to be part
2995
// of the collection set!).
2996
_allocator->release_mutator_alloc_regions();
2997
2998
calculate_collection_set(evacuation_info, target_pause_time_ms);
2999
3000
G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator());
3001
G1ParScanThreadStateSet per_thread_states(this,
3002
&rdcqs,
3003
workers()->active_workers(),
3004
collection_set()->young_region_length(),
3005
collection_set()->optional_region_length());
3006
pre_evacuate_collection_set(evacuation_info, &per_thread_states);
3007
3008
bool may_do_optional_evacuation = _collection_set.optional_region_length() != 0;
3009
// Actually do the work...
3010
evacuate_initial_collection_set(&per_thread_states, may_do_optional_evacuation);
3011
3012
if (may_do_optional_evacuation) {
3013
evacuate_optional_collection_set(&per_thread_states);
3014
}
3015
post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states);
3016
3017
start_new_collection_set();
3018
3019
_survivor_evac_stats.adjust_desired_plab_sz();
3020
_old_evac_stats.adjust_desired_plab_sz();
3021
3022
allocate_dummy_regions();
3023
3024
_allocator->init_mutator_alloc_regions();
3025
3026
expand_heap_after_young_collection();
3027
3028
// Refine the type of a concurrent mark operation now that we did the
3029
// evacuation, eventually aborting it.
3030
concurrent_operation_is_full_mark = policy()->concurrent_operation_is_full_mark("Revise IHOP");
3031
3032
// Need to report the collection pause now since record_collection_pause_end()
3033
// modifies it to the next state.
3034
_gc_tracer_stw->report_young_gc_pause(collector_state()->young_gc_pause_type(concurrent_operation_is_full_mark));
3035
3036
double sample_end_time_sec = os::elapsedTime();
3037
double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3038
policy()->record_collection_pause_end(pause_time_ms, concurrent_operation_is_full_mark);
3039
}
3040
3041
verify_after_young_collection(verify_type);
3042
3043
gc_epilogue(false);
3044
}
3045
3046
// Print the remainder of the GC log output.
3047
if (evacuation_failed()) {
3048
log_info(gc)("To-space exhausted");
3049
}
3050
3051
policy()->print_phases();
3052
heap_transition.print();
3053
3054
_hrm.verify_optional();
3055
_verifier->verify_region_sets_optional();
3056
3057
TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3058
TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3059
3060
print_heap_after_gc();
3061
print_heap_regions();
3062
trace_heap_after_gc(_gc_tracer_stw);
3063
3064
// We must call G1MonitoringSupport::update_sizes() in the same scoping level
3065
// as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3066
// TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3067
// before any GC notifications are raised.
3068
g1mm()->update_sizes();
3069
3070
gc_tracer_report_gc_end(concurrent_operation_is_full_mark, evacuation_info);
3071
}
3072
// It should now be safe to tell the concurrent mark thread to start
3073
// without its logging output interfering with the logging output
3074
// that came from the pause.
3075
3076
if (should_start_concurrent_mark_operation) {
3077
// CAUTION: after the start_concurrent_cycle() call below, the concurrent marking
3078
// thread(s) could be running concurrently with us. Make sure that anything
3079
// after this point does not assume that we are the only GC thread running.
3080
// Note: of course, the actual marking work will not start until the safepoint
3081
// itself is released in SuspendibleThreadSet::desynchronize().
3082
start_concurrent_cycle(concurrent_operation_is_full_mark);
3083
ConcurrentGCBreakpoints::notify_idle_to_active();
3084
}
3085
}
3086
3087
void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) {
3088
_evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3089
_preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3090
}
3091
3092
bool G1ParEvacuateFollowersClosure::offer_termination() {
3093
EventGCPhaseParallel event;
3094
G1ParScanThreadState* const pss = par_scan_state();
3095
start_term_time();
3096
const bool res = (terminator() == nullptr) ? true : terminator()->offer_termination();
3097
end_term_time();
3098
event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3099
return res;
3100
}
3101
3102
void G1ParEvacuateFollowersClosure::do_void() {
3103
EventGCPhaseParallel event;
3104
G1ParScanThreadState* const pss = par_scan_state();
3105
pss->trim_queue();
3106
event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3107
do {
3108
EventGCPhaseParallel event;
3109
pss->steal_and_trim_queue(queues());
3110
event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3111
} while (!offer_termination());
3112
}
3113
3114
void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3115
bool class_unloading_occurred) {
3116
uint num_workers = workers()->active_workers();
3117
G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred);
3118
workers()->run_task(&unlink_task);
3119
}
3120
3121
// Weak Reference Processing support
3122
3123
bool G1STWIsAliveClosure::do_object_b(oop p) {
3124
// An object is reachable if it is outside the collection set,
3125
// or is inside and copied.
3126
return !_g1h->is_in_cset(p) || p->is_forwarded();
3127
}
3128
3129
bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3130
assert(obj != NULL, "must not be NULL");
3131
assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3132
// The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3133
// may falsely indicate that this is not the case here: however the collection set only
3134
// contains old regions when concurrent mark is not running.
3135
return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3136
}
3137
3138
// Non Copying Keep Alive closure
3139
class G1KeepAliveClosure: public OopClosure {
3140
G1CollectedHeap*_g1h;
3141
public:
3142
G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3143
void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3144
void do_oop(oop* p) {
3145
oop obj = *p;
3146
assert(obj != NULL, "the caller should have filtered out NULL values");
3147
3148
const G1HeapRegionAttr region_attr =_g1h->region_attr(obj);
3149
if (!region_attr.is_in_cset_or_humongous()) {
3150
return;
3151
}
3152
if (region_attr.is_in_cset()) {
3153
assert( obj->is_forwarded(), "invariant" );
3154
*p = obj->forwardee();
3155
} else {
3156
assert(!obj->is_forwarded(), "invariant" );
3157
assert(region_attr.is_humongous(),
3158
"Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type());
3159
_g1h->set_humongous_is_live(obj);
3160
}
3161
}
3162
};
3163
3164
// Copying Keep Alive closure - can be called from both
3165
// serial and parallel code as long as different worker
3166
// threads utilize different G1ParScanThreadState instances
3167
// and different queues.
3168
3169
class G1CopyingKeepAliveClosure: public OopClosure {
3170
G1CollectedHeap* _g1h;
3171
G1ParScanThreadState* _par_scan_state;
3172
3173
public:
3174
G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3175
G1ParScanThreadState* pss):
3176
_g1h(g1h),
3177
_par_scan_state(pss)
3178
{}
3179
3180
virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3181
virtual void do_oop( oop* p) { do_oop_work(p); }
3182
3183
template <class T> void do_oop_work(T* p) {
3184
oop obj = RawAccess<>::oop_load(p);
3185
3186
if (_g1h->is_in_cset_or_humongous(obj)) {
3187
// If the referent object has been forwarded (either copied
3188
// to a new location or to itself in the event of an
3189
// evacuation failure) then we need to update the reference
3190
// field and, if both reference and referent are in the G1
3191
// heap, update the RSet for the referent.
3192
//
3193
// If the referent has not been forwarded then we have to keep
3194
// it alive by policy. Therefore we have copy the referent.
3195
//
3196
// When the queue is drained (after each phase of reference processing)
3197
// the object and it's followers will be copied, the reference field set
3198
// to point to the new location, and the RSet updated.
3199
_par_scan_state->push_on_queue(ScannerTask(p));
3200
}
3201
}
3202
};
3203
3204
// Serial drain queue closure. Called as the 'complete_gc'
3205
// closure for each discovered list in some of the
3206
// reference processing phases.
3207
3208
class G1STWDrainQueueClosure: public VoidClosure {
3209
protected:
3210
G1CollectedHeap* _g1h;
3211
G1ParScanThreadState* _par_scan_state;
3212
3213
G1ParScanThreadState* par_scan_state() { return _par_scan_state; }
3214
3215
public:
3216
G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3217
_g1h(g1h),
3218
_par_scan_state(pss)
3219
{ }
3220
3221
void do_void() {
3222
G1ParScanThreadState* const pss = par_scan_state();
3223
pss->trim_queue();
3224
}
3225
};
3226
3227
class G1STWRefProcProxyTask : public RefProcProxyTask {
3228
G1CollectedHeap& _g1h;
3229
G1ParScanThreadStateSet& _pss;
3230
TaskTerminator _terminator;
3231
G1ScannerTasksQueueSet& _task_queues;
3232
3233
public:
3234
G1STWRefProcProxyTask(uint max_workers, G1CollectedHeap& g1h, G1ParScanThreadStateSet& pss, G1ScannerTasksQueueSet& task_queues)
3235
: RefProcProxyTask("G1STWRefProcProxyTask", max_workers),
3236
_g1h(g1h),
3237
_pss(pss),
3238
_terminator(max_workers, &task_queues),
3239
_task_queues(task_queues) {}
3240
3241
void work(uint worker_id) override {
3242
assert(worker_id < _max_workers, "sanity");
3243
uint index = (_tm == RefProcThreadModel::Single) ? 0 : worker_id;
3244
_pss.state_for_worker(index)->set_ref_discoverer(nullptr);
3245
G1STWIsAliveClosure is_alive(&_g1h);
3246
G1CopyingKeepAliveClosure keep_alive(&_g1h, _pss.state_for_worker(index));
3247
G1ParEvacuateFollowersClosure complete_gc(&_g1h, _pss.state_for_worker(index), &_task_queues, _tm == RefProcThreadModel::Single ? nullptr : &_terminator, G1GCPhaseTimes::ObjCopy);
3248
_rp_task->rp_work(worker_id, &is_alive, &keep_alive, &complete_gc);
3249
}
3250
3251
void prepare_run_task_hook() override {
3252
_terminator.reset_for_reuse(_queue_count);
3253
}
3254
};
3255
3256
// End of weak reference support closures
3257
3258
void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3259
double ref_proc_start = os::elapsedTime();
3260
3261
ReferenceProcessor* rp = _ref_processor_stw;
3262
assert(rp->discovery_enabled(), "should have been enabled");
3263
3264
// Use only a single queue for this PSS.
3265
G1ParScanThreadState* pss = per_thread_states->state_for_worker(0);
3266
pss->set_ref_discoverer(NULL);
3267
assert(pss->queue_is_empty(), "pre-condition");
3268
3269
// Setup the soft refs policy...
3270
rp->setup_policy(false);
3271
3272
ReferenceProcessorPhaseTimes& pt = *phase_times()->ref_phase_times();
3273
3274
ReferenceProcessorStats stats;
3275
uint no_of_gc_workers = workers()->active_workers();
3276
3277
// Parallel reference processing
3278
assert(no_of_gc_workers <= rp->max_num_queues(),
3279
"Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3280
no_of_gc_workers, rp->max_num_queues());
3281
3282
rp->set_active_mt_degree(no_of_gc_workers);
3283
G1STWRefProcProxyTask task(rp->max_num_queues(), *this, *per_thread_states, *_task_queues);
3284
stats = rp->process_discovered_references(task, pt);
3285
3286
_gc_tracer_stw->report_gc_reference_stats(stats);
3287
3288
// We have completed copying any necessary live referent objects.
3289
assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3290
3291
make_pending_list_reachable();
3292
3293
assert(!rp->discovery_enabled(), "Postcondition");
3294
rp->verify_no_references_recorded();
3295
3296
double ref_proc_time = os::elapsedTime() - ref_proc_start;
3297
phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3298
}
3299
3300
void G1CollectedHeap::make_pending_list_reachable() {
3301
if (collector_state()->in_concurrent_start_gc()) {
3302
oop pll_head = Universe::reference_pending_list();
3303
if (pll_head != NULL) {
3304
// Any valid worker id is fine here as we are in the VM thread and single-threaded.
3305
_cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3306
}
3307
}
3308
}
3309
3310
static bool do_humongous_object_logging() {
3311
return log_is_enabled(Debug, gc, humongous);
3312
}
3313
3314
bool G1CollectedHeap::should_do_eager_reclaim() const {
3315
// As eager reclaim logging also gives information about humongous objects in
3316
// the heap in general, always do the eager reclaim pass even without known
3317
// candidates.
3318
return (G1EagerReclaimHumongousObjects &&
3319
(has_humongous_reclaim_candidates() || do_humongous_object_logging()));
3320
}
3321
3322
class G1PrepareEvacuationTask : public AbstractGangTask {
3323
class G1PrepareRegionsClosure : public HeapRegionClosure {
3324
G1CollectedHeap* _g1h;
3325
G1PrepareEvacuationTask* _parent_task;
3326
uint _worker_humongous_total;
3327
uint _worker_humongous_candidates;
3328
3329
bool humongous_region_is_candidate(HeapRegion* region) const {
3330
assert(region->is_starts_humongous(), "Must start a humongous object");
3331
3332
oop obj = cast_to_oop(region->bottom());
3333
3334
// Dead objects cannot be eager reclaim candidates. Due to class
3335
// unloading it is unsafe to query their classes so we return early.
3336
if (_g1h->is_obj_dead(obj, region)) {
3337
return false;
3338
}
3339
3340
// If we do not have a complete remembered set for the region, then we can
3341
// not be sure that we have all references to it.
3342
if (!region->rem_set()->is_complete()) {
3343
return false;
3344
}
3345
// Candidate selection must satisfy the following constraints
3346
// while concurrent marking is in progress:
3347
//
3348
// * In order to maintain SATB invariants, an object must not be
3349
// reclaimed if it was allocated before the start of marking and
3350
// has not had its references scanned. Such an object must have
3351
// its references (including type metadata) scanned to ensure no
3352
// live objects are missed by the marking process. Objects
3353
// allocated after the start of concurrent marking don't need to
3354
// be scanned.
3355
//
3356
// * An object must not be reclaimed if it is on the concurrent
3357
// mark stack. Objects allocated after the start of concurrent
3358
// marking are never pushed on the mark stack.
3359
//
3360
// Nominating only objects allocated after the start of concurrent
3361
// marking is sufficient to meet both constraints. This may miss
3362
// some objects that satisfy the constraints, but the marking data
3363
// structures don't support efficiently performing the needed
3364
// additional tests or scrubbing of the mark stack.
3365
//
3366
// However, we presently only nominate is_typeArray() objects.
3367
// A humongous object containing references induces remembered
3368
// set entries on other regions. In order to reclaim such an
3369
// object, those remembered sets would need to be cleaned up.
3370
//
3371
// We also treat is_typeArray() objects specially, allowing them
3372
// to be reclaimed even if allocated before the start of
3373
// concurrent mark. For this we rely on mark stack insertion to
3374
// exclude is_typeArray() objects, preventing reclaiming an object
3375
// that is in the mark stack. We also rely on the metadata for
3376
// such objects to be built-in and so ensured to be kept live.
3377
// Frequent allocation and drop of large binary blobs is an
3378
// important use case for eager reclaim, and this special handling
3379
// may reduce needed headroom.
3380
3381
return obj->is_typeArray() &&
3382
_g1h->is_potential_eager_reclaim_candidate(region);
3383
}
3384
3385
public:
3386
G1PrepareRegionsClosure(G1CollectedHeap* g1h, G1PrepareEvacuationTask* parent_task) :
3387
_g1h(g1h),
3388
_parent_task(parent_task),
3389
_worker_humongous_total(0),
3390
_worker_humongous_candidates(0) { }
3391
3392
~G1PrepareRegionsClosure() {
3393
_parent_task->add_humongous_candidates(_worker_humongous_candidates);
3394
_parent_task->add_humongous_total(_worker_humongous_total);
3395
}
3396
3397
virtual bool do_heap_region(HeapRegion* hr) {
3398
// First prepare the region for scanning
3399
_g1h->rem_set()->prepare_region_for_scan(hr);
3400
3401
// Now check if region is a humongous candidate
3402
if (!hr->is_starts_humongous()) {
3403
_g1h->register_region_with_region_attr(hr);
3404
return false;
3405
}
3406
3407
uint index = hr->hrm_index();
3408
if (humongous_region_is_candidate(hr)) {
3409
_g1h->set_humongous_reclaim_candidate(index, true);
3410
_g1h->register_humongous_region_with_region_attr(index);
3411
_worker_humongous_candidates++;
3412
// We will later handle the remembered sets of these regions.
3413
} else {
3414
_g1h->set_humongous_reclaim_candidate(index, false);
3415
_g1h->register_region_with_region_attr(hr);
3416
}
3417
log_debug(gc, humongous)("Humongous region %u (object size " SIZE_FORMAT " @ " PTR_FORMAT ") remset " SIZE_FORMAT " code roots " SIZE_FORMAT " marked %d reclaim candidate %d type array %d",
3418
index,
3419
(size_t)cast_to_oop(hr->bottom())->size() * HeapWordSize,
3420
p2i(hr->bottom()),
3421
hr->rem_set()->occupied(),
3422
hr->rem_set()->strong_code_roots_list_length(),
3423
_g1h->concurrent_mark()->next_mark_bitmap()->is_marked(hr->bottom()),
3424
_g1h->is_humongous_reclaim_candidate(index),
3425
cast_to_oop(hr->bottom())->is_typeArray()
3426
);
3427
_worker_humongous_total++;
3428
3429
return false;
3430
}
3431
};
3432
3433
G1CollectedHeap* _g1h;
3434
HeapRegionClaimer _claimer;
3435
volatile uint _humongous_total;
3436
volatile uint _humongous_candidates;
3437
public:
3438
G1PrepareEvacuationTask(G1CollectedHeap* g1h) :
3439
AbstractGangTask("Prepare Evacuation"),
3440
_g1h(g1h),
3441
_claimer(_g1h->workers()->active_workers()),
3442
_humongous_total(0),
3443
_humongous_candidates(0) { }
3444
3445
void work(uint worker_id) {
3446
G1PrepareRegionsClosure cl(_g1h, this);
3447
_g1h->heap_region_par_iterate_from_worker_offset(&cl, &_claimer, worker_id);
3448
}
3449
3450
void add_humongous_candidates(uint candidates) {
3451
Atomic::add(&_humongous_candidates, candidates);
3452
}
3453
3454
void add_humongous_total(uint total) {
3455
Atomic::add(&_humongous_total, total);
3456
}
3457
3458
uint humongous_candidates() {
3459
return _humongous_candidates;
3460
}
3461
3462
uint humongous_total() {
3463
return _humongous_total;
3464
}
3465
};
3466
3467
void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3468
_bytes_used_during_gc = 0;
3469
3470
_expand_heap_after_alloc_failure = true;
3471
Atomic::store(&_num_regions_failed_evacuation, 0u);
3472
3473
memset((void*)_regions_failed_evacuation, false, sizeof(bool) * max_regions());
3474
3475
// Disable the hot card cache.
3476
_hot_card_cache->reset_hot_cache_claimed_index();
3477
_hot_card_cache->set_use_cache(false);
3478
3479
// Initialize the GC alloc regions.
3480
_allocator->init_gc_alloc_regions(evacuation_info);
3481
3482
{
3483
Ticks start = Ticks::now();
3484
rem_set()->prepare_for_scan_heap_roots();
3485
phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0);
3486
}
3487
3488
{
3489
G1PrepareEvacuationTask g1_prep_task(this);
3490
Tickspan task_time = run_task_timed(&g1_prep_task);
3491
3492
phase_times()->record_register_regions(task_time.seconds() * 1000.0);
3493
_num_humongous_objects = g1_prep_task.humongous_total();
3494
_num_humongous_reclaim_candidates = g1_prep_task.humongous_candidates();
3495
}
3496
3497
assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table.");
3498
_preserved_marks_set.assert_empty();
3499
3500
#if COMPILER2_OR_JVMCI
3501
DerivedPointerTable::clear();
3502
#endif
3503
3504
// Concurrent start needs claim bits to keep track of the marked-through CLDs.
3505
if (collector_state()->in_concurrent_start_gc()) {
3506
concurrent_mark()->pre_concurrent_start(gc_cause());
3507
3508
double start_clear_claimed_marks = os::elapsedTime();
3509
3510
ClassLoaderDataGraph::clear_claimed_marks();
3511
3512
double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3513
phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3514
}
3515
3516
// Should G1EvacuationFailureALot be in effect for this GC?
3517
NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3518
}
3519
3520
class G1EvacuateRegionsBaseTask : public AbstractGangTask {
3521
protected:
3522
G1CollectedHeap* _g1h;
3523
G1ParScanThreadStateSet* _per_thread_states;
3524
G1ScannerTasksQueueSet* _task_queues;
3525
TaskTerminator _terminator;
3526
uint _num_workers;
3527
3528
void evacuate_live_objects(G1ParScanThreadState* pss,
3529
uint worker_id,
3530
G1GCPhaseTimes::GCParPhases objcopy_phase,
3531
G1GCPhaseTimes::GCParPhases termination_phase) {
3532
G1GCPhaseTimes* p = _g1h->phase_times();
3533
3534
Ticks start = Ticks::now();
3535
G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, &_terminator, objcopy_phase);
3536
cl.do_void();
3537
3538
assert(pss->queue_is_empty(), "should be empty");
3539
3540
Tickspan evac_time = (Ticks::now() - start);
3541
p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
3542
3543
if (termination_phase == G1GCPhaseTimes::Termination) {
3544
p->record_time_secs(termination_phase, worker_id, cl.term_time());
3545
p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3546
} else {
3547
p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
3548
p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3549
}
3550
assert(pss->trim_ticks().value() == 0,
3551
"Unexpected partial trimming during evacuation value " JLONG_FORMAT,
3552
pss->trim_ticks().value());
3553
}
3554
3555
virtual void start_work(uint worker_id) { }
3556
3557
virtual void end_work(uint worker_id) { }
3558
3559
virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
3560
3561
virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
3562
3563
public:
3564
G1EvacuateRegionsBaseTask(const char* name,
3565
G1ParScanThreadStateSet* per_thread_states,
3566
G1ScannerTasksQueueSet* task_queues,
3567
uint num_workers) :
3568
AbstractGangTask(name),
3569
_g1h(G1CollectedHeap::heap()),
3570
_per_thread_states(per_thread_states),
3571
_task_queues(task_queues),
3572
_terminator(num_workers, _task_queues),
3573
_num_workers(num_workers)
3574
{ }
3575
3576
void work(uint worker_id) {
3577
start_work(worker_id);
3578
3579
{
3580
ResourceMark rm;
3581
3582
G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3583
pss->set_ref_discoverer(_g1h->ref_processor_stw());
3584
3585
scan_roots(pss, worker_id);
3586
evacuate_live_objects(pss, worker_id);
3587
}
3588
3589
end_work(worker_id);
3590
}
3591
};
3592
3593
class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
3594
G1RootProcessor* _root_processor;
3595
bool _has_optional_evacuation_work;
3596
3597
void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3598
_root_processor->evacuate_roots(pss, worker_id);
3599
_g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy, _has_optional_evacuation_work);
3600
_g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy);
3601
}
3602
3603
void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3604
G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
3605
}
3606
3607
void start_work(uint worker_id) {
3608
_g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
3609
}
3610
3611
void end_work(uint worker_id) {
3612
_g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
3613
}
3614
3615
public:
3616
G1EvacuateRegionsTask(G1CollectedHeap* g1h,
3617
G1ParScanThreadStateSet* per_thread_states,
3618
G1ScannerTasksQueueSet* task_queues,
3619
G1RootProcessor* root_processor,
3620
uint num_workers,
3621
bool has_optional_evacuation_work) :
3622
G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
3623
_root_processor(root_processor),
3624
_has_optional_evacuation_work(has_optional_evacuation_work)
3625
{ }
3626
};
3627
3628
void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states,
3629
bool has_optional_evacuation_work) {
3630
G1GCPhaseTimes* p = phase_times();
3631
3632
{
3633
Ticks start = Ticks::now();
3634
rem_set()->merge_heap_roots(true /* initial_evacuation */);
3635
p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3636
}
3637
3638
Tickspan task_time;
3639
const uint num_workers = workers()->active_workers();
3640
3641
Ticks start_processing = Ticks::now();
3642
{
3643
G1RootProcessor root_processor(this, num_workers);
3644
G1EvacuateRegionsTask g1_par_task(this,
3645
per_thread_states,
3646
_task_queues,
3647
&root_processor,
3648
num_workers,
3649
has_optional_evacuation_work);
3650
task_time = run_task_timed(&g1_par_task);
3651
// Closing the inner scope will execute the destructor for the G1RootProcessor object.
3652
// To extract its code root fixup time we measure total time of this scope and
3653
// subtract from the time the WorkGang task took.
3654
}
3655
Tickspan total_processing = Ticks::now() - start_processing;
3656
3657
p->record_initial_evac_time(task_time.seconds() * 1000.0);
3658
p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3659
3660
rem_set()->complete_evac_phase(has_optional_evacuation_work);
3661
}
3662
3663
class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
3664
3665
void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3666
_g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy, true /* remember_already_scanned_cards */);
3667
_g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy);
3668
}
3669
3670
void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3671
G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
3672
}
3673
3674
public:
3675
G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
3676
G1ScannerTasksQueueSet* queues,
3677
uint num_workers) :
3678
G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
3679
}
3680
};
3681
3682
void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
3683
class G1MarkScope : public MarkScope { };
3684
3685
Tickspan task_time;
3686
3687
Ticks start_processing = Ticks::now();
3688
{
3689
G1MarkScope code_mark_scope;
3690
G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
3691
task_time = run_task_timed(&task);
3692
// See comment in evacuate_collection_set() for the reason of the scope.
3693
}
3694
Tickspan total_processing = Ticks::now() - start_processing;
3695
3696
G1GCPhaseTimes* p = phase_times();
3697
p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3698
}
3699
3700
void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3701
const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3702
3703
while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
3704
3705
double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3706
double time_left_ms = MaxGCPauseMillis - time_used_ms;
3707
3708
if (time_left_ms < 0 ||
3709
!_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
3710
log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
3711
_collection_set.optional_region_length(), time_left_ms);
3712
break;
3713
}
3714
3715
{
3716
Ticks start = Ticks::now();
3717
rem_set()->merge_heap_roots(false /* initial_evacuation */);
3718
phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3719
}
3720
3721
{
3722
Ticks start = Ticks::now();
3723
evacuate_next_optional_regions(per_thread_states);
3724
phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0);
3725
}
3726
3727
rem_set()->complete_evac_phase(true /* has_more_than_one_evacuation_phase */);
3728
}
3729
3730
_collection_set.abandon_optional_collection_set(per_thread_states);
3731
}
3732
3733
void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
3734
G1RedirtyCardsQueueSet* rdcqs,
3735
G1ParScanThreadStateSet* per_thread_states) {
3736
G1GCPhaseTimes* p = phase_times();
3737
3738
// Process any discovered reference objects - we have
3739
// to do this _before_ we retire the GC alloc regions
3740
// as we may have to copy some 'reachable' referent
3741
// objects (and their reachable sub-graphs) that were
3742
// not copied during the pause.
3743
process_discovered_references(per_thread_states);
3744
3745
G1STWIsAliveClosure is_alive(this);
3746
G1KeepAliveClosure keep_alive(this);
3747
3748
WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive, p->weak_phase_times());
3749
3750
_allocator->release_gc_alloc_regions(evacuation_info);
3751
3752
post_evacuate_cleanup_1(per_thread_states, rdcqs);
3753
3754
post_evacuate_cleanup_2(&_preserved_marks_set, rdcqs, &evacuation_info, per_thread_states->surviving_young_words());
3755
3756
assert_used_and_recalculate_used_equal(this);
3757
3758
rebuild_free_region_list();
3759
3760
record_obj_copy_mem_stats();
3761
3762
evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3763
evacuation_info.set_bytes_used(_bytes_used_during_gc);
3764
3765
policy()->print_age_table();
3766
}
3767
3768
void G1CollectedHeap::record_obj_copy_mem_stats() {
3769
policy()->old_gen_alloc_tracker()->
3770
add_allocated_bytes_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
3771
3772
_gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
3773
create_g1_evac_summary(&_old_evac_stats));
3774
}
3775
3776
void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) {
3777
assert(!hr->is_free(), "the region should not be free");
3778
assert(!hr->is_empty(), "the region should not be empty");
3779
assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
3780
3781
if (G1VerifyBitmaps) {
3782
MemRegion mr(hr->bottom(), hr->end());
3783
concurrent_mark()->clear_range_in_prev_bitmap(mr);
3784
}
3785
3786
// Clear the card counts for this region.
3787
// Note: we only need to do this if the region is not young
3788
// (since we don't refine cards in young regions).
3789
if (!hr->is_young()) {
3790
_hot_card_cache->reset_card_counts(hr);
3791
}
3792
3793
// Reset region metadata to allow reuse.
3794
hr->hr_clear(true /* clear_space */);
3795
_policy->remset_tracker()->update_at_free(hr);
3796
3797
if (free_list != NULL) {
3798
free_list->add_ordered(hr);
3799
}
3800
}
3801
3802
void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
3803
FreeRegionList* free_list) {
3804
assert(hr->is_humongous(), "this is only for humongous regions");
3805
hr->clear_humongous();
3806
free_region(hr, free_list);
3807
}
3808
3809
void G1CollectedHeap::remove_from_old_gen_sets(const uint old_regions_removed,
3810
const uint archive_regions_removed,
3811
const uint humongous_regions_removed) {
3812
if (old_regions_removed > 0 || archive_regions_removed > 0 || humongous_regions_removed > 0) {
3813
MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
3814
_old_set.bulk_remove(old_regions_removed);
3815
_archive_set.bulk_remove(archive_regions_removed);
3816
_humongous_set.bulk_remove(humongous_regions_removed);
3817
}
3818
3819
}
3820
3821
void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
3822
assert(list != NULL, "list can't be null");
3823
if (!list->is_empty()) {
3824
MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
3825
_hrm.insert_list_into_free_list(list);
3826
}
3827
}
3828
3829
void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
3830
decrease_used(bytes);
3831
}
3832
3833
void G1CollectedHeap::post_evacuate_cleanup_1(G1ParScanThreadStateSet* per_thread_states,
3834
G1RedirtyCardsQueueSet* rdcqs) {
3835
Ticks start = Ticks::now();
3836
{
3837
G1PostEvacuateCollectionSetCleanupTask1 cl(per_thread_states, rdcqs);
3838
run_batch_task(&cl);
3839
}
3840
phase_times()->record_post_evacuate_cleanup_task_1_time((Ticks::now() - start).seconds() * 1000.0);
3841
}
3842
3843
void G1CollectedHeap::post_evacuate_cleanup_2(PreservedMarksSet* preserved_marks,
3844
G1RedirtyCardsQueueSet* rdcqs,
3845
G1EvacuationInfo* evacuation_info,
3846
const size_t* surviving_young_words) {
3847
Ticks start = Ticks::now();
3848
{
3849
G1PostEvacuateCollectionSetCleanupTask2 cl(preserved_marks, rdcqs, evacuation_info, surviving_young_words);
3850
run_batch_task(&cl);
3851
}
3852
phase_times()->record_post_evacuate_cleanup_task_2_time((Ticks::now() - start).seconds() * 1000.0);
3853
}
3854
3855
void G1CollectedHeap::clear_eden() {
3856
_eden.clear();
3857
}
3858
3859
void G1CollectedHeap::clear_collection_set() {
3860
collection_set()->clear();
3861
}
3862
3863
void G1CollectedHeap::rebuild_free_region_list() {
3864
Ticks start = Ticks::now();
3865
_hrm.rebuild_free_list(workers());
3866
phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - start).seconds() * 1000.0);
3867
}
3868
3869
class G1AbandonCollectionSetClosure : public HeapRegionClosure {
3870
public:
3871
virtual bool do_heap_region(HeapRegion* r) {
3872
assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
3873
G1CollectedHeap::heap()->clear_region_attr(r);
3874
r->clear_young_index_in_cset();
3875
return false;
3876
}
3877
};
3878
3879
void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
3880
G1AbandonCollectionSetClosure cl;
3881
collection_set_iterate_all(&cl);
3882
3883
collection_set->clear();
3884
collection_set->stop_incremental_building();
3885
}
3886
3887
bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
3888
return _allocator->is_retained_old_region(hr);
3889
}
3890
3891
void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
3892
_eden.add(hr);
3893
_policy->set_region_eden(hr);
3894
}
3895
3896
#ifdef ASSERT
3897
3898
class NoYoungRegionsClosure: public HeapRegionClosure {
3899
private:
3900
bool _success;
3901
public:
3902
NoYoungRegionsClosure() : _success(true) { }
3903
bool do_heap_region(HeapRegion* r) {
3904
if (r->is_young()) {
3905
log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
3906
p2i(r->bottom()), p2i(r->end()));
3907
_success = false;
3908
}
3909
return false;
3910
}
3911
bool success() { return _success; }
3912
};
3913
3914
bool G1CollectedHeap::check_young_list_empty() {
3915
bool ret = (young_regions_count() == 0);
3916
3917
NoYoungRegionsClosure closure;
3918
heap_region_iterate(&closure);
3919
ret = ret && closure.success();
3920
3921
return ret;
3922
}
3923
3924
#endif // ASSERT
3925
3926
// Remove the given HeapRegion from the appropriate region set.
3927
void G1CollectedHeap::prepare_region_for_full_compaction(HeapRegion* hr) {
3928
if (hr->is_archive()) {
3929
_archive_set.remove(hr);
3930
} else if (hr->is_humongous()) {
3931
_humongous_set.remove(hr);
3932
} else if (hr->is_old()) {
3933
_old_set.remove(hr);
3934
} else if (hr->is_young()) {
3935
// Note that emptying the eden and survivor lists is postponed and instead
3936
// done as the first step when rebuilding the regions sets again. The reason
3937
// for this is that during a full GC string deduplication needs to know if
3938
// a collected region was young or old when the full GC was initiated.
3939
hr->uninstall_surv_rate_group();
3940
} else {
3941
// We ignore free regions, we'll empty the free list afterwards.
3942
assert(hr->is_free(), "it cannot be another type");
3943
}
3944
}
3945
3946
void G1CollectedHeap::increase_used(size_t bytes) {
3947
_summary_bytes_used += bytes;
3948
}
3949
3950
void G1CollectedHeap::decrease_used(size_t bytes) {
3951
assert(_summary_bytes_used >= bytes,
3952
"invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
3953
_summary_bytes_used, bytes);
3954
_summary_bytes_used -= bytes;
3955
}
3956
3957
void G1CollectedHeap::set_used(size_t bytes) {
3958
_summary_bytes_used = bytes;
3959
}
3960
3961
class RebuildRegionSetsClosure : public HeapRegionClosure {
3962
private:
3963
bool _free_list_only;
3964
3965
HeapRegionSet* _old_set;
3966
HeapRegionSet* _archive_set;
3967
HeapRegionSet* _humongous_set;
3968
3969
HeapRegionManager* _hrm;
3970
3971
size_t _total_used;
3972
3973
public:
3974
RebuildRegionSetsClosure(bool free_list_only,
3975
HeapRegionSet* old_set,
3976
HeapRegionSet* archive_set,
3977
HeapRegionSet* humongous_set,
3978
HeapRegionManager* hrm) :
3979
_free_list_only(free_list_only), _old_set(old_set), _archive_set(archive_set),
3980
_humongous_set(humongous_set), _hrm(hrm), _total_used(0) {
3981
assert(_hrm->num_free_regions() == 0, "pre-condition");
3982
if (!free_list_only) {
3983
assert(_old_set->is_empty(), "pre-condition");
3984
assert(_archive_set->is_empty(), "pre-condition");
3985
assert(_humongous_set->is_empty(), "pre-condition");
3986
}
3987
}
3988
3989
bool do_heap_region(HeapRegion* r) {
3990
if (r->is_empty()) {
3991
assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
3992
// Add free regions to the free list
3993
r->set_free();
3994
_hrm->insert_into_free_list(r);
3995
} else if (!_free_list_only) {
3996
assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
3997
3998
if (r->is_humongous()) {
3999
_humongous_set->add(r);
4000
} else if (r->is_archive()) {
4001
_archive_set->add(r);
4002
} else {
4003
assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4004
// We now move all (non-humongous, non-old, non-archive) regions to old gen,
4005
// and register them as such.
4006
r->move_to_old();
4007
_old_set->add(r);
4008
}
4009
_total_used += r->used();
4010
}
4011
4012
return false;
4013
}
4014
4015
size_t total_used() {
4016
return _total_used;
4017
}
4018
};
4019
4020
void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4021
assert_at_safepoint_on_vm_thread();
4022
4023
if (!free_list_only) {
4024
_eden.clear();
4025
_survivor.clear();
4026
}
4027
4028
RebuildRegionSetsClosure cl(free_list_only,
4029
&_old_set, &_archive_set, &_humongous_set,
4030
&_hrm);
4031
heap_region_iterate(&cl);
4032
4033
if (!free_list_only) {
4034
set_used(cl.total_used());
4035
if (_archive_allocator != NULL) {
4036
_archive_allocator->clear_used();
4037
}
4038
}
4039
assert_used_and_recalculate_used_equal(this);
4040
}
4041
4042
// Methods for the mutator alloc region
4043
4044
HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4045
bool force,
4046
uint node_index) {
4047
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4048
bool should_allocate = policy()->should_allocate_mutator_region();
4049
if (force || should_allocate) {
4050
HeapRegion* new_alloc_region = new_region(word_size,
4051
HeapRegionType::Eden,
4052
false /* do_expand */,
4053
node_index);
4054
if (new_alloc_region != NULL) {
4055
set_region_short_lived_locked(new_alloc_region);
4056
_hr_printer.alloc(new_alloc_region, !should_allocate);
4057
_verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4058
_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4059
return new_alloc_region;
4060
}
4061
}
4062
return NULL;
4063
}
4064
4065
void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4066
size_t allocated_bytes) {
4067
assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4068
assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4069
4070
collection_set()->add_eden_region(alloc_region);
4071
increase_used(allocated_bytes);
4072
_eden.add_used_bytes(allocated_bytes);
4073
_hr_printer.retire(alloc_region);
4074
4075
// We update the eden sizes here, when the region is retired,
4076
// instead of when it's allocated, since this is the point that its
4077
// used space has been recorded in _summary_bytes_used.
4078
g1mm()->update_eden_size();
4079
}
4080
4081
// Methods for the GC alloc regions
4082
4083
bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
4084
if (dest.is_old()) {
4085
return true;
4086
} else {
4087
return survivor_regions_count() < policy()->max_survivor_regions();
4088
}
4089
}
4090
4091
HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) {
4092
assert(FreeList_lock->owned_by_self(), "pre-condition");
4093
4094
if (!has_more_regions(dest)) {
4095
return NULL;
4096
}
4097
4098
HeapRegionType type;
4099
if (dest.is_young()) {
4100
type = HeapRegionType::Survivor;
4101
} else {
4102
type = HeapRegionType::Old;
4103
}
4104
4105
HeapRegion* new_alloc_region = new_region(word_size,
4106
type,
4107
true /* do_expand */,
4108
node_index);
4109
4110
if (new_alloc_region != NULL) {
4111
if (type.is_survivor()) {
4112
new_alloc_region->set_survivor();
4113
_survivor.add(new_alloc_region);
4114
_verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4115
} else {
4116
new_alloc_region->set_old();
4117
_verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4118
}
4119
_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4120
register_region_with_region_attr(new_alloc_region);
4121
_hr_printer.alloc(new_alloc_region);
4122
return new_alloc_region;
4123
}
4124
return NULL;
4125
}
4126
4127
void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4128
size_t allocated_bytes,
4129
G1HeapRegionAttr dest) {
4130
_bytes_used_during_gc += allocated_bytes;
4131
if (dest.is_old()) {
4132
old_set_add(alloc_region);
4133
} else {
4134
assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
4135
_survivor.add_used_bytes(allocated_bytes);
4136
}
4137
4138
bool const during_im = collector_state()->in_concurrent_start_gc();
4139
if (during_im && allocated_bytes > 0) {
4140
_cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top());
4141
}
4142
_hr_printer.retire(alloc_region);
4143
}
4144
4145
HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4146
bool expanded = false;
4147
uint index = _hrm.find_highest_free(&expanded);
4148
4149
if (index != G1_NO_HRM_INDEX) {
4150
if (expanded) {
4151
log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4152
HeapRegion::GrainWords * HeapWordSize);
4153
}
4154
return _hrm.allocate_free_regions_starting_at(index, 1);
4155
}
4156
return NULL;
4157
}
4158
4159
// Optimized nmethod scanning
4160
4161
class RegisterNMethodOopClosure: public OopClosure {
4162
G1CollectedHeap* _g1h;
4163
nmethod* _nm;
4164
4165
template <class T> void do_oop_work(T* p) {
4166
T heap_oop = RawAccess<>::oop_load(p);
4167
if (!CompressedOops::is_null(heap_oop)) {
4168
oop obj = CompressedOops::decode_not_null(heap_oop);
4169
HeapRegion* hr = _g1h->heap_region_containing(obj);
4170
assert(!hr->is_continues_humongous(),
4171
"trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4172
" starting at " HR_FORMAT,
4173
p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4174
4175
// HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4176
hr->add_strong_code_root_locked(_nm);
4177
}
4178
}
4179
4180
public:
4181
RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4182
_g1h(g1h), _nm(nm) {}
4183
4184
void do_oop(oop* p) { do_oop_work(p); }
4185
void do_oop(narrowOop* p) { do_oop_work(p); }
4186
};
4187
4188
class UnregisterNMethodOopClosure: public OopClosure {
4189
G1CollectedHeap* _g1h;
4190
nmethod* _nm;
4191
4192
template <class T> void do_oop_work(T* p) {
4193
T heap_oop = RawAccess<>::oop_load(p);
4194
if (!CompressedOops::is_null(heap_oop)) {
4195
oop obj = CompressedOops::decode_not_null(heap_oop);
4196
HeapRegion* hr = _g1h->heap_region_containing(obj);
4197
assert(!hr->is_continues_humongous(),
4198
"trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4199
" starting at " HR_FORMAT,
4200
p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4201
4202
hr->remove_strong_code_root(_nm);
4203
}
4204
}
4205
4206
public:
4207
UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4208
_g1h(g1h), _nm(nm) {}
4209
4210
void do_oop(oop* p) { do_oop_work(p); }
4211
void do_oop(narrowOop* p) { do_oop_work(p); }
4212
};
4213
4214
void G1CollectedHeap::register_nmethod(nmethod* nm) {
4215
guarantee(nm != NULL, "sanity");
4216
RegisterNMethodOopClosure reg_cl(this, nm);
4217
nm->oops_do(&reg_cl);
4218
}
4219
4220
void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4221
guarantee(nm != NULL, "sanity");
4222
UnregisterNMethodOopClosure reg_cl(this, nm);
4223
nm->oops_do(&reg_cl, true);
4224
}
4225
4226
void G1CollectedHeap::update_used_after_gc() {
4227
if (evacuation_failed()) {
4228
// Reset the G1EvacuationFailureALot counters and flags
4229
NOT_PRODUCT(reset_evacuation_should_fail();)
4230
4231
set_used(recalculate_used());
4232
4233
if (_archive_allocator != NULL) {
4234
_archive_allocator->clear_used();
4235
}
4236
for (uint i = 0; i < ParallelGCThreads; i++) {
4237
if (_evacuation_failed_info_array[i].has_failed()) {
4238
_gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4239
}
4240
}
4241
} else {
4242
// The "used" of the the collection set have already been subtracted
4243
// when they were freed. Add in the bytes used.
4244
increase_used(_bytes_used_during_gc);
4245
}
4246
}
4247
4248
void G1CollectedHeap::reset_hot_card_cache() {
4249
_hot_card_cache->reset_hot_cache();
4250
_hot_card_cache->set_use_cache(true);
4251
}
4252
4253
void G1CollectedHeap::purge_code_root_memory() {
4254
G1CodeRootSet::purge();
4255
}
4256
4257
class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4258
G1CollectedHeap* _g1h;
4259
4260
public:
4261
RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4262
_g1h(g1h) {}
4263
4264
void do_code_blob(CodeBlob* cb) {
4265
nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4266
if (nm == NULL) {
4267
return;
4268
}
4269
4270
_g1h->register_nmethod(nm);
4271
}
4272
};
4273
4274
void G1CollectedHeap::rebuild_strong_code_roots() {
4275
RebuildStrongCodeRootClosure blob_cl(this);
4276
CodeCache::blobs_do(&blob_cl);
4277
}
4278
4279
void G1CollectedHeap::initialize_serviceability() {
4280
_g1mm->initialize_serviceability();
4281
}
4282
4283
MemoryUsage G1CollectedHeap::memory_usage() {
4284
return _g1mm->memory_usage();
4285
}
4286
4287
GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4288
return _g1mm->memory_managers();
4289
}
4290
4291
GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4292
return _g1mm->memory_pools();
4293
}
4294
4295