Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/jdk17u
Path: blob/master/src/hotspot/share/memory/allocation.hpp
64440 views
1
/*
2
* Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#ifndef SHARE_MEMORY_ALLOCATION_HPP
26
#define SHARE_MEMORY_ALLOCATION_HPP
27
28
#include "memory/allStatic.hpp"
29
#include "utilities/globalDefinitions.hpp"
30
#include "utilities/macros.hpp"
31
32
#include <new>
33
34
class outputStream;
35
class Thread;
36
class JavaThread;
37
38
class AllocFailStrategy {
39
public:
40
enum AllocFailEnum { EXIT_OOM, RETURN_NULL };
41
};
42
typedef AllocFailStrategy::AllocFailEnum AllocFailType;
43
44
// The virtual machine must never call one of the implicitly declared
45
// global allocation or deletion functions. (Such calls may result in
46
// link-time or run-time errors.) For convenience and documentation of
47
// intended use, classes in the virtual machine may be derived from one
48
// of the following allocation classes, some of which define allocation
49
// and deletion functions.
50
// Note: std::malloc and std::free should never called directly.
51
52
//
53
// For objects allocated in the resource area (see resourceArea.hpp).
54
// - ResourceObj
55
//
56
// For objects allocated in the C-heap (managed by: free & malloc and tracked with NMT)
57
// - CHeapObj
58
//
59
// For objects allocated on the stack.
60
// - StackObj
61
//
62
// For classes used as name spaces.
63
// - AllStatic
64
//
65
// For classes in Metaspace (class data)
66
// - MetaspaceObj
67
//
68
// The printable subclasses are used for debugging and define virtual
69
// member functions for printing. Classes that avoid allocating the
70
// vtbl entries in the objects should therefore not be the printable
71
// subclasses.
72
//
73
// The following macros and function should be used to allocate memory
74
// directly in the resource area or in the C-heap, The _OBJ variants
75
// of the NEW/FREE_C_HEAP macros are used for alloc/dealloc simple
76
// objects which are not inherited from CHeapObj, note constructor and
77
// destructor are not called. The preferable way to allocate objects
78
// is using the new operator.
79
//
80
// WARNING: The array variant must only be used for a homogenous array
81
// where all objects are of the exact type specified. If subtypes are
82
// stored in the array then must pay attention to calling destructors
83
// at needed.
84
//
85
// NEW_RESOURCE_ARRAY*
86
// REALLOC_RESOURCE_ARRAY*
87
// FREE_RESOURCE_ARRAY*
88
// NEW_RESOURCE_OBJ*
89
// NEW_C_HEAP_ARRAY*
90
// REALLOC_C_HEAP_ARRAY*
91
// FREE_C_HEAP_ARRAY*
92
// NEW_C_HEAP_OBJ*
93
// FREE_C_HEAP_OBJ
94
//
95
// char* AllocateHeap(size_t size, MEMFLAGS flags, const NativeCallStack& stack, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
96
// char* AllocateHeap(size_t size, MEMFLAGS flags, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
97
// char* ReallocateHeap(char *old, size_t size, MEMFLAGS flag, AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
98
// void FreeHeap(void* p);
99
//
100
// In non product mode we introduce a super class for all allocation classes
101
// that supports printing.
102
// We avoid the superclass in product mode to save space.
103
104
#ifdef PRODUCT
105
#define ALLOCATION_SUPER_CLASS_SPEC
106
#else
107
#define ALLOCATION_SUPER_CLASS_SPEC : public AllocatedObj
108
class AllocatedObj {
109
public:
110
// Printing support
111
void print() const;
112
void print_value() const;
113
114
virtual void print_on(outputStream* st) const;
115
virtual void print_value_on(outputStream* st) const;
116
};
117
#endif
118
119
#define MEMORY_TYPES_DO(f) \
120
/* Memory type by sub systems. It occupies lower byte. */ \
121
f(mtJavaHeap, "Java Heap") /* Java heap */ \
122
f(mtClass, "Class") /* Java classes */ \
123
f(mtThread, "Thread") /* thread objects */ \
124
f(mtThreadStack, "Thread Stack") \
125
f(mtCode, "Code") /* generated code */ \
126
f(mtGC, "GC") \
127
f(mtCompiler, "Compiler") \
128
f(mtJVMCI, "JVMCI") \
129
f(mtInternal, "Internal") /* memory used by VM, but does not belong to */ \
130
/* any of above categories, and not used by */ \
131
/* NMT */ \
132
f(mtOther, "Other") /* memory not used by VM */ \
133
f(mtSymbol, "Symbol") \
134
f(mtNMT, "Native Memory Tracking") /* memory used by NMT */ \
135
f(mtClassShared, "Shared class space") /* class data sharing */ \
136
f(mtChunk, "Arena Chunk") /* chunk that holds content of arenas */ \
137
f(mtTest, "Test") /* Test type for verifying NMT */ \
138
f(mtTracing, "Tracing") \
139
f(mtLogging, "Logging") \
140
f(mtStatistics, "Statistics") \
141
f(mtArguments, "Arguments") \
142
f(mtModule, "Module") \
143
f(mtSafepoint, "Safepoint") \
144
f(mtSynchronizer, "Synchronization") \
145
f(mtServiceability, "Serviceability") \
146
f(mtMetaspace, "Metaspace") \
147
f(mtStringDedup, "String Deduplication") \
148
f(mtObjectMonitor, "Object Monitors") \
149
f(mtNone, "Unknown") \
150
//end
151
152
#define MEMORY_TYPE_DECLARE_ENUM(type, human_readable) \
153
type,
154
155
/*
156
* Memory types
157
*/
158
enum class MEMFLAGS {
159
MEMORY_TYPES_DO(MEMORY_TYPE_DECLARE_ENUM)
160
mt_number_of_types // number of memory types (mtDontTrack
161
// is not included as validate type)
162
};
163
164
#define MEMORY_TYPE_SHORTNAME(type, human_readable) \
165
constexpr MEMFLAGS type = MEMFLAGS::type;
166
167
// Generate short aliases for the enum values. E.g. mtGC instead of MEMFLAGS::mtGC.
168
MEMORY_TYPES_DO(MEMORY_TYPE_SHORTNAME)
169
170
// Make an int version of the sentinel end value.
171
constexpr int mt_number_of_types = static_cast<int>(MEMFLAGS::mt_number_of_types);
172
173
#if INCLUDE_NMT
174
175
extern bool NMT_track_callsite;
176
177
#else
178
179
const bool NMT_track_callsite = false;
180
181
#endif // INCLUDE_NMT
182
183
class NativeCallStack;
184
185
186
char* AllocateHeap(size_t size,
187
MEMFLAGS flags,
188
const NativeCallStack& stack,
189
AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
190
char* AllocateHeap(size_t size,
191
MEMFLAGS flags,
192
AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
193
194
char* ReallocateHeap(char *old,
195
size_t size,
196
MEMFLAGS flag,
197
AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
198
199
// handles NULL pointers
200
void FreeHeap(void* p);
201
202
template <MEMFLAGS F> class CHeapObj ALLOCATION_SUPER_CLASS_SPEC {
203
public:
204
ALWAYSINLINE void* operator new(size_t size) throw() {
205
return (void*)AllocateHeap(size, F);
206
}
207
208
ALWAYSINLINE void* operator new(size_t size,
209
const NativeCallStack& stack) throw() {
210
return (void*)AllocateHeap(size, F, stack);
211
}
212
213
ALWAYSINLINE void* operator new(size_t size, const std::nothrow_t&,
214
const NativeCallStack& stack) throw() {
215
return (void*)AllocateHeap(size, F, stack, AllocFailStrategy::RETURN_NULL);
216
}
217
218
ALWAYSINLINE void* operator new(size_t size, const std::nothrow_t&) throw() {
219
return (void*)AllocateHeap(size, F, AllocFailStrategy::RETURN_NULL);
220
}
221
222
ALWAYSINLINE void* operator new[](size_t size) throw() {
223
return (void*)AllocateHeap(size, F);
224
}
225
226
ALWAYSINLINE void* operator new[](size_t size,
227
const NativeCallStack& stack) throw() {
228
return (void*)AllocateHeap(size, F, stack);
229
}
230
231
ALWAYSINLINE void* operator new[](size_t size, const std::nothrow_t&,
232
const NativeCallStack& stack) throw() {
233
return (void*)AllocateHeap(size, F, stack, AllocFailStrategy::RETURN_NULL);
234
}
235
236
ALWAYSINLINE void* operator new[](size_t size, const std::nothrow_t&) throw() {
237
return (void*)AllocateHeap(size, F, AllocFailStrategy::RETURN_NULL);
238
}
239
240
void operator delete(void* p) { FreeHeap(p); }
241
void operator delete [] (void* p) { FreeHeap(p); }
242
};
243
244
// Base class for objects allocated on the stack only.
245
// Calling new or delete will result in fatal error.
246
247
class StackObj ALLOCATION_SUPER_CLASS_SPEC {
248
private:
249
void* operator new(size_t size) throw();
250
void* operator new [](size_t size) throw();
251
void operator delete(void* p);
252
void operator delete [](void* p);
253
};
254
255
// Base class for objects stored in Metaspace.
256
// Calling delete will result in fatal error.
257
//
258
// Do not inherit from something with a vptr because this class does
259
// not introduce one. This class is used to allocate both shared read-only
260
// and shared read-write classes.
261
//
262
263
class ClassLoaderData;
264
class MetaspaceClosure;
265
266
class MetaspaceObj {
267
// There are functions that all subtypes of MetaspaceObj are expected
268
// to implement, so that templates which are defined for this class hierarchy
269
// can work uniformly. Within the sub-hierarchy of Metadata, these are virtuals.
270
// Elsewhere in the hierarchy of MetaspaceObj, type(), size(), and/or on_stack()
271
// can be static if constant.
272
//
273
// The following functions are required by MetaspaceClosure:
274
// void metaspace_pointers_do(MetaspaceClosure* it) { <walk my refs> }
275
// int size() const { return align_up(sizeof(<This>), wordSize) / wordSize; }
276
// MetaspaceObj::Type type() const { return <This>Type; }
277
//
278
// The following functions are required by MetadataFactory::free_metadata():
279
// bool on_stack() { return false; }
280
// void deallocate_contents(ClassLoaderData* loader_data);
281
282
friend class VMStructs;
283
// When CDS is enabled, all shared metaspace objects are mapped
284
// into a single contiguous memory block, so we can use these
285
// two pointers to quickly determine if something is in the
286
// shared metaspace.
287
// When CDS is not enabled, both pointers are set to NULL.
288
static void* _shared_metaspace_base; // (inclusive) low address
289
static void* _shared_metaspace_top; // (exclusive) high address
290
291
public:
292
293
// Returns true if the pointer points to a valid MetaspaceObj. A valid
294
// MetaspaceObj is MetaWord-aligned and contained within either
295
// non-shared or shared metaspace.
296
static bool is_valid(const MetaspaceObj* p);
297
298
static bool is_shared(const MetaspaceObj* p) {
299
// If no shared metaspace regions are mapped, _shared_metaspace_{base,top} will
300
// both be NULL and all values of p will be rejected quickly.
301
return (((void*)p) < _shared_metaspace_top &&
302
((void*)p) >= _shared_metaspace_base);
303
}
304
bool is_shared() const { return MetaspaceObj::is_shared(this); }
305
306
void print_address_on(outputStream* st) const; // nonvirtual address printing
307
308
static void set_shared_metaspace_range(void* base, void* top) {
309
_shared_metaspace_base = base;
310
_shared_metaspace_top = top;
311
}
312
313
static void* shared_metaspace_base() { return _shared_metaspace_base; }
314
static void* shared_metaspace_top() { return _shared_metaspace_top; }
315
316
#define METASPACE_OBJ_TYPES_DO(f) \
317
f(Class) \
318
f(Symbol) \
319
f(TypeArrayU1) \
320
f(TypeArrayU2) \
321
f(TypeArrayU4) \
322
f(TypeArrayU8) \
323
f(TypeArrayOther) \
324
f(Method) \
325
f(ConstMethod) \
326
f(MethodData) \
327
f(ConstantPool) \
328
f(ConstantPoolCache) \
329
f(Annotations) \
330
f(MethodCounters) \
331
f(RecordComponent)
332
333
#define METASPACE_OBJ_TYPE_DECLARE(name) name ## Type,
334
#define METASPACE_OBJ_TYPE_NAME_CASE(name) case name ## Type: return #name;
335
336
enum Type {
337
// Types are MetaspaceObj::ClassType, MetaspaceObj::SymbolType, etc
338
METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_DECLARE)
339
_number_of_types
340
};
341
342
static const char * type_name(Type type) {
343
switch(type) {
344
METASPACE_OBJ_TYPES_DO(METASPACE_OBJ_TYPE_NAME_CASE)
345
default:
346
ShouldNotReachHere();
347
return NULL;
348
}
349
}
350
351
static MetaspaceObj::Type array_type(size_t elem_size) {
352
switch (elem_size) {
353
case 1: return TypeArrayU1Type;
354
case 2: return TypeArrayU2Type;
355
case 4: return TypeArrayU4Type;
356
case 8: return TypeArrayU8Type;
357
default:
358
return TypeArrayOtherType;
359
}
360
}
361
362
void* operator new(size_t size, ClassLoaderData* loader_data,
363
size_t word_size,
364
Type type, JavaThread* thread) throw();
365
// can't use TRAPS from this header file.
366
void* operator new(size_t size, ClassLoaderData* loader_data,
367
size_t word_size,
368
Type type) throw();
369
void operator delete(void* p) { ShouldNotCallThis(); }
370
371
// Declare a *static* method with the same signature in any subclass of MetaspaceObj
372
// that should be read-only by default. See symbol.hpp for an example. This function
373
// is used by the templates in metaspaceClosure.hpp
374
static bool is_read_only_by_default() { return false; }
375
};
376
377
// Base class for classes that constitute name spaces.
378
379
class Arena;
380
381
extern char* resource_allocate_bytes(size_t size,
382
AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
383
extern char* resource_allocate_bytes(Thread* thread, size_t size,
384
AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
385
extern char* resource_reallocate_bytes( char *old, size_t old_size, size_t new_size,
386
AllocFailType alloc_failmode = AllocFailStrategy::EXIT_OOM);
387
extern void resource_free_bytes( char *old, size_t size );
388
389
//----------------------------------------------------------------------
390
// Base class for objects allocated in the resource area per default.
391
// Optionally, objects may be allocated on the C heap with
392
// new(ResourceObj::C_HEAP) Foo(...) or in an Arena with new (&arena)
393
// ResourceObj's can be allocated within other objects, but don't use
394
// new or delete (allocation_type is unknown). If new is used to allocate,
395
// use delete to deallocate.
396
class ResourceObj ALLOCATION_SUPER_CLASS_SPEC {
397
public:
398
enum allocation_type { STACK_OR_EMBEDDED = 0, RESOURCE_AREA, C_HEAP, ARENA, allocation_mask = 0x3 };
399
static void set_allocation_type(address res, allocation_type type) NOT_DEBUG_RETURN;
400
#ifdef ASSERT
401
private:
402
// When this object is allocated on stack the new() operator is not
403
// called but garbage on stack may look like a valid allocation_type.
404
// Store negated 'this' pointer when new() is called to distinguish cases.
405
// Use second array's element for verification value to distinguish garbage.
406
uintptr_t _allocation_t[2];
407
bool is_type_set() const;
408
void initialize_allocation_info();
409
public:
410
allocation_type get_allocation_type() const;
411
bool allocated_on_stack() const { return get_allocation_type() == STACK_OR_EMBEDDED; }
412
bool allocated_on_res_area() const { return get_allocation_type() == RESOURCE_AREA; }
413
bool allocated_on_C_heap() const { return get_allocation_type() == C_HEAP; }
414
bool allocated_on_arena() const { return get_allocation_type() == ARENA; }
415
protected:
416
ResourceObj(); // default constructor
417
ResourceObj(const ResourceObj& r); // default copy constructor
418
ResourceObj& operator=(const ResourceObj& r); // default copy assignment
419
~ResourceObj();
420
#endif // ASSERT
421
422
public:
423
void* operator new(size_t size, allocation_type type, MEMFLAGS flags) throw();
424
void* operator new [](size_t size, allocation_type type, MEMFLAGS flags) throw();
425
void* operator new(size_t size, const std::nothrow_t& nothrow_constant,
426
allocation_type type, MEMFLAGS flags) throw();
427
void* operator new [](size_t size, const std::nothrow_t& nothrow_constant,
428
allocation_type type, MEMFLAGS flags) throw();
429
430
void* operator new(size_t size, Arena *arena) throw();
431
432
void* operator new [](size_t size, Arena *arena) throw();
433
434
void* operator new(size_t size) throw() {
435
address res = (address)resource_allocate_bytes(size);
436
DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
437
return res;
438
}
439
440
void* operator new(size_t size, const std::nothrow_t& nothrow_constant) throw() {
441
address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
442
DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
443
return res;
444
}
445
446
void* operator new [](size_t size) throw() {
447
address res = (address)resource_allocate_bytes(size);
448
DEBUG_ONLY(set_allocation_type(res, RESOURCE_AREA);)
449
return res;
450
}
451
452
void* operator new [](size_t size, const std::nothrow_t& nothrow_constant) throw() {
453
address res = (address)resource_allocate_bytes(size, AllocFailStrategy::RETURN_NULL);
454
DEBUG_ONLY(if (res != NULL) set_allocation_type(res, RESOURCE_AREA);)
455
return res;
456
}
457
458
void operator delete(void* p);
459
void operator delete [](void* p);
460
};
461
462
// One of the following macros must be used when allocating an array
463
// or object to determine whether it should reside in the C heap on in
464
// the resource area.
465
466
#define NEW_RESOURCE_ARRAY(type, size)\
467
(type*) resource_allocate_bytes((size) * sizeof(type))
468
469
#define NEW_RESOURCE_ARRAY_RETURN_NULL(type, size)\
470
(type*) resource_allocate_bytes((size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
471
472
#define NEW_RESOURCE_ARRAY_IN_THREAD(thread, type, size)\
473
(type*) resource_allocate_bytes(thread, (size) * sizeof(type))
474
475
#define NEW_RESOURCE_ARRAY_IN_THREAD_RETURN_NULL(thread, type, size)\
476
(type*) resource_allocate_bytes(thread, (size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
477
478
#define REALLOC_RESOURCE_ARRAY(type, old, old_size, new_size)\
479
(type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type), (new_size) * sizeof(type))
480
481
#define REALLOC_RESOURCE_ARRAY_RETURN_NULL(type, old, old_size, new_size)\
482
(type*) resource_reallocate_bytes((char*)(old), (old_size) * sizeof(type),\
483
(new_size) * sizeof(type), AllocFailStrategy::RETURN_NULL)
484
485
#define FREE_RESOURCE_ARRAY(type, old, size)\
486
resource_free_bytes((char*)(old), (size) * sizeof(type))
487
488
#define FREE_FAST(old)\
489
/* nop */
490
491
#define NEW_RESOURCE_OBJ(type)\
492
NEW_RESOURCE_ARRAY(type, 1)
493
494
#define NEW_RESOURCE_OBJ_RETURN_NULL(type)\
495
NEW_RESOURCE_ARRAY_RETURN_NULL(type, 1)
496
497
#define NEW_C_HEAP_ARRAY3(type, size, memflags, pc, allocfail)\
498
(type*) AllocateHeap((size) * sizeof(type), memflags, pc, allocfail)
499
500
#define NEW_C_HEAP_ARRAY2(type, size, memflags, pc)\
501
(type*) (AllocateHeap((size) * sizeof(type), memflags, pc))
502
503
#define NEW_C_HEAP_ARRAY(type, size, memflags)\
504
(type*) (AllocateHeap((size) * sizeof(type), memflags))
505
506
#define NEW_C_HEAP_ARRAY2_RETURN_NULL(type, size, memflags, pc)\
507
NEW_C_HEAP_ARRAY3(type, (size), memflags, pc, AllocFailStrategy::RETURN_NULL)
508
509
#define NEW_C_HEAP_ARRAY_RETURN_NULL(type, size, memflags)\
510
NEW_C_HEAP_ARRAY2(type, (size), memflags, AllocFailStrategy::RETURN_NULL)
511
512
#define REALLOC_C_HEAP_ARRAY(type, old, size, memflags)\
513
(type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags))
514
515
#define REALLOC_C_HEAP_ARRAY_RETURN_NULL(type, old, size, memflags)\
516
(type*) (ReallocateHeap((char*)(old), (size) * sizeof(type), memflags, AllocFailStrategy::RETURN_NULL))
517
518
#define FREE_C_HEAP_ARRAY(type, old) \
519
FreeHeap((char*)(old))
520
521
// allocate type in heap without calling ctor
522
#define NEW_C_HEAP_OBJ(type, memflags)\
523
NEW_C_HEAP_ARRAY(type, 1, memflags)
524
525
#define NEW_C_HEAP_OBJ_RETURN_NULL(type, memflags)\
526
NEW_C_HEAP_ARRAY_RETURN_NULL(type, 1, memflags)
527
528
// deallocate obj of type in heap without calling dtor
529
#define FREE_C_HEAP_OBJ(objname)\
530
FreeHeap((char*)objname);
531
532
533
//------------------------------ReallocMark---------------------------------
534
// Code which uses REALLOC_RESOURCE_ARRAY should check an associated
535
// ReallocMark, which is declared in the same scope as the reallocated
536
// pointer. Any operation that could __potentially__ cause a reallocation
537
// should check the ReallocMark.
538
class ReallocMark: public StackObj {
539
protected:
540
NOT_PRODUCT(int _nesting;)
541
542
public:
543
ReallocMark() PRODUCT_RETURN;
544
void check() PRODUCT_RETURN;
545
};
546
547
// Helper class to allocate arrays that may become large.
548
// Uses the OS malloc for allocations smaller than ArrayAllocatorMallocLimit
549
// and uses mapped memory for larger allocations.
550
// Most OS mallocs do something similar but Solaris malloc does not revert
551
// to mapped memory for large allocations. By default ArrayAllocatorMallocLimit
552
// is set so that we always use malloc except for Solaris where we set the
553
// limit to get mapped memory.
554
template <class E>
555
class ArrayAllocator : public AllStatic {
556
private:
557
static bool should_use_malloc(size_t length);
558
559
static E* allocate_malloc(size_t length, MEMFLAGS flags);
560
static E* allocate_mmap(size_t length, MEMFLAGS flags);
561
562
static void free_malloc(E* addr, size_t length);
563
static void free_mmap(E* addr, size_t length);
564
565
public:
566
static E* allocate(size_t length, MEMFLAGS flags);
567
static E* reallocate(E* old_addr, size_t old_length, size_t new_length, MEMFLAGS flags);
568
static void free(E* addr, size_t length);
569
};
570
571
// Uses mmaped memory for all allocations. All allocations are initially
572
// zero-filled. No pre-touching.
573
template <class E>
574
class MmapArrayAllocator : public AllStatic {
575
private:
576
static size_t size_for(size_t length);
577
578
public:
579
static E* allocate_or_null(size_t length, MEMFLAGS flags);
580
static E* allocate(size_t length, MEMFLAGS flags);
581
static void free(E* addr, size_t length);
582
};
583
584
// Uses malloc:ed memory for all allocations.
585
template <class E>
586
class MallocArrayAllocator : public AllStatic {
587
public:
588
static size_t size_for(size_t length);
589
590
static E* allocate(size_t length, MEMFLAGS flags);
591
static void free(E* addr);
592
};
593
594
#endif // SHARE_MEMORY_ALLOCATION_HPP
595
596