Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/jdk17u
Path: blob/master/src/hotspot/share/opto/buildOopMap.cpp
64441 views
1
/*
2
* Copyright (c) 2002, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "code/vmreg.inline.hpp"
27
#include "compiler/oopMap.hpp"
28
#include "memory/resourceArea.hpp"
29
#include "opto/addnode.hpp"
30
#include "opto/callnode.hpp"
31
#include "opto/compile.hpp"
32
#include "opto/machnode.hpp"
33
#include "opto/matcher.hpp"
34
#include "opto/output.hpp"
35
#include "opto/phase.hpp"
36
#include "opto/regalloc.hpp"
37
#include "opto/rootnode.hpp"
38
#include "utilities/align.hpp"
39
40
// The functions in this file builds OopMaps after all scheduling is done.
41
//
42
// OopMaps contain a list of all registers and stack-slots containing oops (so
43
// they can be updated by GC). OopMaps also contain a list of derived-pointer
44
// base-pointer pairs. When the base is moved, the derived pointer moves to
45
// follow it. Finally, any registers holding callee-save values are also
46
// recorded. These might contain oops, but only the caller knows.
47
//
48
// BuildOopMaps implements a simple forward reaching-defs solution. At each
49
// GC point we'll have the reaching-def Nodes. If the reaching Nodes are
50
// typed as pointers (no offset), then they are oops. Pointers+offsets are
51
// derived pointers, and bases can be found from them. Finally, we'll also
52
// track reaching callee-save values. Note that a copy of a callee-save value
53
// "kills" it's source, so that only 1 copy of a callee-save value is alive at
54
// a time.
55
//
56
// We run a simple bitvector liveness pass to help trim out dead oops. Due to
57
// irreducible loops, we can have a reaching def of an oop that only reaches
58
// along one path and no way to know if it's valid or not on the other path.
59
// The bitvectors are quite dense and the liveness pass is fast.
60
//
61
// At GC points, we consult this information to build OopMaps. All reaching
62
// defs typed as oops are added to the OopMap. Only 1 instance of a
63
// callee-save register can be recorded. For derived pointers, we'll have to
64
// find and record the register holding the base.
65
//
66
// The reaching def's is a simple 1-pass worklist approach. I tried a clever
67
// breadth-first approach but it was worse (showed O(n^2) in the
68
// pick-next-block code).
69
//
70
// The relevant data is kept in a struct of arrays (it could just as well be
71
// an array of structs, but the struct-of-arrays is generally a little more
72
// efficient). The arrays are indexed by register number (including
73
// stack-slots as registers) and so is bounded by 200 to 300 elements in
74
// practice. One array will map to a reaching def Node (or NULL for
75
// conflict/dead). The other array will map to a callee-saved register or
76
// OptoReg::Bad for not-callee-saved.
77
78
79
// Structure to pass around
80
struct OopFlow : public ResourceObj {
81
short *_callees; // Array mapping register to callee-saved
82
Node **_defs; // array mapping register to reaching def
83
// or NULL if dead/conflict
84
// OopFlow structs, when not being actively modified, describe the _end_ of
85
// this block.
86
Block *_b; // Block for this struct
87
OopFlow *_next; // Next free OopFlow
88
// or NULL if dead/conflict
89
Compile* C;
90
91
OopFlow( short *callees, Node **defs, Compile* c ) : _callees(callees), _defs(defs),
92
_b(NULL), _next(NULL), C(c) { }
93
94
// Given reaching-defs for this block start, compute it for this block end
95
void compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash );
96
97
// Merge these two OopFlows into the 'this' pointer.
98
void merge( OopFlow *flow, int max_reg );
99
100
// Copy a 'flow' over an existing flow
101
void clone( OopFlow *flow, int max_size);
102
103
// Make a new OopFlow from scratch
104
static OopFlow *make( Arena *A, int max_size, Compile* C );
105
106
// Build an oopmap from the current flow info
107
OopMap *build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live );
108
};
109
110
// Given reaching-defs for this block start, compute it for this block end
111
void OopFlow::compute_reach( PhaseRegAlloc *regalloc, int max_reg, Dict *safehash ) {
112
113
for( uint i=0; i<_b->number_of_nodes(); i++ ) {
114
Node *n = _b->get_node(i);
115
116
if( n->jvms() ) { // Build an OopMap here?
117
JVMState *jvms = n->jvms();
118
// no map needed for leaf calls
119
if( n->is_MachSafePoint() && !n->is_MachCallLeaf() ) {
120
int *live = (int*) (*safehash)[n];
121
assert( live, "must find live" );
122
n->as_MachSafePoint()->set_oop_map( build_oop_map(n,max_reg,regalloc, live) );
123
}
124
}
125
126
// Assign new reaching def's.
127
// Note that I padded the _defs and _callees arrays so it's legal
128
// to index at _defs[OptoReg::Bad].
129
OptoReg::Name first = regalloc->get_reg_first(n);
130
OptoReg::Name second = regalloc->get_reg_second(n);
131
_defs[first] = n;
132
_defs[second] = n;
133
134
// Pass callee-save info around copies
135
int idx = n->is_Copy();
136
if( idx ) { // Copies move callee-save info
137
OptoReg::Name old_first = regalloc->get_reg_first(n->in(idx));
138
OptoReg::Name old_second = regalloc->get_reg_second(n->in(idx));
139
int tmp_first = _callees[old_first];
140
int tmp_second = _callees[old_second];
141
_callees[old_first] = OptoReg::Bad; // callee-save is moved, dead in old location
142
_callees[old_second] = OptoReg::Bad;
143
_callees[first] = tmp_first;
144
_callees[second] = tmp_second;
145
} else if( n->is_Phi() ) { // Phis do not mod callee-saves
146
assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(1))], "" );
147
assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(1))], "" );
148
assert( _callees[first] == _callees[regalloc->get_reg_first(n->in(n->req()-1))], "" );
149
assert( _callees[second] == _callees[regalloc->get_reg_second(n->in(n->req()-1))], "" );
150
} else {
151
_callees[first] = OptoReg::Bad; // No longer holding a callee-save value
152
_callees[second] = OptoReg::Bad;
153
154
// Find base case for callee saves
155
if( n->is_Proj() && n->in(0)->is_Start() ) {
156
if( OptoReg::is_reg(first) &&
157
regalloc->_matcher.is_save_on_entry(first) )
158
_callees[first] = first;
159
if( OptoReg::is_reg(second) &&
160
regalloc->_matcher.is_save_on_entry(second) )
161
_callees[second] = second;
162
}
163
}
164
}
165
}
166
167
// Merge the given flow into the 'this' flow
168
void OopFlow::merge( OopFlow *flow, int max_reg ) {
169
assert( _b == NULL, "merging into a happy flow" );
170
assert( flow->_b, "this flow is still alive" );
171
assert( flow != this, "no self flow" );
172
173
// Do the merge. If there are any differences, drop to 'bottom' which
174
// is OptoReg::Bad or NULL depending.
175
for( int i=0; i<max_reg; i++ ) {
176
// Merge the callee-save's
177
if( _callees[i] != flow->_callees[i] )
178
_callees[i] = OptoReg::Bad;
179
// Merge the reaching defs
180
if( _defs[i] != flow->_defs[i] )
181
_defs[i] = NULL;
182
}
183
184
}
185
186
void OopFlow::clone( OopFlow *flow, int max_size ) {
187
_b = flow->_b;
188
memcpy( _callees, flow->_callees, sizeof(short)*max_size);
189
memcpy( _defs , flow->_defs , sizeof(Node*)*max_size);
190
}
191
192
OopFlow *OopFlow::make( Arena *A, int max_size, Compile* C ) {
193
short *callees = NEW_ARENA_ARRAY(A,short,max_size+1);
194
Node **defs = NEW_ARENA_ARRAY(A,Node*,max_size+1);
195
debug_only( memset(defs,0,(max_size+1)*sizeof(Node*)) );
196
OopFlow *flow = new (A) OopFlow(callees+1, defs+1, C);
197
assert( &flow->_callees[OptoReg::Bad] == callees, "Ok to index at OptoReg::Bad" );
198
assert( &flow->_defs [OptoReg::Bad] == defs , "Ok to index at OptoReg::Bad" );
199
return flow;
200
}
201
202
static int get_live_bit( int *live, int reg ) {
203
return live[reg>>LogBitsPerInt] & (1<<(reg&(BitsPerInt-1))); }
204
static void set_live_bit( int *live, int reg ) {
205
live[reg>>LogBitsPerInt] |= (1<<(reg&(BitsPerInt-1))); }
206
static void clr_live_bit( int *live, int reg ) {
207
live[reg>>LogBitsPerInt] &= ~(1<<(reg&(BitsPerInt-1))); }
208
209
// Build an oopmap from the current flow info
210
OopMap *OopFlow::build_oop_map( Node *n, int max_reg, PhaseRegAlloc *regalloc, int* live ) {
211
int framesize = regalloc->_framesize;
212
int max_inarg_slot = OptoReg::reg2stack(regalloc->_matcher._new_SP);
213
debug_only( char *dup_check = NEW_RESOURCE_ARRAY(char,OptoReg::stack0());
214
memset(dup_check,0,OptoReg::stack0()) );
215
216
OopMap *omap = new OopMap( framesize, max_inarg_slot );
217
MachCallNode *mcall = n->is_MachCall() ? n->as_MachCall() : NULL;
218
JVMState* jvms = n->jvms();
219
220
// For all registers do...
221
for( int reg=0; reg<max_reg; reg++ ) {
222
if( get_live_bit(live,reg) == 0 )
223
continue; // Ignore if not live
224
225
// %%% C2 can use 2 OptoRegs when the physical register is only one 64bit
226
// register in that case we'll get an non-concrete register for the second
227
// half. We only need to tell the map the register once!
228
//
229
// However for the moment we disable this change and leave things as they
230
// were.
231
232
VMReg r = OptoReg::as_VMReg(OptoReg::Name(reg), framesize, max_inarg_slot);
233
234
// See if dead (no reaching def).
235
Node *def = _defs[reg]; // Get reaching def
236
assert( def, "since live better have reaching def" );
237
238
// Classify the reaching def as oop, derived, callee-save, dead, or other
239
const Type *t = def->bottom_type();
240
if( t->isa_oop_ptr() ) { // Oop or derived?
241
assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
242
#ifdef _LP64
243
// 64-bit pointers record oop-ishness on 2 aligned adjacent registers.
244
// Make sure both are record from the same reaching def, but do not
245
// put both into the oopmap.
246
if( (reg&1) == 1 ) { // High half of oop-pair?
247
assert( _defs[reg-1] == _defs[reg], "both halves from same reaching def" );
248
continue; // Do not record high parts in oopmap
249
}
250
#endif
251
252
// Check for a legal reg name in the oopMap and bailout if it is not.
253
if (!omap->legal_vm_reg_name(r)) {
254
regalloc->C->record_method_not_compilable("illegal oopMap register name");
255
continue;
256
}
257
if( t->is_ptr()->_offset == 0 ) { // Not derived?
258
if( mcall ) {
259
// Outgoing argument GC mask responsibility belongs to the callee,
260
// not the caller. Inspect the inputs to the call, to see if
261
// this live-range is one of them.
262
uint cnt = mcall->tf()->domain()->cnt();
263
uint j;
264
for( j = TypeFunc::Parms; j < cnt; j++)
265
if( mcall->in(j) == def )
266
break; // reaching def is an argument oop
267
if( j < cnt ) // arg oops dont go in GC map
268
continue; // Continue on to the next register
269
}
270
omap->set_oop(r);
271
} else { // Else it's derived.
272
// Find the base of the derived value.
273
uint i;
274
// Fast, common case, scan
275
for( i = jvms->oopoff(); i < n->req(); i+=2 )
276
if( n->in(i) == def ) break; // Common case
277
if( i == n->req() ) { // Missed, try a more generous scan
278
// Scan again, but this time peek through copies
279
for( i = jvms->oopoff(); i < n->req(); i+=2 ) {
280
Node *m = n->in(i); // Get initial derived value
281
while( 1 ) {
282
Node *d = def; // Get initial reaching def
283
while( 1 ) { // Follow copies of reaching def to end
284
if( m == d ) goto found; // breaks 3 loops
285
int idx = d->is_Copy();
286
if( !idx ) break;
287
d = d->in(idx); // Link through copy
288
}
289
int idx = m->is_Copy();
290
if( !idx ) break;
291
m = m->in(idx);
292
}
293
}
294
guarantee( 0, "must find derived/base pair" );
295
}
296
found: ;
297
Node *base = n->in(i+1); // Base is other half of pair
298
int breg = regalloc->get_reg_first(base);
299
VMReg b = OptoReg::as_VMReg(OptoReg::Name(breg), framesize, max_inarg_slot);
300
301
// I record liveness at safepoints BEFORE I make the inputs
302
// live. This is because argument oops are NOT live at a
303
// safepoint (or at least they cannot appear in the oopmap).
304
// Thus bases of base/derived pairs might not be in the
305
// liveness data but they need to appear in the oopmap.
306
if( get_live_bit(live,breg) == 0 ) {// Not live?
307
// Flag it, so next derived pointer won't re-insert into oopmap
308
set_live_bit(live,breg);
309
// Already missed our turn?
310
if( breg < reg ) {
311
omap->set_oop(b);
312
}
313
}
314
omap->set_derived_oop(r, b);
315
}
316
317
} else if( t->isa_narrowoop() ) {
318
assert( !OptoReg::is_valid(_callees[reg]), "oop can't be callee save" );
319
// Check for a legal reg name in the oopMap and bailout if it is not.
320
if (!omap->legal_vm_reg_name(r)) {
321
regalloc->C->record_method_not_compilable("illegal oopMap register name");
322
continue;
323
}
324
if( mcall ) {
325
// Outgoing argument GC mask responsibility belongs to the callee,
326
// not the caller. Inspect the inputs to the call, to see if
327
// this live-range is one of them.
328
uint cnt = mcall->tf()->domain()->cnt();
329
uint j;
330
for( j = TypeFunc::Parms; j < cnt; j++)
331
if( mcall->in(j) == def )
332
break; // reaching def is an argument oop
333
if( j < cnt ) // arg oops dont go in GC map
334
continue; // Continue on to the next register
335
}
336
omap->set_narrowoop(r);
337
} else if( OptoReg::is_valid(_callees[reg])) { // callee-save?
338
// It's a callee-save value
339
assert( dup_check[_callees[reg]]==0, "trying to callee save same reg twice" );
340
debug_only( dup_check[_callees[reg]]=1; )
341
VMReg callee = OptoReg::as_VMReg(OptoReg::Name(_callees[reg]));
342
omap->set_callee_saved(r, callee);
343
344
} else {
345
// Other - some reaching non-oop value
346
#ifdef ASSERT
347
if( t->isa_rawptr() && C->cfg()->_raw_oops.member(def) ) {
348
def->dump();
349
n->dump();
350
assert(false, "there should be a oop in OopMap instead of a live raw oop at safepoint");
351
}
352
#endif
353
}
354
355
}
356
357
#ifdef ASSERT
358
/* Nice, Intel-only assert
359
int cnt_callee_saves=0;
360
int reg2 = 0;
361
while (OptoReg::is_reg(reg2)) {
362
if( dup_check[reg2] != 0) cnt_callee_saves++;
363
assert( cnt_callee_saves==3 || cnt_callee_saves==5, "missed some callee-save" );
364
reg2++;
365
}
366
*/
367
#endif
368
369
#ifdef ASSERT
370
for( OopMapStream oms1(omap); !oms1.is_done(); oms1.next()) {
371
OopMapValue omv1 = oms1.current();
372
if (omv1.type() != OopMapValue::derived_oop_value) {
373
continue;
374
}
375
bool found = false;
376
for( OopMapStream oms2(omap); !oms2.is_done(); oms2.next()) {
377
OopMapValue omv2 = oms2.current();
378
if (omv2.type() != OopMapValue::oop_value) {
379
continue;
380
}
381
if( omv1.content_reg() == omv2.reg() ) {
382
found = true;
383
break;
384
}
385
}
386
assert( found, "derived with no base in oopmap" );
387
}
388
#endif
389
390
return omap;
391
}
392
393
// Compute backwards liveness on registers
394
static void do_liveness(PhaseRegAlloc* regalloc, PhaseCFG* cfg, Block_List* worklist, int max_reg_ints, Arena* A, Dict* safehash) {
395
int* live = NEW_ARENA_ARRAY(A, int, (cfg->number_of_blocks() + 1) * max_reg_ints);
396
int* tmp_live = &live[cfg->number_of_blocks() * max_reg_ints];
397
Node* root = cfg->get_root_node();
398
// On CISC platforms, get the node representing the stack pointer that regalloc
399
// used for spills
400
Node *fp = NodeSentinel;
401
if (UseCISCSpill && root->req() > 1) {
402
fp = root->in(1)->in(TypeFunc::FramePtr);
403
}
404
memset(live, 0, cfg->number_of_blocks() * (max_reg_ints << LogBytesPerInt));
405
// Push preds onto worklist
406
for (uint i = 1; i < root->req(); i++) {
407
Block* block = cfg->get_block_for_node(root->in(i));
408
worklist->push(block);
409
}
410
411
// ZKM.jar includes tiny infinite loops which are unreached from below.
412
// If we missed any blocks, we'll retry here after pushing all missed
413
// blocks on the worklist. Normally this outer loop never trips more
414
// than once.
415
while (1) {
416
417
while( worklist->size() ) { // Standard worklist algorithm
418
Block *b = worklist->rpop();
419
420
// Copy first successor into my tmp_live space
421
int s0num = b->_succs[0]->_pre_order;
422
int *t = &live[s0num*max_reg_ints];
423
for( int i=0; i<max_reg_ints; i++ )
424
tmp_live[i] = t[i];
425
426
// OR in the remaining live registers
427
for( uint j=1; j<b->_num_succs; j++ ) {
428
uint sjnum = b->_succs[j]->_pre_order;
429
int *t = &live[sjnum*max_reg_ints];
430
for( int i=0; i<max_reg_ints; i++ )
431
tmp_live[i] |= t[i];
432
}
433
434
// Now walk tmp_live up the block backwards, computing live
435
for( int k=b->number_of_nodes()-1; k>=0; k-- ) {
436
Node *n = b->get_node(k);
437
// KILL def'd bits
438
int first = regalloc->get_reg_first(n);
439
int second = regalloc->get_reg_second(n);
440
if( OptoReg::is_valid(first) ) clr_live_bit(tmp_live,first);
441
if( OptoReg::is_valid(second) ) clr_live_bit(tmp_live,second);
442
443
MachNode *m = n->is_Mach() ? n->as_Mach() : NULL;
444
445
// Check if m is potentially a CISC alternate instruction (i.e, possibly
446
// synthesized by RegAlloc from a conventional instruction and a
447
// spilled input)
448
bool is_cisc_alternate = false;
449
if (UseCISCSpill && m) {
450
is_cisc_alternate = m->is_cisc_alternate();
451
}
452
453
// GEN use'd bits
454
for( uint l=1; l<n->req(); l++ ) {
455
Node *def = n->in(l);
456
assert(def != 0, "input edge required");
457
int first = regalloc->get_reg_first(def);
458
int second = regalloc->get_reg_second(def);
459
if( OptoReg::is_valid(first) ) set_live_bit(tmp_live,first);
460
if( OptoReg::is_valid(second) ) set_live_bit(tmp_live,second);
461
// If we use the stack pointer in a cisc-alternative instruction,
462
// check for use as a memory operand. Then reconstruct the RegName
463
// for this stack location, and set the appropriate bit in the
464
// live vector 4987749.
465
if (is_cisc_alternate && def == fp) {
466
const TypePtr *adr_type = NULL;
467
intptr_t offset;
468
const Node* base = m->get_base_and_disp(offset, adr_type);
469
if (base == NodeSentinel) {
470
// Machnode has multiple memory inputs. We are unable to reason
471
// with these, but are presuming (with trepidation) that not any of
472
// them are oops. This can be fixed by making get_base_and_disp()
473
// look at a specific input instead of all inputs.
474
assert(!def->bottom_type()->isa_oop_ptr(), "expecting non-oop mem input");
475
} else if (base != fp || offset == Type::OffsetBot) {
476
// Do nothing: the fp operand is either not from a memory use
477
// (base == NULL) OR the fp is used in a non-memory context
478
// (base is some other register) OR the offset is not constant,
479
// so it is not a stack slot.
480
} else {
481
assert(offset >= 0, "unexpected negative offset");
482
offset -= (offset % jintSize); // count the whole word
483
int stack_reg = regalloc->offset2reg(offset);
484
if (OptoReg::is_stack(stack_reg)) {
485
set_live_bit(tmp_live, stack_reg);
486
} else {
487
assert(false, "stack_reg not on stack?");
488
}
489
}
490
}
491
}
492
493
if( n->jvms() ) { // Record liveness at safepoint
494
495
// This placement of this stanza means inputs to calls are
496
// considered live at the callsite's OopMap. Argument oops are
497
// hence live, but NOT included in the oopmap. See cutout in
498
// build_oop_map. Debug oops are live (and in OopMap).
499
int *n_live = NEW_ARENA_ARRAY(A, int, max_reg_ints);
500
for( int l=0; l<max_reg_ints; l++ )
501
n_live[l] = tmp_live[l];
502
safehash->Insert(n,n_live);
503
}
504
505
}
506
507
// Now at block top, see if we have any changes. If so, propagate
508
// to prior blocks.
509
int *old_live = &live[b->_pre_order*max_reg_ints];
510
int l;
511
for( l=0; l<max_reg_ints; l++ )
512
if( tmp_live[l] != old_live[l] )
513
break;
514
if( l<max_reg_ints ) { // Change!
515
// Copy in new value
516
for( l=0; l<max_reg_ints; l++ )
517
old_live[l] = tmp_live[l];
518
// Push preds onto worklist
519
for (l = 1; l < (int)b->num_preds(); l++) {
520
Block* block = cfg->get_block_for_node(b->pred(l));
521
worklist->push(block);
522
}
523
}
524
}
525
526
// Scan for any missing safepoints. Happens to infinite loops
527
// ala ZKM.jar
528
uint i;
529
for (i = 1; i < cfg->number_of_blocks(); i++) {
530
Block* block = cfg->get_block(i);
531
uint j;
532
for (j = 1; j < block->number_of_nodes(); j++) {
533
if (block->get_node(j)->jvms() && (*safehash)[block->get_node(j)] == NULL) {
534
break;
535
}
536
}
537
if (j < block->number_of_nodes()) {
538
break;
539
}
540
}
541
if (i == cfg->number_of_blocks()) {
542
break; // Got 'em all
543
}
544
545
if (PrintOpto && Verbose) {
546
tty->print_cr("retripping live calc");
547
}
548
549
// Force the issue (expensively): recheck everybody
550
for (i = 1; i < cfg->number_of_blocks(); i++) {
551
worklist->push(cfg->get_block(i));
552
}
553
}
554
}
555
556
// Collect GC mask info - where are all the OOPs?
557
void PhaseOutput::BuildOopMaps() {
558
Compile::TracePhase tp("bldOopMaps", &timers[_t_buildOopMaps]);
559
// Can't resource-mark because I need to leave all those OopMaps around,
560
// or else I need to resource-mark some arena other than the default.
561
// ResourceMark rm; // Reclaim all OopFlows when done
562
int max_reg = C->regalloc()->_max_reg; // Current array extent
563
564
Arena *A = Thread::current()->resource_area();
565
Block_List worklist; // Worklist of pending blocks
566
567
int max_reg_ints = align_up(max_reg, BitsPerInt)>>LogBitsPerInt;
568
Dict *safehash = NULL; // Used for assert only
569
// Compute a backwards liveness per register. Needs a bitarray of
570
// #blocks x (#registers, rounded up to ints)
571
safehash = new Dict(cmpkey,hashkey,A);
572
do_liveness( C->regalloc(), C->cfg(), &worklist, max_reg_ints, A, safehash );
573
OopFlow *free_list = NULL; // Free, unused
574
575
// Array mapping blocks to completed oopflows
576
OopFlow **flows = NEW_ARENA_ARRAY(A, OopFlow*, C->cfg()->number_of_blocks());
577
memset( flows, 0, C->cfg()->number_of_blocks() * sizeof(OopFlow*) );
578
579
580
// Do the first block 'by hand' to prime the worklist
581
Block *entry = C->cfg()->get_block(1);
582
OopFlow *rootflow = OopFlow::make(A,max_reg,C);
583
// Initialize to 'bottom' (not 'top')
584
memset( rootflow->_callees, OptoReg::Bad, max_reg*sizeof(short) );
585
memset( rootflow->_defs , 0, max_reg*sizeof(Node*) );
586
flows[entry->_pre_order] = rootflow;
587
588
// Do the first block 'by hand' to prime the worklist
589
rootflow->_b = entry;
590
rootflow->compute_reach( C->regalloc(), max_reg, safehash );
591
for( uint i=0; i<entry->_num_succs; i++ )
592
worklist.push(entry->_succs[i]);
593
594
// Now worklist contains blocks which have some, but perhaps not all,
595
// predecessors visited.
596
while( worklist.size() ) {
597
// Scan for a block with all predecessors visited, or any randoms slob
598
// otherwise. All-preds-visited order allows me to recycle OopFlow
599
// structures rapidly and cut down on the memory footprint.
600
// Note: not all predecessors might be visited yet (must happen for
601
// irreducible loops). This is OK, since every live value must have the
602
// SAME reaching def for the block, so any reaching def is OK.
603
uint i;
604
605
Block *b = worklist.pop();
606
// Ignore root block
607
if (b == C->cfg()->get_root_block()) {
608
continue;
609
}
610
// Block is already done? Happens if block has several predecessors,
611
// he can get on the worklist more than once.
612
if( flows[b->_pre_order] ) continue;
613
614
// If this block has a visited predecessor AND that predecessor has this
615
// last block as his only undone child, we can move the OopFlow from the
616
// pred to this block. Otherwise we have to grab a new OopFlow.
617
OopFlow *flow = NULL; // Flag for finding optimized flow
618
Block *pred = (Block*)((intptr_t)0xdeadbeef);
619
// Scan this block's preds to find a done predecessor
620
for (uint j = 1; j < b->num_preds(); j++) {
621
Block* p = C->cfg()->get_block_for_node(b->pred(j));
622
OopFlow *p_flow = flows[p->_pre_order];
623
if( p_flow ) { // Predecessor is done
624
assert( p_flow->_b == p, "cross check" );
625
pred = p; // Record some predecessor
626
// If all successors of p are done except for 'b', then we can carry
627
// p_flow forward to 'b' without copying, otherwise we have to draw
628
// from the free_list and clone data.
629
uint k;
630
for( k=0; k<p->_num_succs; k++ )
631
if( !flows[p->_succs[k]->_pre_order] &&
632
p->_succs[k] != b )
633
break;
634
635
// Either carry-forward the now-unused OopFlow for b's use
636
// or draw a new one from the free list
637
if( k==p->_num_succs ) {
638
flow = p_flow;
639
break; // Found an ideal pred, use him
640
}
641
}
642
}
643
644
if( flow ) {
645
// We have an OopFlow that's the last-use of a predecessor.
646
// Carry it forward.
647
} else { // Draw a new OopFlow from the freelist
648
if( !free_list )
649
free_list = OopFlow::make(A,max_reg,C);
650
flow = free_list;
651
assert( flow->_b == NULL, "oopFlow is not free" );
652
free_list = flow->_next;
653
flow->_next = NULL;
654
655
// Copy/clone over the data
656
flow->clone(flows[pred->_pre_order], max_reg);
657
}
658
659
// Mark flow for block. Blocks can only be flowed over once,
660
// because after the first time they are guarded from entering
661
// this code again.
662
assert( flow->_b == pred, "have some prior flow" );
663
flow->_b = NULL;
664
665
// Now push flow forward
666
flows[b->_pre_order] = flow;// Mark flow for this block
667
flow->_b = b;
668
flow->compute_reach( C->regalloc(), max_reg, safehash );
669
670
// Now push children onto worklist
671
for( i=0; i<b->_num_succs; i++ )
672
worklist.push(b->_succs[i]);
673
674
}
675
}
676
677