Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/jdk17u
Path: blob/master/src/hotspot/share/gc/parallel/psPromotionManager.inline.hpp
66644 views
1
/*
2
* Copyright (c) 2002, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP
26
#define SHARE_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP
27
28
#include "gc/parallel/psPromotionManager.hpp"
29
30
#include "gc/parallel/parallelScavengeHeap.hpp"
31
#include "gc/parallel/parMarkBitMap.inline.hpp"
32
#include "gc/parallel/psOldGen.hpp"
33
#include "gc/parallel/psPromotionLAB.inline.hpp"
34
#include "gc/parallel/psScavenge.inline.hpp"
35
#include "gc/shared/taskqueue.inline.hpp"
36
#include "gc/shared/tlab_globals.hpp"
37
#include "logging/log.hpp"
38
#include "memory/iterator.inline.hpp"
39
#include "oops/access.inline.hpp"
40
#include "oops/oop.inline.hpp"
41
#include "runtime/orderAccess.hpp"
42
#include "runtime/prefetch.inline.hpp"
43
44
inline PSPromotionManager* PSPromotionManager::manager_array(uint index) {
45
assert(_manager_array != NULL, "access of NULL manager_array");
46
assert(index <= ParallelGCThreads, "out of range manager_array access");
47
return &_manager_array[index];
48
}
49
50
inline void PSPromotionManager::push_depth(ScannerTask task) {
51
claimed_stack_depth()->push(task);
52
}
53
54
template <class T>
55
inline void PSPromotionManager::claim_or_forward_depth(T* p) {
56
assert(should_scavenge(p, true), "revisiting object?");
57
assert(ParallelScavengeHeap::heap()->is_in(p), "pointer outside heap");
58
oop obj = RawAccess<IS_NOT_NULL>::oop_load(p);
59
Prefetch::write(obj->mark_addr(), 0);
60
push_depth(ScannerTask(p));
61
}
62
63
inline void PSPromotionManager::promotion_trace_event(oop new_obj, oop old_obj,
64
size_t obj_size,
65
uint age, bool tenured,
66
const PSPromotionLAB* lab) {
67
// Skip if memory allocation failed
68
if (new_obj != NULL) {
69
const ParallelScavengeTracer* gc_tracer = PSScavenge::gc_tracer();
70
71
if (lab != NULL) {
72
// Promotion of object through newly allocated PLAB
73
if (gc_tracer->should_report_promotion_in_new_plab_event()) {
74
size_t obj_bytes = obj_size * HeapWordSize;
75
size_t lab_size = lab->capacity();
76
gc_tracer->report_promotion_in_new_plab_event(old_obj->klass(), obj_bytes,
77
age, tenured, lab_size);
78
}
79
} else {
80
// Promotion of object directly to heap
81
if (gc_tracer->should_report_promotion_outside_plab_event()) {
82
size_t obj_bytes = obj_size * HeapWordSize;
83
gc_tracer->report_promotion_outside_plab_event(old_obj->klass(), obj_bytes,
84
age, tenured);
85
}
86
}
87
}
88
}
89
90
class PSPushContentsClosure: public BasicOopIterateClosure {
91
PSPromotionManager* _pm;
92
public:
93
PSPushContentsClosure(PSPromotionManager* pm) : BasicOopIterateClosure(PSScavenge::reference_processor()), _pm(pm) {}
94
95
template <typename T> void do_oop_nv(T* p) {
96
if (PSScavenge::should_scavenge(p)) {
97
_pm->claim_or_forward_depth(p);
98
}
99
}
100
101
virtual void do_oop(oop* p) { do_oop_nv(p); }
102
virtual void do_oop(narrowOop* p) { do_oop_nv(p); }
103
};
104
105
//
106
// This closure specialization will override the one that is defined in
107
// instanceRefKlass.inline.cpp. It swaps the order of oop_oop_iterate and
108
// oop_oop_iterate_ref_processing. Unfortunately G1 and Parallel behaves
109
// significantly better (especially in the Derby benchmark) using opposite
110
// order of these function calls.
111
//
112
template <>
113
inline void InstanceRefKlass::oop_oop_iterate_reverse<oop, PSPushContentsClosure>(oop obj, PSPushContentsClosure* closure) {
114
oop_oop_iterate_ref_processing<oop>(obj, closure);
115
InstanceKlass::oop_oop_iterate_reverse<oop>(obj, closure);
116
}
117
118
template <>
119
inline void InstanceRefKlass::oop_oop_iterate_reverse<narrowOop, PSPushContentsClosure>(oop obj, PSPushContentsClosure* closure) {
120
oop_oop_iterate_ref_processing<narrowOop>(obj, closure);
121
InstanceKlass::oop_oop_iterate_reverse<narrowOop>(obj, closure);
122
}
123
124
inline void PSPromotionManager::push_contents(oop obj) {
125
if (!obj->klass()->is_typeArray_klass()) {
126
PSPushContentsClosure pcc(this);
127
obj->oop_iterate_backwards(&pcc);
128
}
129
}
130
131
template<bool promote_immediately>
132
inline oop PSPromotionManager::copy_to_survivor_space(oop o) {
133
assert(should_scavenge(&o), "Sanity");
134
135
// NOTE! We must be very careful with any methods that access the mark
136
// in o. There may be multiple threads racing on it, and it may be forwarded
137
// at any time.
138
markWord m = o->mark();
139
if (!m.is_marked()) {
140
return copy_unmarked_to_survivor_space<promote_immediately>(o, m);
141
} else {
142
// Ensure any loads from the forwardee follow all changes that precede
143
// the release-cmpxchg that performed the forwarding, possibly in some
144
// other thread.
145
OrderAccess::acquire();
146
// Return the already installed forwardee.
147
return cast_to_oop(m.decode_pointer());
148
}
149
}
150
151
//
152
// This method is pretty bulky. It would be nice to split it up
153
// into smaller submethods, but we need to be careful not to hurt
154
// performance.
155
//
156
template<bool promote_immediately>
157
inline oop PSPromotionManager::copy_unmarked_to_survivor_space(oop o,
158
markWord test_mark) {
159
assert(should_scavenge(&o), "Sanity");
160
161
oop new_obj = NULL;
162
bool new_obj_is_tenured = false;
163
size_t new_obj_size = o->size();
164
165
// Find the objects age, MT safe.
166
uint age = (test_mark.has_displaced_mark_helper() /* o->has_displaced_mark() */) ?
167
test_mark.displaced_mark_helper().age() : test_mark.age();
168
169
if (!promote_immediately) {
170
// Try allocating obj in to-space (unless too old)
171
if (age < PSScavenge::tenuring_threshold()) {
172
new_obj = cast_to_oop(_young_lab.allocate(new_obj_size));
173
if (new_obj == NULL && !_young_gen_is_full) {
174
// Do we allocate directly, or flush and refill?
175
if (new_obj_size > (YoungPLABSize / 2)) {
176
// Allocate this object directly
177
new_obj = cast_to_oop(young_space()->cas_allocate(new_obj_size));
178
promotion_trace_event(new_obj, o, new_obj_size, age, false, NULL);
179
} else {
180
// Flush and fill
181
_young_lab.flush();
182
183
HeapWord* lab_base = young_space()->cas_allocate(YoungPLABSize);
184
if (lab_base != NULL) {
185
_young_lab.initialize(MemRegion(lab_base, YoungPLABSize));
186
// Try the young lab allocation again.
187
new_obj = cast_to_oop(_young_lab.allocate(new_obj_size));
188
promotion_trace_event(new_obj, o, new_obj_size, age, false, &_young_lab);
189
} else {
190
_young_gen_is_full = true;
191
}
192
}
193
}
194
}
195
}
196
197
// Otherwise try allocating obj tenured
198
if (new_obj == NULL) {
199
#ifndef PRODUCT
200
if (ParallelScavengeHeap::heap()->promotion_should_fail()) {
201
return oop_promotion_failed(o, test_mark);
202
}
203
#endif // #ifndef PRODUCT
204
205
new_obj = cast_to_oop(_old_lab.allocate(new_obj_size));
206
new_obj_is_tenured = true;
207
208
if (new_obj == NULL) {
209
if (!_old_gen_is_full) {
210
// Do we allocate directly, or flush and refill?
211
if (new_obj_size > (OldPLABSize / 2)) {
212
// Allocate this object directly
213
new_obj = cast_to_oop(old_gen()->allocate(new_obj_size));
214
promotion_trace_event(new_obj, o, new_obj_size, age, true, NULL);
215
} else {
216
// Flush and fill
217
_old_lab.flush();
218
219
HeapWord* lab_base = old_gen()->allocate(OldPLABSize);
220
if(lab_base != NULL) {
221
#ifdef ASSERT
222
// Delay the initialization of the promotion lab (plab).
223
// This exposes uninitialized plabs to card table processing.
224
if (GCWorkerDelayMillis > 0) {
225
os::naked_sleep(GCWorkerDelayMillis);
226
}
227
#endif
228
_old_lab.initialize(MemRegion(lab_base, OldPLABSize));
229
// Try the old lab allocation again.
230
new_obj = cast_to_oop(_old_lab.allocate(new_obj_size));
231
promotion_trace_event(new_obj, o, new_obj_size, age, true, &_old_lab);
232
}
233
}
234
}
235
236
// This is the promotion failed test, and code handling.
237
// The code belongs here for two reasons. It is slightly
238
// different than the code below, and cannot share the
239
// CAS testing code. Keeping the code here also minimizes
240
// the impact on the common case fast path code.
241
242
if (new_obj == NULL) {
243
_old_gen_is_full = true;
244
return oop_promotion_failed(o, test_mark);
245
}
246
}
247
}
248
249
assert(new_obj != NULL, "allocation should have succeeded");
250
251
// Copy obj
252
Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(o), cast_from_oop<HeapWord*>(new_obj), new_obj_size);
253
254
// Now we have to CAS in the header.
255
// Make copy visible to threads reading the forwardee.
256
oop forwardee = o->forward_to_atomic(new_obj, test_mark, memory_order_release);
257
if (forwardee == NULL) { // forwardee is NULL when forwarding is successful
258
// We won any races, we "own" this object.
259
assert(new_obj == o->forwardee(), "Sanity");
260
261
// Increment age if obj still in new generation. Now that
262
// we're dealing with a markWord that cannot change, it is
263
// okay to use the non mt safe oop methods.
264
if (!new_obj_is_tenured) {
265
new_obj->incr_age();
266
assert(young_space()->contains(new_obj), "Attempt to push non-promoted obj");
267
}
268
269
log_develop_trace(gc, scavenge)("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
270
new_obj_is_tenured ? "copying" : "tenuring",
271
new_obj->klass()->internal_name(),
272
p2i((void *)o), p2i((void *)new_obj), new_obj->size());
273
274
// Do the size comparison first with new_obj_size, which we
275
// already have. Hopefully, only a few objects are larger than
276
// _min_array_size_for_chunking, and most of them will be arrays.
277
// So, the is->objArray() test would be very infrequent.
278
if (new_obj_size > _min_array_size_for_chunking &&
279
new_obj->is_objArray() &&
280
PSChunkLargeArrays) {
281
// we'll chunk it
282
push_depth(ScannerTask(PartialArrayScanTask(o)));
283
TASKQUEUE_STATS_ONLY(++_arrays_chunked; ++_array_chunk_pushes);
284
} else {
285
// we'll just push its contents
286
push_contents(new_obj);
287
}
288
return new_obj;
289
} else {
290
// We lost, someone else "owns" this object.
291
// Ensure loads from the forwardee follow all changes that preceeded the
292
// release-cmpxchg that performed the forwarding in another thread.
293
OrderAccess::acquire();
294
295
assert(o->is_forwarded(), "Object must be forwarded if the cas failed.");
296
assert(o->forwardee() == forwardee, "invariant");
297
298
// Try to deallocate the space. If it was directly allocated we cannot
299
// deallocate it, so we have to test. If the deallocation fails,
300
// overwrite with a filler object.
301
if (new_obj_is_tenured) {
302
if (!_old_lab.unallocate_object(cast_from_oop<HeapWord*>(new_obj), new_obj_size)) {
303
CollectedHeap::fill_with_object(cast_from_oop<HeapWord*>(new_obj), new_obj_size);
304
}
305
} else if (!_young_lab.unallocate_object(cast_from_oop<HeapWord*>(new_obj), new_obj_size)) {
306
CollectedHeap::fill_with_object(cast_from_oop<HeapWord*>(new_obj), new_obj_size);
307
}
308
return forwardee;
309
}
310
}
311
312
// Attempt to "claim" oop at p via CAS, push the new obj if successful
313
// This version tests the oop* to make sure it is within the heap before
314
// attempting marking.
315
template <bool promote_immediately, class T>
316
inline void PSPromotionManager::copy_and_push_safe_barrier(T* p) {
317
assert(should_scavenge(p, true), "revisiting object?");
318
319
oop o = RawAccess<IS_NOT_NULL>::oop_load(p);
320
oop new_obj = copy_to_survivor_space<promote_immediately>(o);
321
RawAccess<IS_NOT_NULL>::oop_store(p, new_obj);
322
323
// We cannot mark without test, as some code passes us pointers
324
// that are outside the heap. These pointers are either from roots
325
// or from metadata.
326
if ((!PSScavenge::is_obj_in_young((HeapWord*)p)) &&
327
ParallelScavengeHeap::heap()->is_in_reserved(p)) {
328
if (PSScavenge::is_obj_in_young(new_obj)) {
329
PSScavenge::card_table()->inline_write_ref_field_gc(p, new_obj);
330
}
331
}
332
}
333
334
inline void PSPromotionManager::process_popped_location_depth(ScannerTask task) {
335
if (task.is_partial_array_task()) {
336
assert(PSChunkLargeArrays, "invariant");
337
process_array_chunk(task.to_partial_array_task());
338
} else {
339
if (task.is_narrow_oop_ptr()) {
340
assert(UseCompressedOops, "Error");
341
copy_and_push_safe_barrier</*promote_immediately=*/false>(task.to_narrow_oop_ptr());
342
} else {
343
copy_and_push_safe_barrier</*promote_immediately=*/false>(task.to_oop_ptr());
344
}
345
}
346
}
347
348
inline bool PSPromotionManager::steal_depth(int queue_num, ScannerTask& t) {
349
return stack_array_depth()->steal(queue_num, t);
350
}
351
352
#if TASKQUEUE_STATS
353
void PSPromotionManager::record_steal(ScannerTask task) {
354
if (task.is_partial_array_task()) {
355
++_array_chunk_steals;
356
}
357
}
358
#endif // TASKQUEUE_STATS
359
360
#endif // SHARE_GC_PARALLEL_PSPROMOTIONMANAGER_INLINE_HPP
361
362