Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/jdk17u
Path: blob/master/src/hotspot/share/opto/callnode.cpp
64440 views
1
/*
2
* Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "compiler/compileLog.hpp"
27
#include "ci/bcEscapeAnalyzer.hpp"
28
#include "compiler/oopMap.hpp"
29
#include "gc/shared/barrierSet.hpp"
30
#include "gc/shared/c2/barrierSetC2.hpp"
31
#include "interpreter/interpreter.hpp"
32
#include "opto/callGenerator.hpp"
33
#include "opto/callnode.hpp"
34
#include "opto/castnode.hpp"
35
#include "opto/convertnode.hpp"
36
#include "opto/escape.hpp"
37
#include "opto/locknode.hpp"
38
#include "opto/machnode.hpp"
39
#include "opto/matcher.hpp"
40
#include "opto/parse.hpp"
41
#include "opto/regalloc.hpp"
42
#include "opto/regmask.hpp"
43
#include "opto/rootnode.hpp"
44
#include "opto/runtime.hpp"
45
#include "runtime/sharedRuntime.hpp"
46
#include "utilities/powerOfTwo.hpp"
47
#include "code/vmreg.hpp"
48
49
// Portions of code courtesy of Clifford Click
50
51
// Optimization - Graph Style
52
53
//=============================================================================
54
uint StartNode::size_of() const { return sizeof(*this); }
55
bool StartNode::cmp( const Node &n ) const
56
{ return _domain == ((StartNode&)n)._domain; }
57
const Type *StartNode::bottom_type() const { return _domain; }
58
const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; }
59
#ifndef PRODUCT
60
void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
61
void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ }
62
#endif
63
64
//------------------------------Ideal------------------------------------------
65
Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
66
return remove_dead_region(phase, can_reshape) ? this : NULL;
67
}
68
69
//------------------------------calling_convention-----------------------------
70
void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
71
SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
72
}
73
74
//------------------------------Registers--------------------------------------
75
const RegMask &StartNode::in_RegMask(uint) const {
76
return RegMask::Empty;
77
}
78
79
//------------------------------match------------------------------------------
80
// Construct projections for incoming parameters, and their RegMask info
81
Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
82
switch (proj->_con) {
83
case TypeFunc::Control:
84
case TypeFunc::I_O:
85
case TypeFunc::Memory:
86
return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
87
case TypeFunc::FramePtr:
88
return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
89
case TypeFunc::ReturnAdr:
90
return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
91
case TypeFunc::Parms:
92
default: {
93
uint parm_num = proj->_con - TypeFunc::Parms;
94
const Type *t = _domain->field_at(proj->_con);
95
if (t->base() == Type::Half) // 2nd half of Longs and Doubles
96
return new ConNode(Type::TOP);
97
uint ideal_reg = t->ideal_reg();
98
RegMask &rm = match->_calling_convention_mask[parm_num];
99
return new MachProjNode(this,proj->_con,rm,ideal_reg);
100
}
101
}
102
return NULL;
103
}
104
105
//------------------------------StartOSRNode----------------------------------
106
// The method start node for an on stack replacement adapter
107
108
//------------------------------osr_domain-----------------------------
109
const TypeTuple *StartOSRNode::osr_domain() {
110
const Type **fields = TypeTuple::fields(2);
111
fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // address of osr buffer
112
113
return TypeTuple::make(TypeFunc::Parms+1, fields);
114
}
115
116
//=============================================================================
117
const char * const ParmNode::names[TypeFunc::Parms+1] = {
118
"Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
119
};
120
121
#ifndef PRODUCT
122
void ParmNode::dump_spec(outputStream *st) const {
123
if( _con < TypeFunc::Parms ) {
124
st->print("%s", names[_con]);
125
} else {
126
st->print("Parm%d: ",_con-TypeFunc::Parms);
127
// Verbose and WizardMode dump bottom_type for all nodes
128
if( !Verbose && !WizardMode ) bottom_type()->dump_on(st);
129
}
130
}
131
132
void ParmNode::dump_compact_spec(outputStream *st) const {
133
if (_con < TypeFunc::Parms) {
134
st->print("%s", names[_con]);
135
} else {
136
st->print("%d:", _con-TypeFunc::Parms);
137
// unconditionally dump bottom_type
138
bottom_type()->dump_on(st);
139
}
140
}
141
142
// For a ParmNode, all immediate inputs and outputs are considered relevant
143
// both in compact and standard representation.
144
void ParmNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
145
this->collect_nodes(in_rel, 1, false, false);
146
this->collect_nodes(out_rel, -1, false, false);
147
}
148
#endif
149
150
uint ParmNode::ideal_reg() const {
151
switch( _con ) {
152
case TypeFunc::Control : // fall through
153
case TypeFunc::I_O : // fall through
154
case TypeFunc::Memory : return 0;
155
case TypeFunc::FramePtr : // fall through
156
case TypeFunc::ReturnAdr: return Op_RegP;
157
default : assert( _con > TypeFunc::Parms, "" );
158
// fall through
159
case TypeFunc::Parms : {
160
// Type of argument being passed
161
const Type *t = in(0)->as_Start()->_domain->field_at(_con);
162
return t->ideal_reg();
163
}
164
}
165
ShouldNotReachHere();
166
return 0;
167
}
168
169
//=============================================================================
170
ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
171
init_req(TypeFunc::Control,cntrl);
172
init_req(TypeFunc::I_O,i_o);
173
init_req(TypeFunc::Memory,memory);
174
init_req(TypeFunc::FramePtr,frameptr);
175
init_req(TypeFunc::ReturnAdr,retadr);
176
}
177
178
Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
179
return remove_dead_region(phase, can_reshape) ? this : NULL;
180
}
181
182
const Type* ReturnNode::Value(PhaseGVN* phase) const {
183
return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
184
? Type::TOP
185
: Type::BOTTOM;
186
}
187
188
// Do we Match on this edge index or not? No edges on return nodes
189
uint ReturnNode::match_edge(uint idx) const {
190
return 0;
191
}
192
193
194
#ifndef PRODUCT
195
void ReturnNode::dump_req(outputStream *st) const {
196
// Dump the required inputs, enclosed in '(' and ')'
197
uint i; // Exit value of loop
198
for (i = 0; i < req(); i++) { // For all required inputs
199
if (i == TypeFunc::Parms) st->print("returns");
200
if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
201
else st->print("_ ");
202
}
203
}
204
#endif
205
206
//=============================================================================
207
RethrowNode::RethrowNode(
208
Node* cntrl,
209
Node* i_o,
210
Node* memory,
211
Node* frameptr,
212
Node* ret_adr,
213
Node* exception
214
) : Node(TypeFunc::Parms + 1) {
215
init_req(TypeFunc::Control , cntrl );
216
init_req(TypeFunc::I_O , i_o );
217
init_req(TypeFunc::Memory , memory );
218
init_req(TypeFunc::FramePtr , frameptr );
219
init_req(TypeFunc::ReturnAdr, ret_adr);
220
init_req(TypeFunc::Parms , exception);
221
}
222
223
Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
224
return remove_dead_region(phase, can_reshape) ? this : NULL;
225
}
226
227
const Type* RethrowNode::Value(PhaseGVN* phase) const {
228
return (phase->type(in(TypeFunc::Control)) == Type::TOP)
229
? Type::TOP
230
: Type::BOTTOM;
231
}
232
233
uint RethrowNode::match_edge(uint idx) const {
234
return 0;
235
}
236
237
#ifndef PRODUCT
238
void RethrowNode::dump_req(outputStream *st) const {
239
// Dump the required inputs, enclosed in '(' and ')'
240
uint i; // Exit value of loop
241
for (i = 0; i < req(); i++) { // For all required inputs
242
if (i == TypeFunc::Parms) st->print("exception");
243
if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
244
else st->print("_ ");
245
}
246
}
247
#endif
248
249
//=============================================================================
250
// Do we Match on this edge index or not? Match only target address & method
251
uint TailCallNode::match_edge(uint idx) const {
252
return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1;
253
}
254
255
//=============================================================================
256
// Do we Match on this edge index or not? Match only target address & oop
257
uint TailJumpNode::match_edge(uint idx) const {
258
return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1;
259
}
260
261
//=============================================================================
262
JVMState::JVMState(ciMethod* method, JVMState* caller) :
263
_method(method) {
264
assert(method != NULL, "must be valid call site");
265
_bci = InvocationEntryBci;
266
_reexecute = Reexecute_Undefined;
267
debug_only(_bci = -99); // random garbage value
268
debug_only(_map = (SafePointNode*)-1);
269
_caller = caller;
270
_depth = 1 + (caller == NULL ? 0 : caller->depth());
271
_locoff = TypeFunc::Parms;
272
_stkoff = _locoff + _method->max_locals();
273
_monoff = _stkoff + _method->max_stack();
274
_scloff = _monoff;
275
_endoff = _monoff;
276
_sp = 0;
277
}
278
JVMState::JVMState(int stack_size) :
279
_method(NULL) {
280
_bci = InvocationEntryBci;
281
_reexecute = Reexecute_Undefined;
282
debug_only(_map = (SafePointNode*)-1);
283
_caller = NULL;
284
_depth = 1;
285
_locoff = TypeFunc::Parms;
286
_stkoff = _locoff;
287
_monoff = _stkoff + stack_size;
288
_scloff = _monoff;
289
_endoff = _monoff;
290
_sp = 0;
291
}
292
293
//--------------------------------of_depth-------------------------------------
294
JVMState* JVMState::of_depth(int d) const {
295
const JVMState* jvmp = this;
296
assert(0 < d && (uint)d <= depth(), "oob");
297
for (int skip = depth() - d; skip > 0; skip--) {
298
jvmp = jvmp->caller();
299
}
300
assert(jvmp->depth() == (uint)d, "found the right one");
301
return (JVMState*)jvmp;
302
}
303
304
//-----------------------------same_calls_as-----------------------------------
305
bool JVMState::same_calls_as(const JVMState* that) const {
306
if (this == that) return true;
307
if (this->depth() != that->depth()) return false;
308
const JVMState* p = this;
309
const JVMState* q = that;
310
for (;;) {
311
if (p->_method != q->_method) return false;
312
if (p->_method == NULL) return true; // bci is irrelevant
313
if (p->_bci != q->_bci) return false;
314
if (p->_reexecute != q->_reexecute) return false;
315
p = p->caller();
316
q = q->caller();
317
if (p == q) return true;
318
assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
319
}
320
}
321
322
//------------------------------debug_start------------------------------------
323
uint JVMState::debug_start() const {
324
debug_only(JVMState* jvmroot = of_depth(1));
325
assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
326
return of_depth(1)->locoff();
327
}
328
329
//-------------------------------debug_end-------------------------------------
330
uint JVMState::debug_end() const {
331
debug_only(JVMState* jvmroot = of_depth(1));
332
assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
333
return endoff();
334
}
335
336
//------------------------------debug_depth------------------------------------
337
uint JVMState::debug_depth() const {
338
uint total = 0;
339
for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
340
total += jvmp->debug_size();
341
}
342
return total;
343
}
344
345
#ifndef PRODUCT
346
347
//------------------------------format_helper----------------------------------
348
// Given an allocation (a Chaitin object) and a Node decide if the Node carries
349
// any defined value or not. If it does, print out the register or constant.
350
static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
351
if (n == NULL) { st->print(" NULL"); return; }
352
if (n->is_SafePointScalarObject()) {
353
// Scalar replacement.
354
SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
355
scobjs->append_if_missing(spobj);
356
int sco_n = scobjs->find(spobj);
357
assert(sco_n >= 0, "");
358
st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
359
return;
360
}
361
if (regalloc->node_regs_max_index() > 0 &&
362
OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
363
char buf[50];
364
regalloc->dump_register(n,buf);
365
st->print(" %s%d]=%s",msg,i,buf);
366
} else { // No register, but might be constant
367
const Type *t = n->bottom_type();
368
switch (t->base()) {
369
case Type::Int:
370
st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con());
371
break;
372
case Type::AnyPtr:
373
assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
374
st->print(" %s%d]=#NULL",msg,i);
375
break;
376
case Type::AryPtr:
377
case Type::InstPtr:
378
st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop()));
379
break;
380
case Type::KlassPtr:
381
st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->klass()));
382
break;
383
case Type::MetadataPtr:
384
st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata()));
385
break;
386
case Type::NarrowOop:
387
st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop()));
388
break;
389
case Type::RawPtr:
390
st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr()));
391
break;
392
case Type::DoubleCon:
393
st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
394
break;
395
case Type::FloatCon:
396
st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
397
break;
398
case Type::Long:
399
st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con()));
400
break;
401
case Type::Half:
402
case Type::Top:
403
st->print(" %s%d]=_",msg,i);
404
break;
405
default: ShouldNotReachHere();
406
}
407
}
408
}
409
410
//---------------------print_method_with_lineno--------------------------------
411
void JVMState::print_method_with_lineno(outputStream* st, bool show_name) const {
412
if (show_name) _method->print_short_name(st);
413
414
int lineno = _method->line_number_from_bci(_bci);
415
if (lineno != -1) {
416
st->print(" @ bci:%d (line %d)", _bci, lineno);
417
} else {
418
st->print(" @ bci:%d", _bci);
419
}
420
}
421
422
//------------------------------format-----------------------------------------
423
void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
424
st->print(" #");
425
if (_method) {
426
print_method_with_lineno(st, true);
427
} else {
428
st->print_cr(" runtime stub ");
429
return;
430
}
431
if (n->is_MachSafePoint()) {
432
GrowableArray<SafePointScalarObjectNode*> scobjs;
433
MachSafePointNode *mcall = n->as_MachSafePoint();
434
uint i;
435
// Print locals
436
for (i = 0; i < (uint)loc_size(); i++)
437
format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
438
// Print stack
439
for (i = 0; i < (uint)stk_size(); i++) {
440
if ((uint)(_stkoff + i) >= mcall->len())
441
st->print(" oob ");
442
else
443
format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
444
}
445
for (i = 0; (int)i < nof_monitors(); i++) {
446
Node *box = mcall->monitor_box(this, i);
447
Node *obj = mcall->monitor_obj(this, i);
448
if (regalloc->node_regs_max_index() > 0 &&
449
OptoReg::is_valid(regalloc->get_reg_first(box))) {
450
box = BoxLockNode::box_node(box);
451
format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
452
} else {
453
OptoReg::Name box_reg = BoxLockNode::reg(box);
454
st->print(" MON-BOX%d=%s+%d",
455
i,
456
OptoReg::regname(OptoReg::c_frame_pointer),
457
regalloc->reg2offset(box_reg));
458
}
459
const char* obj_msg = "MON-OBJ[";
460
if (EliminateLocks) {
461
if (BoxLockNode::box_node(box)->is_eliminated())
462
obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
463
}
464
format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
465
}
466
467
for (i = 0; i < (uint)scobjs.length(); i++) {
468
// Scalar replaced objects.
469
st->cr();
470
st->print(" # ScObj" INT32_FORMAT " ", i);
471
SafePointScalarObjectNode* spobj = scobjs.at(i);
472
ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
473
assert(cik->is_instance_klass() ||
474
cik->is_array_klass(), "Not supported allocation.");
475
ciInstanceKlass *iklass = NULL;
476
if (cik->is_instance_klass()) {
477
cik->print_name_on(st);
478
iklass = cik->as_instance_klass();
479
} else if (cik->is_type_array_klass()) {
480
cik->as_array_klass()->base_element_type()->print_name_on(st);
481
st->print("[%d]", spobj->n_fields());
482
} else if (cik->is_obj_array_klass()) {
483
ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
484
if (cie->is_instance_klass()) {
485
cie->print_name_on(st);
486
} else if (cie->is_type_array_klass()) {
487
cie->as_array_klass()->base_element_type()->print_name_on(st);
488
} else {
489
ShouldNotReachHere();
490
}
491
st->print("[%d]", spobj->n_fields());
492
int ndim = cik->as_array_klass()->dimension() - 1;
493
while (ndim-- > 0) {
494
st->print("[]");
495
}
496
}
497
st->print("={");
498
uint nf = spobj->n_fields();
499
if (nf > 0) {
500
uint first_ind = spobj->first_index(mcall->jvms());
501
Node* fld_node = mcall->in(first_ind);
502
ciField* cifield;
503
if (iklass != NULL) {
504
st->print(" [");
505
cifield = iklass->nonstatic_field_at(0);
506
cifield->print_name_on(st);
507
format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
508
} else {
509
format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
510
}
511
for (uint j = 1; j < nf; j++) {
512
fld_node = mcall->in(first_ind+j);
513
if (iklass != NULL) {
514
st->print(", [");
515
cifield = iklass->nonstatic_field_at(j);
516
cifield->print_name_on(st);
517
format_helper(regalloc, st, fld_node, ":", j, &scobjs);
518
} else {
519
format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
520
}
521
}
522
}
523
st->print(" }");
524
}
525
}
526
st->cr();
527
if (caller() != NULL) caller()->format(regalloc, n, st);
528
}
529
530
531
void JVMState::dump_spec(outputStream *st) const {
532
if (_method != NULL) {
533
bool printed = false;
534
if (!Verbose) {
535
// The JVMS dumps make really, really long lines.
536
// Take out the most boring parts, which are the package prefixes.
537
char buf[500];
538
stringStream namest(buf, sizeof(buf));
539
_method->print_short_name(&namest);
540
if (namest.count() < sizeof(buf)) {
541
const char* name = namest.base();
542
if (name[0] == ' ') ++name;
543
const char* endcn = strchr(name, ':'); // end of class name
544
if (endcn == NULL) endcn = strchr(name, '(');
545
if (endcn == NULL) endcn = name + strlen(name);
546
while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
547
--endcn;
548
st->print(" %s", endcn);
549
printed = true;
550
}
551
}
552
print_method_with_lineno(st, !printed);
553
if(_reexecute == Reexecute_True)
554
st->print(" reexecute");
555
} else {
556
st->print(" runtime stub");
557
}
558
if (caller() != NULL) caller()->dump_spec(st);
559
}
560
561
562
void JVMState::dump_on(outputStream* st) const {
563
bool print_map = _map && !((uintptr_t)_map & 1) &&
564
((caller() == NULL) || (caller()->map() != _map));
565
if (print_map) {
566
if (_map->len() > _map->req()) { // _map->has_exceptions()
567
Node* ex = _map->in(_map->req()); // _map->next_exception()
568
// skip the first one; it's already being printed
569
while (ex != NULL && ex->len() > ex->req()) {
570
ex = ex->in(ex->req()); // ex->next_exception()
571
ex->dump(1);
572
}
573
}
574
_map->dump(Verbose ? 2 : 1);
575
}
576
if (caller() != NULL) {
577
caller()->dump_on(st);
578
}
579
st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
580
depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
581
if (_method == NULL) {
582
st->print_cr("(none)");
583
} else {
584
_method->print_name(st);
585
st->cr();
586
if (bci() >= 0 && bci() < _method->code_size()) {
587
st->print(" bc: ");
588
_method->print_codes_on(bci(), bci()+1, st);
589
}
590
}
591
}
592
593
// Extra way to dump a jvms from the debugger,
594
// to avoid a bug with C++ member function calls.
595
void dump_jvms(JVMState* jvms) {
596
jvms->dump();
597
}
598
#endif
599
600
//--------------------------clone_shallow--------------------------------------
601
JVMState* JVMState::clone_shallow(Compile* C) const {
602
JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
603
n->set_bci(_bci);
604
n->_reexecute = _reexecute;
605
n->set_locoff(_locoff);
606
n->set_stkoff(_stkoff);
607
n->set_monoff(_monoff);
608
n->set_scloff(_scloff);
609
n->set_endoff(_endoff);
610
n->set_sp(_sp);
611
n->set_map(_map);
612
return n;
613
}
614
615
//---------------------------clone_deep----------------------------------------
616
JVMState* JVMState::clone_deep(Compile* C) const {
617
JVMState* n = clone_shallow(C);
618
for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
619
p->_caller = p->_caller->clone_shallow(C);
620
}
621
assert(n->depth() == depth(), "sanity");
622
assert(n->debug_depth() == debug_depth(), "sanity");
623
return n;
624
}
625
626
/**
627
* Reset map for all callers
628
*/
629
void JVMState::set_map_deep(SafePointNode* map) {
630
for (JVMState* p = this; p != NULL; p = p->_caller) {
631
p->set_map(map);
632
}
633
}
634
635
// unlike set_map(), this is two-way setting.
636
void JVMState::bind_map(SafePointNode* map) {
637
set_map(map);
638
_map->set_jvms(this);
639
}
640
641
// Adapt offsets in in-array after adding or removing an edge.
642
// Prerequisite is that the JVMState is used by only one node.
643
void JVMState::adapt_position(int delta) {
644
for (JVMState* jvms = this; jvms != NULL; jvms = jvms->caller()) {
645
jvms->set_locoff(jvms->locoff() + delta);
646
jvms->set_stkoff(jvms->stkoff() + delta);
647
jvms->set_monoff(jvms->monoff() + delta);
648
jvms->set_scloff(jvms->scloff() + delta);
649
jvms->set_endoff(jvms->endoff() + delta);
650
}
651
}
652
653
// Mirror the stack size calculation in the deopt code
654
// How much stack space would we need at this point in the program in
655
// case of deoptimization?
656
int JVMState::interpreter_frame_size() const {
657
const JVMState* jvms = this;
658
int size = 0;
659
int callee_parameters = 0;
660
int callee_locals = 0;
661
int extra_args = method()->max_stack() - stk_size();
662
663
while (jvms != NULL) {
664
int locks = jvms->nof_monitors();
665
int temps = jvms->stk_size();
666
bool is_top_frame = (jvms == this);
667
ciMethod* method = jvms->method();
668
669
int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(),
670
temps + callee_parameters,
671
extra_args,
672
locks,
673
callee_parameters,
674
callee_locals,
675
is_top_frame);
676
size += frame_size;
677
678
callee_parameters = method->size_of_parameters();
679
callee_locals = method->max_locals();
680
extra_args = 0;
681
jvms = jvms->caller();
682
}
683
return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord;
684
}
685
686
//=============================================================================
687
bool CallNode::cmp( const Node &n ) const
688
{ return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
689
#ifndef PRODUCT
690
void CallNode::dump_req(outputStream *st) const {
691
// Dump the required inputs, enclosed in '(' and ')'
692
uint i; // Exit value of loop
693
for (i = 0; i < req(); i++) { // For all required inputs
694
if (i == TypeFunc::Parms) st->print("(");
695
if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
696
else st->print("_ ");
697
}
698
st->print(")");
699
}
700
701
void CallNode::dump_spec(outputStream *st) const {
702
st->print(" ");
703
if (tf() != NULL) tf()->dump_on(st);
704
if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt);
705
if (jvms() != NULL) jvms()->dump_spec(st);
706
}
707
#endif
708
709
const Type *CallNode::bottom_type() const { return tf()->range(); }
710
const Type* CallNode::Value(PhaseGVN* phase) const {
711
if (phase->type(in(0)) == Type::TOP) return Type::TOP;
712
return tf()->range();
713
}
714
715
//------------------------------calling_convention-----------------------------
716
void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
717
// Use the standard compiler calling convention
718
SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt);
719
}
720
721
722
//------------------------------match------------------------------------------
723
// Construct projections for control, I/O, memory-fields, ..., and
724
// return result(s) along with their RegMask info
725
Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
726
switch (proj->_con) {
727
case TypeFunc::Control:
728
case TypeFunc::I_O:
729
case TypeFunc::Memory:
730
return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
731
732
case TypeFunc::Parms+1: // For LONG & DOUBLE returns
733
assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, "");
734
// 2nd half of doubles and longs
735
return new MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
736
737
case TypeFunc::Parms: { // Normal returns
738
uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg();
739
OptoRegPair regs = Opcode() == Op_CallLeafVector
740
? match->vector_return_value(ideal_reg) // Calls into assembly vector routine
741
: is_CallRuntime()
742
? match->c_return_value(ideal_reg) // Calls into C runtime
743
: match-> return_value(ideal_reg); // Calls into compiled Java code
744
RegMask rm = RegMask(regs.first());
745
746
if (Opcode() == Op_CallLeafVector) {
747
// If the return is in vector, compute appropriate regmask taking into account the whole range
748
if(ideal_reg >= Op_VecS && ideal_reg <= Op_VecZ) {
749
if(OptoReg::is_valid(regs.second())) {
750
for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) {
751
rm.Insert(r);
752
}
753
}
754
}
755
}
756
757
if( OptoReg::is_valid(regs.second()) )
758
rm.Insert( regs.second() );
759
return new MachProjNode(this,proj->_con,rm,ideal_reg);
760
}
761
762
case TypeFunc::ReturnAdr:
763
case TypeFunc::FramePtr:
764
default:
765
ShouldNotReachHere();
766
}
767
return NULL;
768
}
769
770
// Do we Match on this edge index or not? Match no edges
771
uint CallNode::match_edge(uint idx) const {
772
return 0;
773
}
774
775
//
776
// Determine whether the call could modify the field of the specified
777
// instance at the specified offset.
778
//
779
bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) {
780
assert((t_oop != NULL), "sanity");
781
if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) {
782
const TypeTuple* args = _tf->domain();
783
Node* dest = NULL;
784
// Stubs that can be called once an ArrayCopyNode is expanded have
785
// different signatures. Look for the second pointer argument,
786
// that is the destination of the copy.
787
for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) {
788
if (args->field_at(i)->isa_ptr()) {
789
j++;
790
if (j == 2) {
791
dest = in(i);
792
break;
793
}
794
}
795
}
796
guarantee(dest != NULL, "Call had only one ptr in, broken IR!");
797
if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) {
798
return true;
799
}
800
return false;
801
}
802
if (t_oop->is_known_instance()) {
803
// The instance_id is set only for scalar-replaceable allocations which
804
// are not passed as arguments according to Escape Analysis.
805
return false;
806
}
807
if (t_oop->is_ptr_to_boxed_value()) {
808
ciKlass* boxing_klass = t_oop->klass();
809
if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) {
810
// Skip unrelated boxing methods.
811
Node* proj = proj_out_or_null(TypeFunc::Parms);
812
if ((proj == NULL) || (phase->type(proj)->is_instptr()->klass() != boxing_klass)) {
813
return false;
814
}
815
}
816
if (is_CallJava() && as_CallJava()->method() != NULL) {
817
ciMethod* meth = as_CallJava()->method();
818
if (meth->is_getter()) {
819
return false;
820
}
821
// May modify (by reflection) if an boxing object is passed
822
// as argument or returned.
823
Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : NULL;
824
if (proj != NULL) {
825
const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr();
826
if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
827
(inst_t->klass() == boxing_klass))) {
828
return true;
829
}
830
}
831
const TypeTuple* d = tf()->domain();
832
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
833
const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr();
834
if ((inst_t != NULL) && (!inst_t->klass_is_exact() ||
835
(inst_t->klass() == boxing_klass))) {
836
return true;
837
}
838
}
839
return false;
840
}
841
}
842
return true;
843
}
844
845
// Does this call have a direct reference to n other than debug information?
846
bool CallNode::has_non_debug_use(Node *n) {
847
const TypeTuple * d = tf()->domain();
848
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
849
Node *arg = in(i);
850
if (arg == n) {
851
return true;
852
}
853
}
854
return false;
855
}
856
857
// Returns the unique CheckCastPP of a call
858
// or 'this' if there are several CheckCastPP or unexpected uses
859
// or returns NULL if there is no one.
860
Node *CallNode::result_cast() {
861
Node *cast = NULL;
862
863
Node *p = proj_out_or_null(TypeFunc::Parms);
864
if (p == NULL)
865
return NULL;
866
867
for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
868
Node *use = p->fast_out(i);
869
if (use->is_CheckCastPP()) {
870
if (cast != NULL) {
871
return this; // more than 1 CheckCastPP
872
}
873
cast = use;
874
} else if (!use->is_Initialize() &&
875
!use->is_AddP() &&
876
use->Opcode() != Op_MemBarStoreStore) {
877
// Expected uses are restricted to a CheckCastPP, an Initialize
878
// node, a MemBarStoreStore (clone) and AddP nodes. If we
879
// encounter any other use (a Phi node can be seen in rare
880
// cases) return this to prevent incorrect optimizations.
881
return this;
882
}
883
}
884
return cast;
885
}
886
887
888
void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts) {
889
projs->fallthrough_proj = NULL;
890
projs->fallthrough_catchproj = NULL;
891
projs->fallthrough_ioproj = NULL;
892
projs->catchall_ioproj = NULL;
893
projs->catchall_catchproj = NULL;
894
projs->fallthrough_memproj = NULL;
895
projs->catchall_memproj = NULL;
896
projs->resproj = NULL;
897
projs->exobj = NULL;
898
899
for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
900
ProjNode *pn = fast_out(i)->as_Proj();
901
if (pn->outcnt() == 0) continue;
902
switch (pn->_con) {
903
case TypeFunc::Control:
904
{
905
// For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
906
projs->fallthrough_proj = pn;
907
const Node *cn = pn->unique_ctrl_out();
908
if (cn != NULL && cn->is_Catch()) {
909
ProjNode *cpn = NULL;
910
for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
911
cpn = cn->fast_out(k)->as_Proj();
912
assert(cpn->is_CatchProj(), "must be a CatchProjNode");
913
if (cpn->_con == CatchProjNode::fall_through_index)
914
projs->fallthrough_catchproj = cpn;
915
else {
916
assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
917
projs->catchall_catchproj = cpn;
918
}
919
}
920
}
921
break;
922
}
923
case TypeFunc::I_O:
924
if (pn->_is_io_use)
925
projs->catchall_ioproj = pn;
926
else
927
projs->fallthrough_ioproj = pn;
928
for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
929
Node* e = pn->out(j);
930
if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
931
assert(projs->exobj == NULL, "only one");
932
projs->exobj = e;
933
}
934
}
935
break;
936
case TypeFunc::Memory:
937
if (pn->_is_io_use)
938
projs->catchall_memproj = pn;
939
else
940
projs->fallthrough_memproj = pn;
941
break;
942
case TypeFunc::Parms:
943
projs->resproj = pn;
944
break;
945
default:
946
assert(false, "unexpected projection from allocation node.");
947
}
948
}
949
950
// The resproj may not exist because the result could be ignored
951
// and the exception object may not exist if an exception handler
952
// swallows the exception but all the other must exist and be found.
953
assert(projs->fallthrough_proj != NULL, "must be found");
954
do_asserts = do_asserts && !Compile::current()->inlining_incrementally();
955
assert(!do_asserts || projs->fallthrough_catchproj != NULL, "must be found");
956
assert(!do_asserts || projs->fallthrough_memproj != NULL, "must be found");
957
assert(!do_asserts || projs->fallthrough_ioproj != NULL, "must be found");
958
assert(!do_asserts || projs->catchall_catchproj != NULL, "must be found");
959
if (separate_io_proj) {
960
assert(!do_asserts || projs->catchall_memproj != NULL, "must be found");
961
assert(!do_asserts || projs->catchall_ioproj != NULL, "must be found");
962
}
963
}
964
965
Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) {
966
#ifdef ASSERT
967
// Validate attached generator
968
CallGenerator* cg = generator();
969
if (cg != NULL) {
970
assert(is_CallStaticJava() && cg->is_mh_late_inline() ||
971
is_CallDynamicJava() && cg->is_virtual_late_inline(), "mismatch");
972
}
973
#endif // ASSERT
974
return SafePointNode::Ideal(phase, can_reshape);
975
}
976
977
bool CallNode::is_call_to_arraycopystub() const {
978
if (_name != NULL && strstr(_name, "arraycopy") != 0) {
979
return true;
980
}
981
return false;
982
}
983
984
//=============================================================================
985
uint CallJavaNode::size_of() const { return sizeof(*this); }
986
bool CallJavaNode::cmp( const Node &n ) const {
987
CallJavaNode &call = (CallJavaNode&)n;
988
return CallNode::cmp(call) && _method == call._method &&
989
_override_symbolic_info == call._override_symbolic_info;
990
}
991
992
void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) {
993
// Copy debug information and adjust JVMState information
994
uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain()->cnt() : (uint)TypeFunc::Parms+1;
995
uint new_dbg_start = tf()->domain()->cnt();
996
int jvms_adj = new_dbg_start - old_dbg_start;
997
assert (new_dbg_start == req(), "argument count mismatch");
998
Compile* C = phase->C;
999
1000
// SafePointScalarObject node could be referenced several times in debug info.
1001
// Use Dict to record cloned nodes.
1002
Dict* sosn_map = new Dict(cmpkey,hashkey);
1003
for (uint i = old_dbg_start; i < sfpt->req(); i++) {
1004
Node* old_in = sfpt->in(i);
1005
// Clone old SafePointScalarObjectNodes, adjusting their field contents.
1006
if (old_in != NULL && old_in->is_SafePointScalarObject()) {
1007
SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
1008
bool new_node;
1009
Node* new_in = old_sosn->clone(sosn_map, new_node);
1010
if (new_node) { // New node?
1011
new_in->set_req(0, C->root()); // reset control edge
1012
new_in = phase->transform(new_in); // Register new node.
1013
}
1014
old_in = new_in;
1015
}
1016
add_req(old_in);
1017
}
1018
1019
// JVMS may be shared so clone it before we modify it
1020
set_jvms(sfpt->jvms() != NULL ? sfpt->jvms()->clone_deep(C) : NULL);
1021
for (JVMState *jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
1022
jvms->set_map(this);
1023
jvms->set_locoff(jvms->locoff()+jvms_adj);
1024
jvms->set_stkoff(jvms->stkoff()+jvms_adj);
1025
jvms->set_monoff(jvms->monoff()+jvms_adj);
1026
jvms->set_scloff(jvms->scloff()+jvms_adj);
1027
jvms->set_endoff(jvms->endoff()+jvms_adj);
1028
}
1029
}
1030
1031
#ifdef ASSERT
1032
bool CallJavaNode::validate_symbolic_info() const {
1033
if (method() == NULL) {
1034
return true; // call into runtime or uncommon trap
1035
}
1036
ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci());
1037
ciMethod* callee = method();
1038
if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) {
1039
assert(override_symbolic_info(), "should be set");
1040
}
1041
assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info");
1042
return true;
1043
}
1044
#endif
1045
1046
#ifndef PRODUCT
1047
void CallJavaNode::dump_spec(outputStream* st) const {
1048
if( _method ) _method->print_short_name(st);
1049
CallNode::dump_spec(st);
1050
}
1051
1052
void CallJavaNode::dump_compact_spec(outputStream* st) const {
1053
if (_method) {
1054
_method->print_short_name(st);
1055
} else {
1056
st->print("<?>");
1057
}
1058
}
1059
#endif
1060
1061
//=============================================================================
1062
uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
1063
bool CallStaticJavaNode::cmp( const Node &n ) const {
1064
CallStaticJavaNode &call = (CallStaticJavaNode&)n;
1065
return CallJavaNode::cmp(call);
1066
}
1067
1068
Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1069
CallGenerator* cg = generator();
1070
if (can_reshape && cg != NULL) {
1071
assert(IncrementalInlineMH, "required");
1072
assert(cg->call_node() == this, "mismatch");
1073
assert(cg->is_mh_late_inline(), "not virtual");
1074
1075
// Check whether this MH handle call becomes a candidate for inlining.
1076
ciMethod* callee = cg->method();
1077
vmIntrinsics::ID iid = callee->intrinsic_id();
1078
if (iid == vmIntrinsics::_invokeBasic) {
1079
if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
1080
phase->C->prepend_late_inline(cg);
1081
set_generator(NULL);
1082
}
1083
} else if (iid == vmIntrinsics::_linkToNative) {
1084
if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP /* NEP */
1085
&& in(TypeFunc::Parms + 1)->Opcode() == Op_ConL /* address */) {
1086
phase->C->prepend_late_inline(cg);
1087
set_generator(NULL);
1088
}
1089
} else {
1090
assert(callee->has_member_arg(), "wrong type of call?");
1091
if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
1092
phase->C->prepend_late_inline(cg);
1093
set_generator(NULL);
1094
}
1095
}
1096
}
1097
return CallNode::Ideal(phase, can_reshape);
1098
}
1099
1100
//----------------------------uncommon_trap_request----------------------------
1101
// If this is an uncommon trap, return the request code, else zero.
1102
int CallStaticJavaNode::uncommon_trap_request() const {
1103
if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
1104
return extract_uncommon_trap_request(this);
1105
}
1106
return 0;
1107
}
1108
int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
1109
#ifndef PRODUCT
1110
if (!(call->req() > TypeFunc::Parms &&
1111
call->in(TypeFunc::Parms) != NULL &&
1112
call->in(TypeFunc::Parms)->is_Con() &&
1113
call->in(TypeFunc::Parms)->bottom_type()->isa_int())) {
1114
assert(in_dump() != 0, "OK if dumping");
1115
tty->print("[bad uncommon trap]");
1116
return 0;
1117
}
1118
#endif
1119
return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
1120
}
1121
1122
#ifndef PRODUCT
1123
void CallStaticJavaNode::dump_spec(outputStream *st) const {
1124
st->print("# Static ");
1125
if (_name != NULL) {
1126
st->print("%s", _name);
1127
int trap_req = uncommon_trap_request();
1128
if (trap_req != 0) {
1129
char buf[100];
1130
st->print("(%s)",
1131
Deoptimization::format_trap_request(buf, sizeof(buf),
1132
trap_req));
1133
}
1134
st->print(" ");
1135
}
1136
CallJavaNode::dump_spec(st);
1137
}
1138
1139
void CallStaticJavaNode::dump_compact_spec(outputStream* st) const {
1140
if (_method) {
1141
_method->print_short_name(st);
1142
} else if (_name) {
1143
st->print("%s", _name);
1144
} else {
1145
st->print("<?>");
1146
}
1147
}
1148
#endif
1149
1150
//=============================================================================
1151
uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
1152
bool CallDynamicJavaNode::cmp( const Node &n ) const {
1153
CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
1154
return CallJavaNode::cmp(call);
1155
}
1156
1157
Node* CallDynamicJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1158
CallGenerator* cg = generator();
1159
if (can_reshape && cg != NULL) {
1160
assert(IncrementalInlineVirtual, "required");
1161
assert(cg->call_node() == this, "mismatch");
1162
assert(cg->is_virtual_late_inline(), "not virtual");
1163
1164
// Recover symbolic info for method resolution.
1165
ciMethod* caller = jvms()->method();
1166
ciBytecodeStream iter(caller);
1167
iter.force_bci(jvms()->bci());
1168
1169
bool not_used1;
1170
ciSignature* not_used2;
1171
ciMethod* orig_callee = iter.get_method(not_used1, &not_used2); // callee in the bytecode
1172
ciKlass* holder = iter.get_declared_method_holder();
1173
if (orig_callee->is_method_handle_intrinsic()) {
1174
assert(_override_symbolic_info, "required");
1175
orig_callee = method();
1176
holder = method()->holder();
1177
}
1178
1179
ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder);
1180
1181
Node* receiver_node = in(TypeFunc::Parms);
1182
const TypeOopPtr* receiver_type = phase->type(receiver_node)->isa_oopptr();
1183
1184
int not_used3;
1185
bool call_does_dispatch;
1186
ciMethod* callee = phase->C->optimize_virtual_call(caller, klass, holder, orig_callee, receiver_type, true /*is_virtual*/,
1187
call_does_dispatch, not_used3); // out-parameters
1188
if (!call_does_dispatch) {
1189
// Register for late inlining.
1190
cg->set_callee_method(callee);
1191
phase->C->prepend_late_inline(cg); // MH late inlining prepends to the list, so do the same
1192
set_generator(NULL);
1193
}
1194
}
1195
return CallNode::Ideal(phase, can_reshape);
1196
}
1197
1198
#ifndef PRODUCT
1199
void CallDynamicJavaNode::dump_spec(outputStream *st) const {
1200
st->print("# Dynamic ");
1201
CallJavaNode::dump_spec(st);
1202
}
1203
#endif
1204
1205
//=============================================================================
1206
uint CallRuntimeNode::size_of() const { return sizeof(*this); }
1207
bool CallRuntimeNode::cmp( const Node &n ) const {
1208
CallRuntimeNode &call = (CallRuntimeNode&)n;
1209
return CallNode::cmp(call) && !strcmp(_name,call._name);
1210
}
1211
#ifndef PRODUCT
1212
void CallRuntimeNode::dump_spec(outputStream *st) const {
1213
st->print("# ");
1214
st->print("%s", _name);
1215
CallNode::dump_spec(st);
1216
}
1217
#endif
1218
uint CallLeafVectorNode::size_of() const { return sizeof(*this); }
1219
bool CallLeafVectorNode::cmp( const Node &n ) const {
1220
CallLeafVectorNode &call = (CallLeafVectorNode&)n;
1221
return CallLeafNode::cmp(call) && _num_bits == call._num_bits;
1222
}
1223
1224
//=============================================================================
1225
uint CallNativeNode::size_of() const { return sizeof(*this); }
1226
bool CallNativeNode::cmp( const Node &n ) const {
1227
CallNativeNode &call = (CallNativeNode&)n;
1228
return CallNode::cmp(call) && !strcmp(_name,call._name)
1229
&& _arg_regs == call._arg_regs && _ret_regs == call._ret_regs;
1230
}
1231
Node* CallNativeNode::match(const ProjNode *proj, const Matcher *matcher) {
1232
switch (proj->_con) {
1233
case TypeFunc::Control:
1234
case TypeFunc::I_O:
1235
case TypeFunc::Memory:
1236
return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
1237
case TypeFunc::ReturnAdr:
1238
case TypeFunc::FramePtr:
1239
ShouldNotReachHere();
1240
case TypeFunc::Parms: {
1241
const Type* field_at_con = tf()->range()->field_at(proj->_con);
1242
const BasicType bt = field_at_con->basic_type();
1243
OptoReg::Name optoreg = OptoReg::as_OptoReg(_ret_regs.at(proj->_con - TypeFunc::Parms));
1244
OptoRegPair regs;
1245
if (bt == T_DOUBLE || bt == T_LONG) {
1246
regs.set2(optoreg);
1247
} else {
1248
regs.set1(optoreg);
1249
}
1250
RegMask rm = RegMask(regs.first());
1251
if(OptoReg::is_valid(regs.second()))
1252
rm.Insert(regs.second());
1253
return new MachProjNode(this, proj->_con, rm, field_at_con->ideal_reg());
1254
}
1255
case TypeFunc::Parms + 1: {
1256
assert(tf()->range()->field_at(proj->_con) == Type::HALF, "Expected HALF");
1257
assert(_ret_regs.at(proj->_con - TypeFunc::Parms) == VMRegImpl::Bad(), "Unexpected register for Type::HALF");
1258
// 2nd half of doubles and longs
1259
return new MachProjNode(this, proj->_con, RegMask::Empty, (uint) OptoReg::Bad);
1260
}
1261
default:
1262
ShouldNotReachHere();
1263
}
1264
return NULL;
1265
}
1266
#ifndef PRODUCT
1267
void CallNativeNode::print_regs(const GrowableArray<VMReg>& regs, outputStream* st) {
1268
st->print("{ ");
1269
for (int i = 0; i < regs.length(); i++) {
1270
regs.at(i)->print_on(st);
1271
if (i < regs.length() - 1) {
1272
st->print(", ");
1273
}
1274
}
1275
st->print(" } ");
1276
}
1277
1278
void CallNativeNode::dump_spec(outputStream *st) const {
1279
st->print("# ");
1280
st->print("%s ", _name);
1281
st->print("_arg_regs: ");
1282
print_regs(_arg_regs, st);
1283
st->print("_ret_regs: ");
1284
print_regs(_ret_regs, st);
1285
CallNode::dump_spec(st);
1286
}
1287
#endif
1288
1289
//------------------------------calling_convention-----------------------------
1290
void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const {
1291
SharedRuntime::c_calling_convention(sig_bt, parm_regs, /*regs2=*/nullptr, argcnt);
1292
}
1293
1294
void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1295
#ifdef ASSERT
1296
assert(tf()->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1297
"return vector size must match");
1298
const TypeTuple* d = tf()->domain();
1299
for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1300
Node* arg = in(i);
1301
assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits,
1302
"vector argument size must match");
1303
}
1304
#endif
1305
1306
SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt);
1307
}
1308
1309
void CallNativeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
1310
assert((tf()->domain()->cnt() - TypeFunc::Parms) == argcnt, "arg counts must match!");
1311
#ifdef ASSERT
1312
for (uint i = 0; i < argcnt; i++) {
1313
assert(tf()->domain()->field_at(TypeFunc::Parms + i)->basic_type() == sig_bt[i], "types must match!");
1314
}
1315
#endif
1316
for (uint i = 0; i < argcnt; i++) {
1317
switch (sig_bt[i]) {
1318
case T_BOOLEAN:
1319
case T_CHAR:
1320
case T_BYTE:
1321
case T_SHORT:
1322
case T_INT:
1323
case T_FLOAT:
1324
parm_regs[i].set1(_arg_regs.at(i));
1325
break;
1326
case T_LONG:
1327
case T_DOUBLE:
1328
assert((i + 1) < argcnt && sig_bt[i + 1] == T_VOID, "expecting half");
1329
parm_regs[i].set2(_arg_regs.at(i));
1330
break;
1331
case T_VOID: // Halves of longs and doubles
1332
assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
1333
assert(_arg_regs.at(i) == VMRegImpl::Bad(), "expecting bad reg");
1334
parm_regs[i].set_bad();
1335
break;
1336
default:
1337
ShouldNotReachHere();
1338
break;
1339
}
1340
}
1341
}
1342
1343
//=============================================================================
1344
//------------------------------calling_convention-----------------------------
1345
1346
1347
//=============================================================================
1348
#ifndef PRODUCT
1349
void CallLeafNode::dump_spec(outputStream *st) const {
1350
st->print("# ");
1351
st->print("%s", _name);
1352
CallNode::dump_spec(st);
1353
}
1354
#endif
1355
1356
//=============================================================================
1357
1358
void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
1359
assert(verify_jvms(jvms), "jvms must match");
1360
int loc = jvms->locoff() + idx;
1361
if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
1362
// If current local idx is top then local idx - 1 could
1363
// be a long/double that needs to be killed since top could
1364
// represent the 2nd half ofthe long/double.
1365
uint ideal = in(loc -1)->ideal_reg();
1366
if (ideal == Op_RegD || ideal == Op_RegL) {
1367
// set other (low index) half to top
1368
set_req(loc - 1, in(loc));
1369
}
1370
}
1371
set_req(loc, c);
1372
}
1373
1374
uint SafePointNode::size_of() const { return sizeof(*this); }
1375
bool SafePointNode::cmp( const Node &n ) const {
1376
return (&n == this); // Always fail except on self
1377
}
1378
1379
//-------------------------set_next_exception----------------------------------
1380
void SafePointNode::set_next_exception(SafePointNode* n) {
1381
assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
1382
if (len() == req()) {
1383
if (n != NULL) add_prec(n);
1384
} else {
1385
set_prec(req(), n);
1386
}
1387
}
1388
1389
1390
//----------------------------next_exception-----------------------------------
1391
SafePointNode* SafePointNode::next_exception() const {
1392
if (len() == req()) {
1393
return NULL;
1394
} else {
1395
Node* n = in(req());
1396
assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
1397
return (SafePointNode*) n;
1398
}
1399
}
1400
1401
1402
//------------------------------Ideal------------------------------------------
1403
// Skip over any collapsed Regions
1404
Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1405
assert(_jvms == NULL || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState");
1406
return remove_dead_region(phase, can_reshape) ? this : NULL;
1407
}
1408
1409
//------------------------------Identity---------------------------------------
1410
// Remove obviously duplicate safepoints
1411
Node* SafePointNode::Identity(PhaseGVN* phase) {
1412
1413
// If you have back to back safepoints, remove one
1414
if (in(TypeFunc::Control)->is_SafePoint()) {
1415
Node* out_c = unique_ctrl_out();
1416
// This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the
1417
// outer loop's safepoint could confuse removal of the outer loop.
1418
if (out_c != NULL && !out_c->is_OuterStripMinedLoopEnd()) {
1419
return in(TypeFunc::Control);
1420
}
1421
}
1422
1423
// Transforming long counted loops requires a safepoint node. Do not
1424
// eliminate a safepoint until loop opts are over.
1425
if (in(0)->is_Proj() && !phase->C->major_progress()) {
1426
Node *n0 = in(0)->in(0);
1427
// Check if he is a call projection (except Leaf Call)
1428
if( n0->is_Catch() ) {
1429
n0 = n0->in(0)->in(0);
1430
assert( n0->is_Call(), "expect a call here" );
1431
}
1432
if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
1433
// Don't remove a safepoint belonging to an OuterStripMinedLoopEndNode.
1434
// If the loop dies, they will be removed together.
1435
if (has_out_with(Op_OuterStripMinedLoopEnd)) {
1436
return this;
1437
}
1438
// Useless Safepoint, so remove it
1439
return in(TypeFunc::Control);
1440
}
1441
}
1442
1443
return this;
1444
}
1445
1446
//------------------------------Value------------------------------------------
1447
const Type* SafePointNode::Value(PhaseGVN* phase) const {
1448
if (phase->type(in(0)) == Type::TOP) {
1449
return Type::TOP;
1450
}
1451
if (in(0) == this) {
1452
return Type::TOP; // Dead infinite loop
1453
}
1454
return Type::CONTROL;
1455
}
1456
1457
#ifndef PRODUCT
1458
void SafePointNode::dump_spec(outputStream *st) const {
1459
st->print(" SafePoint ");
1460
_replaced_nodes.dump(st);
1461
}
1462
1463
// The related nodes of a SafepointNode are all data inputs, excluding the
1464
// control boundary, as well as all outputs till level 2 (to include projection
1465
// nodes and targets). In compact mode, just include inputs till level 1 and
1466
// outputs as before.
1467
void SafePointNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1468
if (compact) {
1469
this->collect_nodes(in_rel, 1, false, false);
1470
} else {
1471
this->collect_nodes_in_all_data(in_rel, false);
1472
}
1473
this->collect_nodes(out_rel, -2, false, false);
1474
}
1475
#endif
1476
1477
const RegMask &SafePointNode::in_RegMask(uint idx) const {
1478
if( idx < TypeFunc::Parms ) return RegMask::Empty;
1479
// Values outside the domain represent debug info
1480
return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1481
}
1482
const RegMask &SafePointNode::out_RegMask() const {
1483
return RegMask::Empty;
1484
}
1485
1486
1487
void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1488
assert((int)grow_by > 0, "sanity");
1489
int monoff = jvms->monoff();
1490
int scloff = jvms->scloff();
1491
int endoff = jvms->endoff();
1492
assert(endoff == (int)req(), "no other states or debug info after me");
1493
Node* top = Compile::current()->top();
1494
for (uint i = 0; i < grow_by; i++) {
1495
ins_req(monoff, top);
1496
}
1497
jvms->set_monoff(monoff + grow_by);
1498
jvms->set_scloff(scloff + grow_by);
1499
jvms->set_endoff(endoff + grow_by);
1500
}
1501
1502
void SafePointNode::push_monitor(const FastLockNode *lock) {
1503
// Add a LockNode, which points to both the original BoxLockNode (the
1504
// stack space for the monitor) and the Object being locked.
1505
const int MonitorEdges = 2;
1506
assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1507
assert(req() == jvms()->endoff(), "correct sizing");
1508
int nextmon = jvms()->scloff();
1509
if (GenerateSynchronizationCode) {
1510
ins_req(nextmon, lock->box_node());
1511
ins_req(nextmon+1, lock->obj_node());
1512
} else {
1513
Node* top = Compile::current()->top();
1514
ins_req(nextmon, top);
1515
ins_req(nextmon, top);
1516
}
1517
jvms()->set_scloff(nextmon + MonitorEdges);
1518
jvms()->set_endoff(req());
1519
}
1520
1521
void SafePointNode::pop_monitor() {
1522
// Delete last monitor from debug info
1523
debug_only(int num_before_pop = jvms()->nof_monitors());
1524
const int MonitorEdges = 2;
1525
assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1526
int scloff = jvms()->scloff();
1527
int endoff = jvms()->endoff();
1528
int new_scloff = scloff - MonitorEdges;
1529
int new_endoff = endoff - MonitorEdges;
1530
jvms()->set_scloff(new_scloff);
1531
jvms()->set_endoff(new_endoff);
1532
while (scloff > new_scloff) del_req_ordered(--scloff);
1533
assert(jvms()->nof_monitors() == num_before_pop-1, "");
1534
}
1535
1536
Node *SafePointNode::peek_monitor_box() const {
1537
int mon = jvms()->nof_monitors() - 1;
1538
assert(mon >= 0, "must have a monitor");
1539
return monitor_box(jvms(), mon);
1540
}
1541
1542
Node *SafePointNode::peek_monitor_obj() const {
1543
int mon = jvms()->nof_monitors() - 1;
1544
assert(mon >= 0, "must have a monitor");
1545
return monitor_obj(jvms(), mon);
1546
}
1547
1548
// Do we Match on this edge index or not? Match no edges
1549
uint SafePointNode::match_edge(uint idx) const {
1550
return (TypeFunc::Parms == idx);
1551
}
1552
1553
void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) {
1554
assert(Opcode() == Op_SafePoint, "only value for safepoint in loops");
1555
int nb = igvn->C->root()->find_prec_edge(this);
1556
if (nb != -1) {
1557
igvn->C->root()->rm_prec(nb);
1558
}
1559
}
1560
1561
//============== SafePointScalarObjectNode ==============
1562
1563
SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
1564
#ifdef ASSERT
1565
Node* alloc,
1566
#endif
1567
uint first_index,
1568
uint n_fields,
1569
bool is_auto_box) :
1570
TypeNode(tp, 1), // 1 control input -- seems required. Get from root.
1571
_first_index(first_index),
1572
_n_fields(n_fields),
1573
_is_auto_box(is_auto_box)
1574
#ifdef ASSERT
1575
, _alloc(alloc)
1576
#endif
1577
{
1578
#ifdef ASSERT
1579
if (!alloc->is_Allocate()
1580
&& !(alloc->Opcode() == Op_VectorBox)
1581
&& (!alloc->is_CallStaticJava() || !alloc->as_CallStaticJava()->is_boxing_method())) {
1582
alloc->dump();
1583
assert(false, "unexpected call node");
1584
}
1585
#endif
1586
init_class_id(Class_SafePointScalarObject);
1587
}
1588
1589
// Do not allow value-numbering for SafePointScalarObject node.
1590
uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1591
bool SafePointScalarObjectNode::cmp( const Node &n ) const {
1592
return (&n == this); // Always fail except on self
1593
}
1594
1595
uint SafePointScalarObjectNode::ideal_reg() const {
1596
return 0; // No matching to machine instruction
1597
}
1598
1599
const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1600
return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1601
}
1602
1603
const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1604
return RegMask::Empty;
1605
}
1606
1607
uint SafePointScalarObjectNode::match_edge(uint idx) const {
1608
return 0;
1609
}
1610
1611
SafePointScalarObjectNode*
1612
SafePointScalarObjectNode::clone(Dict* sosn_map, bool& new_node) const {
1613
void* cached = (*sosn_map)[(void*)this];
1614
if (cached != NULL) {
1615
new_node = false;
1616
return (SafePointScalarObjectNode*)cached;
1617
}
1618
new_node = true;
1619
SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1620
sosn_map->Insert((void*)this, (void*)res);
1621
return res;
1622
}
1623
1624
1625
#ifndef PRODUCT
1626
void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1627
st->print(" # fields@[%d..%d]", first_index(),
1628
first_index() + n_fields() - 1);
1629
}
1630
1631
#endif
1632
1633
//=============================================================================
1634
uint AllocateNode::size_of() const { return sizeof(*this); }
1635
1636
AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1637
Node *ctrl, Node *mem, Node *abio,
1638
Node *size, Node *klass_node, Node *initial_test)
1639
: CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1640
{
1641
init_class_id(Class_Allocate);
1642
init_flags(Flag_is_macro);
1643
_is_scalar_replaceable = false;
1644
_is_non_escaping = false;
1645
_is_allocation_MemBar_redundant = false;
1646
Node *topnode = C->top();
1647
1648
init_req( TypeFunc::Control , ctrl );
1649
init_req( TypeFunc::I_O , abio );
1650
init_req( TypeFunc::Memory , mem );
1651
init_req( TypeFunc::ReturnAdr, topnode );
1652
init_req( TypeFunc::FramePtr , topnode );
1653
init_req( AllocSize , size);
1654
init_req( KlassNode , klass_node);
1655
init_req( InitialTest , initial_test);
1656
init_req( ALength , topnode);
1657
init_req( ValidLengthTest , topnode);
1658
C->add_macro_node(this);
1659
}
1660
1661
void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer)
1662
{
1663
assert(initializer != NULL &&
1664
initializer->is_initializer() &&
1665
!initializer->is_static(),
1666
"unexpected initializer method");
1667
BCEscapeAnalyzer* analyzer = initializer->get_bcea();
1668
if (analyzer == NULL) {
1669
return;
1670
}
1671
1672
// Allocation node is first parameter in its initializer
1673
if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) {
1674
_is_allocation_MemBar_redundant = true;
1675
}
1676
}
1677
Node *AllocateNode::make_ideal_mark(PhaseGVN *phase, Node* obj, Node* control, Node* mem) {
1678
Node* mark_node = NULL;
1679
// For now only enable fast locking for non-array types
1680
if (UseBiasedLocking && Opcode() == Op_Allocate) {
1681
Node* klass_node = in(AllocateNode::KlassNode);
1682
Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset()))));
1683
mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
1684
} else {
1685
mark_node = phase->MakeConX(markWord::prototype().value());
1686
}
1687
return mark_node;
1688
}
1689
1690
// Retrieve the length from the AllocateArrayNode. Narrow the type with a
1691
// CastII, if appropriate. If we are not allowed to create new nodes, and
1692
// a CastII is appropriate, return NULL.
1693
Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
1694
Node *length = in(AllocateNode::ALength);
1695
assert(length != NULL, "length is not null");
1696
1697
const TypeInt* length_type = phase->find_int_type(length);
1698
const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1699
1700
if (ary_type != NULL && length_type != NULL) {
1701
const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1702
if (narrow_length_type != length_type) {
1703
// Assert one of:
1704
// - the narrow_length is 0
1705
// - the narrow_length is not wider than length
1706
assert(narrow_length_type == TypeInt::ZERO ||
1707
length_type->is_con() && narrow_length_type->is_con() &&
1708
(narrow_length_type->_hi <= length_type->_lo) ||
1709
(narrow_length_type->_hi <= length_type->_hi &&
1710
narrow_length_type->_lo >= length_type->_lo),
1711
"narrow type must be narrower than length type");
1712
1713
// Return NULL if new nodes are not allowed
1714
if (!allow_new_nodes) {
1715
return NULL;
1716
}
1717
// Create a cast which is control dependent on the initialization to
1718
// propagate the fact that the array length must be positive.
1719
InitializeNode* init = initialization();
1720
if (init != NULL) {
1721
length = new CastIINode(length, narrow_length_type);
1722
length->set_req(TypeFunc::Control, init->proj_out_or_null(TypeFunc::Control));
1723
}
1724
}
1725
}
1726
1727
return length;
1728
}
1729
1730
//=============================================================================
1731
uint LockNode::size_of() const { return sizeof(*this); }
1732
1733
// Redundant lock elimination
1734
//
1735
// There are various patterns of locking where we release and
1736
// immediately reacquire a lock in a piece of code where no operations
1737
// occur in between that would be observable. In those cases we can
1738
// skip releasing and reacquiring the lock without violating any
1739
// fairness requirements. Doing this around a loop could cause a lock
1740
// to be held for a very long time so we concentrate on non-looping
1741
// control flow. We also require that the operations are fully
1742
// redundant meaning that we don't introduce new lock operations on
1743
// some paths so to be able to eliminate it on others ala PRE. This
1744
// would probably require some more extensive graph manipulation to
1745
// guarantee that the memory edges were all handled correctly.
1746
//
1747
// Assuming p is a simple predicate which can't trap in any way and s
1748
// is a synchronized method consider this code:
1749
//
1750
// s();
1751
// if (p)
1752
// s();
1753
// else
1754
// s();
1755
// s();
1756
//
1757
// 1. The unlocks of the first call to s can be eliminated if the
1758
// locks inside the then and else branches are eliminated.
1759
//
1760
// 2. The unlocks of the then and else branches can be eliminated if
1761
// the lock of the final call to s is eliminated.
1762
//
1763
// Either of these cases subsumes the simple case of sequential control flow
1764
//
1765
// Addtionally we can eliminate versions without the else case:
1766
//
1767
// s();
1768
// if (p)
1769
// s();
1770
// s();
1771
//
1772
// 3. In this case we eliminate the unlock of the first s, the lock
1773
// and unlock in the then case and the lock in the final s.
1774
//
1775
// Note also that in all these cases the then/else pieces don't have
1776
// to be trivial as long as they begin and end with synchronization
1777
// operations.
1778
//
1779
// s();
1780
// if (p)
1781
// s();
1782
// f();
1783
// s();
1784
// s();
1785
//
1786
// The code will work properly for this case, leaving in the unlock
1787
// before the call to f and the relock after it.
1788
//
1789
// A potentially interesting case which isn't handled here is when the
1790
// locking is partially redundant.
1791
//
1792
// s();
1793
// if (p)
1794
// s();
1795
//
1796
// This could be eliminated putting unlocking on the else case and
1797
// eliminating the first unlock and the lock in the then side.
1798
// Alternatively the unlock could be moved out of the then side so it
1799
// was after the merge and the first unlock and second lock
1800
// eliminated. This might require less manipulation of the memory
1801
// state to get correct.
1802
//
1803
// Additionally we might allow work between a unlock and lock before
1804
// giving up eliminating the locks. The current code disallows any
1805
// conditional control flow between these operations. A formulation
1806
// similar to partial redundancy elimination computing the
1807
// availability of unlocking and the anticipatability of locking at a
1808
// program point would allow detection of fully redundant locking with
1809
// some amount of work in between. I'm not sure how often I really
1810
// think that would occur though. Most of the cases I've seen
1811
// indicate it's likely non-trivial work would occur in between.
1812
// There may be other more complicated constructs where we could
1813
// eliminate locking but I haven't seen any others appear as hot or
1814
// interesting.
1815
//
1816
// Locking and unlocking have a canonical form in ideal that looks
1817
// roughly like this:
1818
//
1819
// <obj>
1820
// | \\------+
1821
// | \ \
1822
// | BoxLock \
1823
// | | | \
1824
// | | \ \
1825
// | | FastLock
1826
// | | /
1827
// | | /
1828
// | | |
1829
//
1830
// Lock
1831
// |
1832
// Proj #0
1833
// |
1834
// MembarAcquire
1835
// |
1836
// Proj #0
1837
//
1838
// MembarRelease
1839
// |
1840
// Proj #0
1841
// |
1842
// Unlock
1843
// |
1844
// Proj #0
1845
//
1846
//
1847
// This code proceeds by processing Lock nodes during PhaseIterGVN
1848
// and searching back through its control for the proper code
1849
// patterns. Once it finds a set of lock and unlock operations to
1850
// eliminate they are marked as eliminatable which causes the
1851
// expansion of the Lock and Unlock macro nodes to make the operation a NOP
1852
//
1853
//=============================================================================
1854
1855
//
1856
// Utility function to skip over uninteresting control nodes. Nodes skipped are:
1857
// - copy regions. (These may not have been optimized away yet.)
1858
// - eliminated locking nodes
1859
//
1860
static Node *next_control(Node *ctrl) {
1861
if (ctrl == NULL)
1862
return NULL;
1863
while (1) {
1864
if (ctrl->is_Region()) {
1865
RegionNode *r = ctrl->as_Region();
1866
Node *n = r->is_copy();
1867
if (n == NULL)
1868
break; // hit a region, return it
1869
else
1870
ctrl = n;
1871
} else if (ctrl->is_Proj()) {
1872
Node *in0 = ctrl->in(0);
1873
if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
1874
ctrl = in0->in(0);
1875
} else {
1876
break;
1877
}
1878
} else {
1879
break; // found an interesting control
1880
}
1881
}
1882
return ctrl;
1883
}
1884
//
1885
// Given a control, see if it's the control projection of an Unlock which
1886
// operating on the same object as lock.
1887
//
1888
bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
1889
GrowableArray<AbstractLockNode*> &lock_ops) {
1890
ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
1891
if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
1892
Node *n = ctrl_proj->in(0);
1893
if (n != NULL && n->is_Unlock()) {
1894
UnlockNode *unlock = n->as_Unlock();
1895
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1896
Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
1897
Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
1898
if (lock_obj->eqv_uncast(unlock_obj) &&
1899
BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
1900
!unlock->is_eliminated()) {
1901
lock_ops.append(unlock);
1902
return true;
1903
}
1904
}
1905
}
1906
return false;
1907
}
1908
1909
//
1910
// Find the lock matching an unlock. Returns null if a safepoint
1911
// or complicated control is encountered first.
1912
LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
1913
LockNode *lock_result = NULL;
1914
// find the matching lock, or an intervening safepoint
1915
Node *ctrl = next_control(unlock->in(0));
1916
while (1) {
1917
assert(ctrl != NULL, "invalid control graph");
1918
assert(!ctrl->is_Start(), "missing lock for unlock");
1919
if (ctrl->is_top()) break; // dead control path
1920
if (ctrl->is_Proj()) ctrl = ctrl->in(0);
1921
if (ctrl->is_SafePoint()) {
1922
break; // found a safepoint (may be the lock we are searching for)
1923
} else if (ctrl->is_Region()) {
1924
// Check for a simple diamond pattern. Punt on anything more complicated
1925
if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
1926
Node *in1 = next_control(ctrl->in(1));
1927
Node *in2 = next_control(ctrl->in(2));
1928
if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
1929
(in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
1930
ctrl = next_control(in1->in(0)->in(0));
1931
} else {
1932
break;
1933
}
1934
} else {
1935
break;
1936
}
1937
} else {
1938
ctrl = next_control(ctrl->in(0)); // keep searching
1939
}
1940
}
1941
if (ctrl->is_Lock()) {
1942
LockNode *lock = ctrl->as_Lock();
1943
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1944
Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
1945
Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node());
1946
if (lock_obj->eqv_uncast(unlock_obj) &&
1947
BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
1948
lock_result = lock;
1949
}
1950
}
1951
return lock_result;
1952
}
1953
1954
// This code corresponds to case 3 above.
1955
1956
bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1957
GrowableArray<AbstractLockNode*> &lock_ops) {
1958
Node* if_node = node->in(0);
1959
bool if_true = node->is_IfTrue();
1960
1961
if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
1962
Node *lock_ctrl = next_control(if_node->in(0));
1963
if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
1964
Node* lock1_node = NULL;
1965
ProjNode* proj = if_node->as_If()->proj_out(!if_true);
1966
if (if_true) {
1967
if (proj->is_IfFalse() && proj->outcnt() == 1) {
1968
lock1_node = proj->unique_out();
1969
}
1970
} else {
1971
if (proj->is_IfTrue() && proj->outcnt() == 1) {
1972
lock1_node = proj->unique_out();
1973
}
1974
}
1975
if (lock1_node != NULL && lock1_node->is_Lock()) {
1976
LockNode *lock1 = lock1_node->as_Lock();
1977
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1978
Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node());
1979
Node* lock1_obj = bs->step_over_gc_barrier(lock1->obj_node());
1980
if (lock_obj->eqv_uncast(lock1_obj) &&
1981
BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
1982
!lock1->is_eliminated()) {
1983
lock_ops.append(lock1);
1984
return true;
1985
}
1986
}
1987
}
1988
}
1989
1990
lock_ops.trunc_to(0);
1991
return false;
1992
}
1993
1994
bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1995
GrowableArray<AbstractLockNode*> &lock_ops) {
1996
// check each control merging at this point for a matching unlock.
1997
// in(0) should be self edge so skip it.
1998
for (int i = 1; i < (int)region->req(); i++) {
1999
Node *in_node = next_control(region->in(i));
2000
if (in_node != NULL) {
2001
if (find_matching_unlock(in_node, lock, lock_ops)) {
2002
// found a match so keep on checking.
2003
continue;
2004
} else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
2005
continue;
2006
}
2007
2008
// If we fall through to here then it was some kind of node we
2009
// don't understand or there wasn't a matching unlock, so give
2010
// up trying to merge locks.
2011
lock_ops.trunc_to(0);
2012
return false;
2013
}
2014
}
2015
return true;
2016
2017
}
2018
2019
const char* AbstractLockNode::_kind_names[] = {"Regular", "NonEscObj", "Coarsened", "Nested"};
2020
2021
const char * AbstractLockNode::kind_as_string() const {
2022
return _kind_names[_kind];
2023
}
2024
2025
#ifndef PRODUCT
2026
//
2027
// Create a counter which counts the number of times this lock is acquired
2028
//
2029
void AbstractLockNode::create_lock_counter(JVMState* state) {
2030
_counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
2031
}
2032
2033
void AbstractLockNode::set_eliminated_lock_counter() {
2034
if (_counter) {
2035
// Update the counter to indicate that this lock was eliminated.
2036
// The counter update code will stay around even though the
2037
// optimizer will eliminate the lock operation itself.
2038
_counter->set_tag(NamedCounter::EliminatedLockCounter);
2039
}
2040
}
2041
2042
void AbstractLockNode::dump_spec(outputStream* st) const {
2043
st->print("%s ", _kind_names[_kind]);
2044
CallNode::dump_spec(st);
2045
}
2046
2047
void AbstractLockNode::dump_compact_spec(outputStream* st) const {
2048
st->print("%s", _kind_names[_kind]);
2049
}
2050
2051
// The related set of lock nodes includes the control boundary.
2052
void AbstractLockNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2053
if (compact) {
2054
this->collect_nodes(in_rel, 1, false, false);
2055
} else {
2056
this->collect_nodes_in_all_data(in_rel, true);
2057
}
2058
this->collect_nodes(out_rel, -2, false, false);
2059
}
2060
#endif
2061
2062
//=============================================================================
2063
Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2064
2065
// perform any generic optimizations first (returns 'this' or NULL)
2066
Node *result = SafePointNode::Ideal(phase, can_reshape);
2067
if (result != NULL) return result;
2068
// Don't bother trying to transform a dead node
2069
if (in(0) && in(0)->is_top()) return NULL;
2070
2071
// Now see if we can optimize away this lock. We don't actually
2072
// remove the locking here, we simply set the _eliminate flag which
2073
// prevents macro expansion from expanding the lock. Since we don't
2074
// modify the graph, the value returned from this function is the
2075
// one computed above.
2076
if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
2077
//
2078
// If we are locking an non-escaped object, the lock/unlock is unnecessary
2079
//
2080
ConnectionGraph *cgr = phase->C->congraph();
2081
if (cgr != NULL && cgr->not_global_escape(obj_node())) {
2082
assert(!is_eliminated() || is_coarsened(), "sanity");
2083
// The lock could be marked eliminated by lock coarsening
2084
// code during first IGVN before EA. Replace coarsened flag
2085
// to eliminate all associated locks/unlocks.
2086
#ifdef ASSERT
2087
this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1");
2088
#endif
2089
this->set_non_esc_obj();
2090
return result;
2091
}
2092
2093
if (!phase->C->do_locks_coarsening()) {
2094
return result; // Compiling without locks coarsening
2095
}
2096
//
2097
// Try lock coarsening
2098
//
2099
PhaseIterGVN* iter = phase->is_IterGVN();
2100
if (iter != NULL && !is_eliminated()) {
2101
2102
GrowableArray<AbstractLockNode*> lock_ops;
2103
2104
Node *ctrl = next_control(in(0));
2105
2106
// now search back for a matching Unlock
2107
if (find_matching_unlock(ctrl, this, lock_ops)) {
2108
// found an unlock directly preceding this lock. This is the
2109
// case of single unlock directly control dependent on a
2110
// single lock which is the trivial version of case 1 or 2.
2111
} else if (ctrl->is_Region() ) {
2112
if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
2113
// found lock preceded by multiple unlocks along all paths
2114
// joining at this point which is case 3 in description above.
2115
}
2116
} else {
2117
// see if this lock comes from either half of an if and the
2118
// predecessors merges unlocks and the other half of the if
2119
// performs a lock.
2120
if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
2121
// found unlock splitting to an if with locks on both branches.
2122
}
2123
}
2124
2125
if (lock_ops.length() > 0) {
2126
// add ourselves to the list of locks to be eliminated.
2127
lock_ops.append(this);
2128
2129
#ifndef PRODUCT
2130
if (PrintEliminateLocks) {
2131
int locks = 0;
2132
int unlocks = 0;
2133
if (Verbose) {
2134
tty->print_cr("=== Locks coarsening ===");
2135
}
2136
for (int i = 0; i < lock_ops.length(); i++) {
2137
AbstractLockNode* lock = lock_ops.at(i);
2138
if (lock->Opcode() == Op_Lock)
2139
locks++;
2140
else
2141
unlocks++;
2142
if (Verbose) {
2143
tty->print(" %d: ", i);
2144
lock->dump();
2145
}
2146
}
2147
tty->print_cr("=== Coarsened %d unlocks and %d locks", unlocks, locks);
2148
}
2149
#endif
2150
2151
// for each of the identified locks, mark them
2152
// as eliminatable
2153
for (int i = 0; i < lock_ops.length(); i++) {
2154
AbstractLockNode* lock = lock_ops.at(i);
2155
2156
// Mark it eliminated by coarsening and update any counters
2157
#ifdef ASSERT
2158
lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened");
2159
#endif
2160
lock->set_coarsened();
2161
}
2162
// Record this coarsened group.
2163
phase->C->add_coarsened_locks(lock_ops);
2164
} else if (ctrl->is_Region() &&
2165
iter->_worklist.member(ctrl)) {
2166
// We weren't able to find any opportunities but the region this
2167
// lock is control dependent on hasn't been processed yet so put
2168
// this lock back on the worklist so we can check again once any
2169
// region simplification has occurred.
2170
iter->_worklist.push(this);
2171
}
2172
}
2173
}
2174
2175
return result;
2176
}
2177
2178
//=============================================================================
2179
bool LockNode::is_nested_lock_region() {
2180
return is_nested_lock_region(NULL);
2181
}
2182
2183
// p is used for access to compilation log; no logging if NULL
2184
bool LockNode::is_nested_lock_region(Compile * c) {
2185
BoxLockNode* box = box_node()->as_BoxLock();
2186
int stk_slot = box->stack_slot();
2187
if (stk_slot <= 0) {
2188
#ifdef ASSERT
2189
this->log_lock_optimization(c, "eliminate_lock_INLR_1");
2190
#endif
2191
return false; // External lock or it is not Box (Phi node).
2192
}
2193
2194
// Ignore complex cases: merged locks or multiple locks.
2195
Node* obj = obj_node();
2196
LockNode* unique_lock = NULL;
2197
Node* bad_lock = NULL;
2198
if (!box->is_simple_lock_region(&unique_lock, obj, &bad_lock)) {
2199
#ifdef ASSERT
2200
this->log_lock_optimization(c, "eliminate_lock_INLR_2a", bad_lock);
2201
#endif
2202
return false;
2203
}
2204
if (unique_lock != this) {
2205
#ifdef ASSERT
2206
this->log_lock_optimization(c, "eliminate_lock_INLR_2b", (unique_lock != NULL ? unique_lock : bad_lock));
2207
if (PrintEliminateLocks && Verbose) {
2208
tty->print_cr("=============== unique_lock != this ============");
2209
tty->print(" this: ");
2210
this->dump();
2211
tty->print(" box: ");
2212
box->dump();
2213
tty->print(" obj: ");
2214
obj->dump();
2215
if (unique_lock != NULL) {
2216
tty->print(" unique_lock: ");
2217
unique_lock->dump();
2218
}
2219
if (bad_lock != NULL) {
2220
tty->print(" bad_lock: ");
2221
bad_lock->dump();
2222
}
2223
tty->print_cr("===============");
2224
}
2225
#endif
2226
return false;
2227
}
2228
2229
BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2230
obj = bs->step_over_gc_barrier(obj);
2231
// Look for external lock for the same object.
2232
SafePointNode* sfn = this->as_SafePoint();
2233
JVMState* youngest_jvms = sfn->jvms();
2234
int max_depth = youngest_jvms->depth();
2235
for (int depth = 1; depth <= max_depth; depth++) {
2236
JVMState* jvms = youngest_jvms->of_depth(depth);
2237
int num_mon = jvms->nof_monitors();
2238
// Loop over monitors
2239
for (int idx = 0; idx < num_mon; idx++) {
2240
Node* obj_node = sfn->monitor_obj(jvms, idx);
2241
obj_node = bs->step_over_gc_barrier(obj_node);
2242
BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
2243
if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
2244
return true;
2245
}
2246
}
2247
}
2248
#ifdef ASSERT
2249
this->log_lock_optimization(c, "eliminate_lock_INLR_3");
2250
#endif
2251
return false;
2252
}
2253
2254
//=============================================================================
2255
uint UnlockNode::size_of() const { return sizeof(*this); }
2256
2257
//=============================================================================
2258
Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2259
2260
// perform any generic optimizations first (returns 'this' or NULL)
2261
Node *result = SafePointNode::Ideal(phase, can_reshape);
2262
if (result != NULL) return result;
2263
// Don't bother trying to transform a dead node
2264
if (in(0) && in(0)->is_top()) return NULL;
2265
2266
// Now see if we can optimize away this unlock. We don't actually
2267
// remove the unlocking here, we simply set the _eliminate flag which
2268
// prevents macro expansion from expanding the unlock. Since we don't
2269
// modify the graph, the value returned from this function is the
2270
// one computed above.
2271
// Escape state is defined after Parse phase.
2272
if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
2273
//
2274
// If we are unlocking an non-escaped object, the lock/unlock is unnecessary.
2275
//
2276
ConnectionGraph *cgr = phase->C->congraph();
2277
if (cgr != NULL && cgr->not_global_escape(obj_node())) {
2278
assert(!is_eliminated() || is_coarsened(), "sanity");
2279
// The lock could be marked eliminated by lock coarsening
2280
// code during first IGVN before EA. Replace coarsened flag
2281
// to eliminate all associated locks/unlocks.
2282
#ifdef ASSERT
2283
this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2");
2284
#endif
2285
this->set_non_esc_obj();
2286
}
2287
}
2288
return result;
2289
}
2290
2291
void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock) const {
2292
if (C == NULL) {
2293
return;
2294
}
2295
CompileLog* log = C->log();
2296
if (log != NULL) {
2297
Node* box = box_node();
2298
Node* obj = obj_node();
2299
int box_id = box != NULL ? box->_idx : -1;
2300
int obj_id = obj != NULL ? obj->_idx : -1;
2301
2302
log->begin_head("%s compile_id='%d' lock_id='%d' class='%s' kind='%s' box_id='%d' obj_id='%d' bad_id='%d'",
2303
tag, C->compile_id(), this->_idx,
2304
is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?",
2305
kind_as_string(), box_id, obj_id, (bad_lock != NULL ? bad_lock->_idx : -1));
2306
log->stamp();
2307
log->end_head();
2308
JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms();
2309
while (p != NULL) {
2310
log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
2311
p = p->caller();
2312
}
2313
log->tail(tag);
2314
}
2315
}
2316
2317
bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr *t_oop, PhaseTransform *phase) {
2318
if (dest_t->is_known_instance() && t_oop->is_known_instance()) {
2319
return dest_t->instance_id() == t_oop->instance_id();
2320
}
2321
2322
if (dest_t->isa_instptr() && !dest_t->klass()->equals(phase->C->env()->Object_klass())) {
2323
// clone
2324
if (t_oop->isa_aryptr()) {
2325
return false;
2326
}
2327
if (!t_oop->isa_instptr()) {
2328
return true;
2329
}
2330
if (dest_t->klass()->is_subtype_of(t_oop->klass()) || t_oop->klass()->is_subtype_of(dest_t->klass())) {
2331
return true;
2332
}
2333
// unrelated
2334
return false;
2335
}
2336
2337
if (dest_t->isa_aryptr()) {
2338
// arraycopy or array clone
2339
if (t_oop->isa_instptr()) {
2340
return false;
2341
}
2342
if (!t_oop->isa_aryptr()) {
2343
return true;
2344
}
2345
2346
const Type* elem = dest_t->is_aryptr()->elem();
2347
if (elem == Type::BOTTOM) {
2348
// An array but we don't know what elements are
2349
return true;
2350
}
2351
2352
dest_t = dest_t->add_offset(Type::OffsetBot)->is_oopptr();
2353
uint dest_alias = phase->C->get_alias_index(dest_t);
2354
uint t_oop_alias = phase->C->get_alias_index(t_oop);
2355
2356
return dest_alias == t_oop_alias;
2357
}
2358
2359
return true;
2360
}
2361
2362