Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/jdk17u
Path: blob/master/src/hotspot/share/gc/z/c2/zBarrierSetC2.cpp
66646 views
1
/*
2
* Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*/
23
24
#include "precompiled.hpp"
25
#include "classfile/javaClasses.hpp"
26
#include "gc/z/c2/zBarrierSetC2.hpp"
27
#include "gc/z/zBarrierSet.hpp"
28
#include "gc/z/zBarrierSetAssembler.hpp"
29
#include "gc/z/zBarrierSetRuntime.hpp"
30
#include "opto/arraycopynode.hpp"
31
#include "opto/addnode.hpp"
32
#include "opto/block.hpp"
33
#include "opto/compile.hpp"
34
#include "opto/graphKit.hpp"
35
#include "opto/machnode.hpp"
36
#include "opto/macro.hpp"
37
#include "opto/memnode.hpp"
38
#include "opto/node.hpp"
39
#include "opto/output.hpp"
40
#include "opto/regalloc.hpp"
41
#include "opto/rootnode.hpp"
42
#include "opto/runtime.hpp"
43
#include "opto/type.hpp"
44
#include "utilities/growableArray.hpp"
45
#include "utilities/macros.hpp"
46
47
class ZBarrierSetC2State : public ResourceObj {
48
private:
49
GrowableArray<ZLoadBarrierStubC2*>* _stubs;
50
Node_Array _live;
51
52
public:
53
ZBarrierSetC2State(Arena* arena) :
54
_stubs(new (arena) GrowableArray<ZLoadBarrierStubC2*>(arena, 8, 0, NULL)),
55
_live(arena) {}
56
57
GrowableArray<ZLoadBarrierStubC2*>* stubs() {
58
return _stubs;
59
}
60
61
RegMask* live(const Node* node) {
62
if (!node->is_Mach()) {
63
// Don't need liveness for non-MachNodes
64
return NULL;
65
}
66
67
const MachNode* const mach = node->as_Mach();
68
if (mach->barrier_data() == ZLoadBarrierElided) {
69
// Don't need liveness data for nodes without barriers
70
return NULL;
71
}
72
73
RegMask* live = (RegMask*)_live[node->_idx];
74
if (live == NULL) {
75
live = new (Compile::current()->comp_arena()->Amalloc_D(sizeof(RegMask))) RegMask();
76
_live.map(node->_idx, (Node*)live);
77
}
78
79
return live;
80
}
81
};
82
83
static ZBarrierSetC2State* barrier_set_state() {
84
return reinterpret_cast<ZBarrierSetC2State*>(Compile::current()->barrier_set_state());
85
}
86
87
ZLoadBarrierStubC2* ZLoadBarrierStubC2::create(const MachNode* node, Address ref_addr, Register ref, Register tmp, uint8_t barrier_data) {
88
ZLoadBarrierStubC2* const stub = new (Compile::current()->comp_arena()) ZLoadBarrierStubC2(node, ref_addr, ref, tmp, barrier_data);
89
if (!Compile::current()->output()->in_scratch_emit_size()) {
90
barrier_set_state()->stubs()->append(stub);
91
}
92
93
return stub;
94
}
95
96
ZLoadBarrierStubC2::ZLoadBarrierStubC2(const MachNode* node, Address ref_addr, Register ref, Register tmp, uint8_t barrier_data) :
97
_node(node),
98
_ref_addr(ref_addr),
99
_ref(ref),
100
_tmp(tmp),
101
_barrier_data(barrier_data),
102
_entry(),
103
_continuation() {
104
assert_different_registers(ref, ref_addr.base());
105
assert_different_registers(ref, ref_addr.index());
106
}
107
108
Address ZLoadBarrierStubC2::ref_addr() const {
109
return _ref_addr;
110
}
111
112
Register ZLoadBarrierStubC2::ref() const {
113
return _ref;
114
}
115
116
Register ZLoadBarrierStubC2::tmp() const {
117
return _tmp;
118
}
119
120
address ZLoadBarrierStubC2::slow_path() const {
121
DecoratorSet decorators = DECORATORS_NONE;
122
if (_barrier_data & ZLoadBarrierStrong) {
123
decorators |= ON_STRONG_OOP_REF;
124
}
125
if (_barrier_data & ZLoadBarrierWeak) {
126
decorators |= ON_WEAK_OOP_REF;
127
}
128
if (_barrier_data & ZLoadBarrierPhantom) {
129
decorators |= ON_PHANTOM_OOP_REF;
130
}
131
if (_barrier_data & ZLoadBarrierNoKeepalive) {
132
decorators |= AS_NO_KEEPALIVE;
133
}
134
return ZBarrierSetRuntime::load_barrier_on_oop_field_preloaded_addr(decorators);
135
}
136
137
RegMask& ZLoadBarrierStubC2::live() const {
138
return *barrier_set_state()->live(_node);
139
}
140
141
Label* ZLoadBarrierStubC2::entry() {
142
// The _entry will never be bound when in_scratch_emit_size() is true.
143
// However, we still need to return a label that is not bound now, but
144
// will eventually be bound. Any lable will do, as it will only act as
145
// a placeholder, so we return the _continuation label.
146
return Compile::current()->output()->in_scratch_emit_size() ? &_continuation : &_entry;
147
}
148
149
Label* ZLoadBarrierStubC2::continuation() {
150
return &_continuation;
151
}
152
153
void* ZBarrierSetC2::create_barrier_state(Arena* comp_arena) const {
154
return new (comp_arena) ZBarrierSetC2State(comp_arena);
155
}
156
157
void ZBarrierSetC2::late_barrier_analysis() const {
158
analyze_dominating_barriers();
159
compute_liveness_at_stubs();
160
}
161
162
void ZBarrierSetC2::emit_stubs(CodeBuffer& cb) const {
163
MacroAssembler masm(&cb);
164
GrowableArray<ZLoadBarrierStubC2*>* const stubs = barrier_set_state()->stubs();
165
166
for (int i = 0; i < stubs->length(); i++) {
167
// Make sure there is enough space in the code buffer
168
if (cb.insts()->maybe_expand_to_ensure_remaining(PhaseOutput::MAX_inst_size) && cb.blob() == NULL) {
169
ciEnv::current()->record_failure("CodeCache is full");
170
return;
171
}
172
173
ZBarrierSet::assembler()->generate_c2_load_barrier_stub(&masm, stubs->at(i));
174
}
175
176
masm.flush();
177
}
178
179
int ZBarrierSetC2::estimate_stub_size() const {
180
Compile* const C = Compile::current();
181
BufferBlob* const blob = C->output()->scratch_buffer_blob();
182
GrowableArray<ZLoadBarrierStubC2*>* const stubs = barrier_set_state()->stubs();
183
int size = 0;
184
185
for (int i = 0; i < stubs->length(); i++) {
186
CodeBuffer cb(blob->content_begin(), (address)C->output()->scratch_locs_memory() - blob->content_begin());
187
MacroAssembler masm(&cb);
188
ZBarrierSet::assembler()->generate_c2_load_barrier_stub(&masm, stubs->at(i));
189
size += cb.insts_size();
190
}
191
192
return size;
193
}
194
195
static void set_barrier_data(C2Access& access) {
196
if (ZBarrierSet::barrier_needed(access.decorators(), access.type())) {
197
uint8_t barrier_data = 0;
198
199
if (access.decorators() & ON_PHANTOM_OOP_REF) {
200
barrier_data |= ZLoadBarrierPhantom;
201
} else if (access.decorators() & ON_WEAK_OOP_REF) {
202
barrier_data |= ZLoadBarrierWeak;
203
} else {
204
barrier_data |= ZLoadBarrierStrong;
205
}
206
207
if (access.decorators() & AS_NO_KEEPALIVE) {
208
barrier_data |= ZLoadBarrierNoKeepalive;
209
}
210
211
access.set_barrier_data(barrier_data);
212
}
213
}
214
215
Node* ZBarrierSetC2::load_at_resolved(C2Access& access, const Type* val_type) const {
216
set_barrier_data(access);
217
return BarrierSetC2::load_at_resolved(access, val_type);
218
}
219
220
Node* ZBarrierSetC2::atomic_cmpxchg_val_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
221
Node* new_val, const Type* val_type) const {
222
set_barrier_data(access);
223
return BarrierSetC2::atomic_cmpxchg_val_at_resolved(access, expected_val, new_val, val_type);
224
}
225
226
Node* ZBarrierSetC2::atomic_cmpxchg_bool_at_resolved(C2AtomicParseAccess& access, Node* expected_val,
227
Node* new_val, const Type* value_type) const {
228
set_barrier_data(access);
229
return BarrierSetC2::atomic_cmpxchg_bool_at_resolved(access, expected_val, new_val, value_type);
230
}
231
232
Node* ZBarrierSetC2::atomic_xchg_at_resolved(C2AtomicParseAccess& access, Node* new_val, const Type* val_type) const {
233
set_barrier_data(access);
234
return BarrierSetC2::atomic_xchg_at_resolved(access, new_val, val_type);
235
}
236
237
bool ZBarrierSetC2::array_copy_requires_gc_barriers(bool tightly_coupled_alloc, BasicType type,
238
bool is_clone, bool is_clone_instance,
239
ArrayCopyPhase phase) const {
240
if (phase == ArrayCopyPhase::Parsing) {
241
return false;
242
}
243
if (phase == ArrayCopyPhase::Optimization) {
244
return is_clone_instance;
245
}
246
// else ArrayCopyPhase::Expansion
247
return type == T_OBJECT || type == T_ARRAY;
248
}
249
250
// This TypeFunc assumes a 64bit system
251
static const TypeFunc* clone_type() {
252
// Create input type (domain)
253
const Type** domain_fields = TypeTuple::fields(4);
254
domain_fields[TypeFunc::Parms + 0] = TypeInstPtr::NOTNULL; // src
255
domain_fields[TypeFunc::Parms + 1] = TypeInstPtr::NOTNULL; // dst
256
domain_fields[TypeFunc::Parms + 2] = TypeLong::LONG; // size lower
257
domain_fields[TypeFunc::Parms + 3] = Type::HALF; // size upper
258
const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + 4, domain_fields);
259
260
// Create result type (range)
261
const Type** range_fields = TypeTuple::fields(0);
262
const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 0, range_fields);
263
264
return TypeFunc::make(domain, range);
265
}
266
267
#define XTOP LP64_ONLY(COMMA phase->top())
268
269
void ZBarrierSetC2::clone_at_expansion(PhaseMacroExpand* phase, ArrayCopyNode* ac) const {
270
Node* const src = ac->in(ArrayCopyNode::Src);
271
const TypeAryPtr* ary_ptr = src->get_ptr_type()->isa_aryptr();
272
273
if (ac->is_clone_array() && ary_ptr != NULL) {
274
BasicType bt = ary_ptr->elem()->array_element_basic_type();
275
if (is_reference_type(bt)) {
276
// Clone object array
277
bt = T_OBJECT;
278
} else {
279
// Clone primitive array
280
bt = T_LONG;
281
}
282
283
Node* ctrl = ac->in(TypeFunc::Control);
284
Node* mem = ac->in(TypeFunc::Memory);
285
Node* src = ac->in(ArrayCopyNode::Src);
286
Node* src_offset = ac->in(ArrayCopyNode::SrcPos);
287
Node* dest = ac->in(ArrayCopyNode::Dest);
288
Node* dest_offset = ac->in(ArrayCopyNode::DestPos);
289
Node* length = ac->in(ArrayCopyNode::Length);
290
291
if (bt == T_OBJECT) {
292
// BarrierSetC2::clone sets the offsets via BarrierSetC2::arraycopy_payload_base_offset
293
// which 8-byte aligns them to allow for word size copies. Make sure the offsets point
294
// to the first element in the array when cloning object arrays. Otherwise, load
295
// barriers are applied to parts of the header. Also adjust the length accordingly.
296
assert(src_offset == dest_offset, "should be equal");
297
jlong offset = src_offset->get_long();
298
if (offset != arrayOopDesc::base_offset_in_bytes(T_OBJECT)) {
299
assert(!UseCompressedClassPointers, "should only happen without compressed class pointers");
300
assert((arrayOopDesc::base_offset_in_bytes(T_OBJECT) - offset) == BytesPerLong, "unexpected offset");
301
length = phase->transform_later(new SubLNode(length, phase->longcon(1))); // Size is in longs
302
src_offset = phase->longcon(arrayOopDesc::base_offset_in_bytes(T_OBJECT));
303
dest_offset = src_offset;
304
}
305
}
306
Node* payload_src = phase->basic_plus_adr(src, src_offset);
307
Node* payload_dst = phase->basic_plus_adr(dest, dest_offset);
308
309
const char* copyfunc_name = "arraycopy";
310
address copyfunc_addr = phase->basictype2arraycopy(bt, NULL, NULL, true, copyfunc_name, true);
311
312
const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
313
const TypeFunc* call_type = OptoRuntime::fast_arraycopy_Type();
314
315
Node* call = phase->make_leaf_call(ctrl, mem, call_type, copyfunc_addr, copyfunc_name, raw_adr_type, payload_src, payload_dst, length XTOP);
316
phase->transform_later(call);
317
318
phase->igvn().replace_node(ac, call);
319
return;
320
}
321
322
// Clone instance
323
Node* const ctrl = ac->in(TypeFunc::Control);
324
Node* const mem = ac->in(TypeFunc::Memory);
325
Node* const dst = ac->in(ArrayCopyNode::Dest);
326
Node* const size = ac->in(ArrayCopyNode::Length);
327
328
assert(size->bottom_type()->is_long(), "Should be long");
329
330
// The native clone we are calling here expects the instance size in words
331
// Add header/offset size to payload size to get instance size.
332
Node* const base_offset = phase->longcon(arraycopy_payload_base_offset(ac->is_clone_array()) >> LogBytesPerLong);
333
Node* const full_size = phase->transform_later(new AddLNode(size, base_offset));
334
335
Node* const call = phase->make_leaf_call(ctrl,
336
mem,
337
clone_type(),
338
ZBarrierSetRuntime::clone_addr(),
339
"ZBarrierSetRuntime::clone",
340
TypeRawPtr::BOTTOM,
341
src,
342
dst,
343
full_size,
344
phase->top());
345
phase->transform_later(call);
346
phase->igvn().replace_node(ac, call);
347
}
348
349
#undef XTOP
350
351
// == Dominating barrier elision ==
352
353
static bool block_has_safepoint(const Block* block, uint from, uint to) {
354
for (uint i = from; i < to; i++) {
355
if (block->get_node(i)->is_MachSafePoint()) {
356
// Safepoint found
357
return true;
358
}
359
}
360
361
// Safepoint not found
362
return false;
363
}
364
365
static bool block_has_safepoint(const Block* block) {
366
return block_has_safepoint(block, 0, block->number_of_nodes());
367
}
368
369
static uint block_index(const Block* block, const Node* node) {
370
for (uint j = 0; j < block->number_of_nodes(); ++j) {
371
if (block->get_node(j) == node) {
372
return j;
373
}
374
}
375
ShouldNotReachHere();
376
return 0;
377
}
378
379
void ZBarrierSetC2::analyze_dominating_barriers() const {
380
ResourceMark rm;
381
Compile* const C = Compile::current();
382
PhaseCFG* const cfg = C->cfg();
383
Block_List worklist;
384
Node_List mem_ops;
385
Node_List barrier_loads;
386
387
// Step 1 - Find accesses, and track them in lists
388
for (uint i = 0; i < cfg->number_of_blocks(); ++i) {
389
const Block* const block = cfg->get_block(i);
390
for (uint j = 0; j < block->number_of_nodes(); ++j) {
391
const Node* const node = block->get_node(j);
392
if (!node->is_Mach()) {
393
continue;
394
}
395
396
MachNode* const mach = node->as_Mach();
397
switch (mach->ideal_Opcode()) {
398
case Op_LoadP:
399
if ((mach->barrier_data() & ZLoadBarrierStrong) != 0) {
400
barrier_loads.push(mach);
401
}
402
if ((mach->barrier_data() & (ZLoadBarrierStrong | ZLoadBarrierNoKeepalive)) ==
403
ZLoadBarrierStrong) {
404
mem_ops.push(mach);
405
}
406
break;
407
case Op_CompareAndExchangeP:
408
case Op_CompareAndSwapP:
409
case Op_GetAndSetP:
410
if ((mach->barrier_data() & ZLoadBarrierStrong) != 0) {
411
barrier_loads.push(mach);
412
}
413
case Op_StoreP:
414
mem_ops.push(mach);
415
break;
416
417
default:
418
break;
419
}
420
}
421
}
422
423
// Step 2 - Find dominating accesses for each load
424
for (uint i = 0; i < barrier_loads.size(); i++) {
425
MachNode* const load = barrier_loads.at(i)->as_Mach();
426
const TypePtr* load_adr_type = NULL;
427
intptr_t load_offset = 0;
428
const Node* const load_obj = load->get_base_and_disp(load_offset, load_adr_type);
429
Block* const load_block = cfg->get_block_for_node(load);
430
const uint load_index = block_index(load_block, load);
431
432
for (uint j = 0; j < mem_ops.size(); j++) {
433
MachNode* mem = mem_ops.at(j)->as_Mach();
434
const TypePtr* mem_adr_type = NULL;
435
intptr_t mem_offset = 0;
436
const Node* mem_obj = mem->get_base_and_disp(mem_offset, mem_adr_type);
437
Block* mem_block = cfg->get_block_for_node(mem);
438
uint mem_index = block_index(mem_block, mem);
439
440
if (load_obj == NodeSentinel || mem_obj == NodeSentinel ||
441
load_obj == NULL || mem_obj == NULL ||
442
load_offset < 0 || mem_offset < 0) {
443
continue;
444
}
445
446
if (mem_obj != load_obj || mem_offset != load_offset) {
447
// Not the same addresses, not a candidate
448
continue;
449
}
450
451
if (load_block == mem_block) {
452
// Earlier accesses in the same block
453
if (mem_index < load_index && !block_has_safepoint(mem_block, mem_index + 1, load_index)) {
454
load->set_barrier_data(ZLoadBarrierElided);
455
}
456
} else if (mem_block->dominates(load_block)) {
457
// Dominating block? Look around for safepoints
458
ResourceMark rm;
459
Block_List stack;
460
VectorSet visited;
461
stack.push(load_block);
462
bool safepoint_found = block_has_safepoint(load_block);
463
while (!safepoint_found && stack.size() > 0) {
464
Block* block = stack.pop();
465
if (visited.test_set(block->_pre_order)) {
466
continue;
467
}
468
if (block_has_safepoint(block)) {
469
safepoint_found = true;
470
break;
471
}
472
if (block == mem_block) {
473
continue;
474
}
475
476
// Push predecessor blocks
477
for (uint p = 1; p < block->num_preds(); ++p) {
478
Block* pred = cfg->get_block_for_node(block->pred(p));
479
stack.push(pred);
480
}
481
}
482
483
if (!safepoint_found) {
484
load->set_barrier_data(ZLoadBarrierElided);
485
}
486
}
487
}
488
}
489
}
490
491
// == Reduced spilling optimization ==
492
493
void ZBarrierSetC2::compute_liveness_at_stubs() const {
494
ResourceMark rm;
495
Compile* const C = Compile::current();
496
Arena* const A = Thread::current()->resource_area();
497
PhaseCFG* const cfg = C->cfg();
498
PhaseRegAlloc* const regalloc = C->regalloc();
499
RegMask* const live = NEW_ARENA_ARRAY(A, RegMask, cfg->number_of_blocks() * sizeof(RegMask));
500
ZBarrierSetAssembler* const bs = ZBarrierSet::assembler();
501
Block_List worklist;
502
503
for (uint i = 0; i < cfg->number_of_blocks(); ++i) {
504
new ((void*)(live + i)) RegMask();
505
worklist.push(cfg->get_block(i));
506
}
507
508
while (worklist.size() > 0) {
509
const Block* const block = worklist.pop();
510
RegMask& old_live = live[block->_pre_order];
511
RegMask new_live;
512
513
// Initialize to union of successors
514
for (uint i = 0; i < block->_num_succs; i++) {
515
const uint succ_id = block->_succs[i]->_pre_order;
516
new_live.OR(live[succ_id]);
517
}
518
519
// Walk block backwards, computing liveness
520
for (int i = block->number_of_nodes() - 1; i >= 0; --i) {
521
const Node* const node = block->get_node(i);
522
523
// Remove def bits
524
const OptoReg::Name first = bs->refine_register(node, regalloc->get_reg_first(node));
525
const OptoReg::Name second = bs->refine_register(node, regalloc->get_reg_second(node));
526
if (first != OptoReg::Bad) {
527
new_live.Remove(first);
528
}
529
if (second != OptoReg::Bad) {
530
new_live.Remove(second);
531
}
532
533
// Add use bits
534
for (uint j = 1; j < node->req(); ++j) {
535
const Node* const use = node->in(j);
536
const OptoReg::Name first = bs->refine_register(use, regalloc->get_reg_first(use));
537
const OptoReg::Name second = bs->refine_register(use, regalloc->get_reg_second(use));
538
if (first != OptoReg::Bad) {
539
new_live.Insert(first);
540
}
541
if (second != OptoReg::Bad) {
542
new_live.Insert(second);
543
}
544
}
545
546
// If this node tracks liveness, update it
547
RegMask* const regs = barrier_set_state()->live(node);
548
if (regs != NULL) {
549
regs->OR(new_live);
550
}
551
}
552
553
// Now at block top, see if we have any changes
554
new_live.SUBTRACT(old_live);
555
if (new_live.is_NotEmpty()) {
556
// Liveness has refined, update and propagate to prior blocks
557
old_live.OR(new_live);
558
for (uint i = 1; i < block->num_preds(); ++i) {
559
Block* const pred = cfg->get_block_for_node(block->pred(i));
560
worklist.push(pred);
561
}
562
}
563
}
564
}
565
566