Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/jdk17u
Path: blob/master/src/hotspot/share/opto/cfgnode.cpp
64441 views
1
/*
2
* Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "gc/shared/barrierSet.hpp"
27
#include "gc/shared/c2/barrierSetC2.hpp"
28
#include "memory/allocation.inline.hpp"
29
#include "memory/resourceArea.hpp"
30
#include "oops/objArrayKlass.hpp"
31
#include "opto/addnode.hpp"
32
#include "opto/castnode.hpp"
33
#include "opto/cfgnode.hpp"
34
#include "opto/connode.hpp"
35
#include "opto/convertnode.hpp"
36
#include "opto/loopnode.hpp"
37
#include "opto/machnode.hpp"
38
#include "opto/movenode.hpp"
39
#include "opto/narrowptrnode.hpp"
40
#include "opto/mulnode.hpp"
41
#include "opto/phaseX.hpp"
42
#include "opto/regmask.hpp"
43
#include "opto/runtime.hpp"
44
#include "opto/subnode.hpp"
45
#include "opto/vectornode.hpp"
46
#include "utilities/vmError.hpp"
47
48
// Portions of code courtesy of Clifford Click
49
50
// Optimization - Graph Style
51
52
//=============================================================================
53
//------------------------------Value------------------------------------------
54
// Compute the type of the RegionNode.
55
const Type* RegionNode::Value(PhaseGVN* phase) const {
56
for( uint i=1; i<req(); ++i ) { // For all paths in
57
Node *n = in(i); // Get Control source
58
if( !n ) continue; // Missing inputs are TOP
59
if( phase->type(n) == Type::CONTROL )
60
return Type::CONTROL;
61
}
62
return Type::TOP; // All paths dead? Then so are we
63
}
64
65
//------------------------------Identity---------------------------------------
66
// Check for Region being Identity.
67
Node* RegionNode::Identity(PhaseGVN* phase) {
68
// Cannot have Region be an identity, even if it has only 1 input.
69
// Phi users cannot have their Region input folded away for them,
70
// since they need to select the proper data input
71
return this;
72
}
73
74
//------------------------------merge_region-----------------------------------
75
// If a Region flows into a Region, merge into one big happy merge. This is
76
// hard to do if there is stuff that has to happen
77
static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
78
if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
79
return NULL;
80
Node *progress = NULL; // Progress flag
81
PhaseIterGVN *igvn = phase->is_IterGVN();
82
83
uint rreq = region->req();
84
for( uint i = 1; i < rreq; i++ ) {
85
Node *r = region->in(i);
86
if( r && r->Opcode() == Op_Region && // Found a region?
87
r->in(0) == r && // Not already collapsed?
88
r != region && // Avoid stupid situations
89
r->outcnt() == 2 ) { // Self user and 'region' user only?
90
assert(!r->as_Region()->has_phi(), "no phi users");
91
if( !progress ) { // No progress
92
if (region->has_phi()) {
93
return NULL; // Only flatten if no Phi users
94
// igvn->hash_delete( phi );
95
}
96
igvn->hash_delete( region );
97
progress = region; // Making progress
98
}
99
igvn->hash_delete( r );
100
101
// Append inputs to 'r' onto 'region'
102
for( uint j = 1; j < r->req(); j++ ) {
103
// Move an input from 'r' to 'region'
104
region->add_req(r->in(j));
105
r->set_req(j, phase->C->top());
106
// Update phis of 'region'
107
//for( uint k = 0; k < max; k++ ) {
108
// Node *phi = region->out(k);
109
// if( phi->is_Phi() ) {
110
// phi->add_req(phi->in(i));
111
// }
112
//}
113
114
rreq++; // One more input to Region
115
} // Found a region to merge into Region
116
igvn->_worklist.push(r);
117
// Clobber pointer to the now dead 'r'
118
region->set_req(i, phase->C->top());
119
}
120
}
121
122
return progress;
123
}
124
125
126
127
//--------------------------------has_phi--------------------------------------
128
// Helper function: Return any PhiNode that uses this region or NULL
129
PhiNode* RegionNode::has_phi() const {
130
for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
131
Node* phi = fast_out(i);
132
if (phi->is_Phi()) { // Check for Phi users
133
assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
134
return phi->as_Phi(); // this one is good enough
135
}
136
}
137
138
return NULL;
139
}
140
141
142
//-----------------------------has_unique_phi----------------------------------
143
// Helper function: Return the only PhiNode that uses this region or NULL
144
PhiNode* RegionNode::has_unique_phi() const {
145
// Check that only one use is a Phi
146
PhiNode* only_phi = NULL;
147
for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
148
Node* phi = fast_out(i);
149
if (phi->is_Phi()) { // Check for Phi users
150
assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
151
if (only_phi == NULL) {
152
only_phi = phi->as_Phi();
153
} else {
154
return NULL; // multiple phis
155
}
156
}
157
}
158
159
return only_phi;
160
}
161
162
163
//------------------------------check_phi_clipping-----------------------------
164
// Helper function for RegionNode's identification of FP clipping
165
// Check inputs to the Phi
166
static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
167
min = NULL;
168
max = NULL;
169
val = NULL;
170
min_idx = 0;
171
max_idx = 0;
172
val_idx = 0;
173
uint phi_max = phi->req();
174
if( phi_max == 4 ) {
175
for( uint j = 1; j < phi_max; ++j ) {
176
Node *n = phi->in(j);
177
int opcode = n->Opcode();
178
switch( opcode ) {
179
case Op_ConI:
180
{
181
if( min == NULL ) {
182
min = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
183
min_idx = j;
184
} else {
185
max = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
186
max_idx = j;
187
if( min->get_int() > max->get_int() ) {
188
// Swap min and max
189
ConNode *temp;
190
uint temp_idx;
191
temp = min; min = max; max = temp;
192
temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
193
}
194
}
195
}
196
break;
197
default:
198
{
199
val = n;
200
val_idx = j;
201
}
202
break;
203
}
204
}
205
}
206
return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
207
}
208
209
210
//------------------------------check_if_clipping------------------------------
211
// Helper function for RegionNode's identification of FP clipping
212
// Check that inputs to Region come from two IfNodes,
213
//
214
// If
215
// False True
216
// If |
217
// False True |
218
// | | |
219
// RegionNode_inputs
220
//
221
static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
222
top_if = NULL;
223
bot_if = NULL;
224
225
// Check control structure above RegionNode for (if ( if ) )
226
Node *in1 = region->in(1);
227
Node *in2 = region->in(2);
228
Node *in3 = region->in(3);
229
// Check that all inputs are projections
230
if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
231
Node *in10 = in1->in(0);
232
Node *in20 = in2->in(0);
233
Node *in30 = in3->in(0);
234
// Check that #1 and #2 are ifTrue and ifFalse from same If
235
if( in10 != NULL && in10->is_If() &&
236
in20 != NULL && in20->is_If() &&
237
in30 != NULL && in30->is_If() && in10 == in20 &&
238
(in1->Opcode() != in2->Opcode()) ) {
239
Node *in100 = in10->in(0);
240
Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
241
// Check that control for in10 comes from other branch of IF from in3
242
if( in1000 != NULL && in1000->is_If() &&
243
in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
244
// Control pattern checks
245
top_if = (IfNode*)in1000;
246
bot_if = (IfNode*)in10;
247
}
248
}
249
}
250
251
return (top_if != NULL);
252
}
253
254
255
//------------------------------check_convf2i_clipping-------------------------
256
// Helper function for RegionNode's identification of FP clipping
257
// Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
258
static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
259
convf2i = NULL;
260
261
// Check for the RShiftNode
262
Node *rshift = phi->in(idx);
263
assert( rshift, "Previous checks ensure phi input is present");
264
if( rshift->Opcode() != Op_RShiftI ) { return false; }
265
266
// Check for the LShiftNode
267
Node *lshift = rshift->in(1);
268
assert( lshift, "Previous checks ensure phi input is present");
269
if( lshift->Opcode() != Op_LShiftI ) { return false; }
270
271
// Check for the ConvF2INode
272
Node *conv = lshift->in(1);
273
if( conv->Opcode() != Op_ConvF2I ) { return false; }
274
275
// Check that shift amounts are only to get sign bits set after F2I
276
jint max_cutoff = max->get_int();
277
jint min_cutoff = min->get_int();
278
jint left_shift = lshift->in(2)->get_int();
279
jint right_shift = rshift->in(2)->get_int();
280
jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
281
if( left_shift != right_shift ||
282
0 > left_shift || left_shift >= BitsPerJavaInteger ||
283
max_post_shift < max_cutoff ||
284
max_post_shift < -min_cutoff ) {
285
// Shifts are necessary but current transformation eliminates them
286
return false;
287
}
288
289
// OK to return the result of ConvF2I without shifting
290
convf2i = (ConvF2INode*)conv;
291
return true;
292
}
293
294
295
//------------------------------check_compare_clipping-------------------------
296
// Helper function for RegionNode's identification of FP clipping
297
static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
298
Node *i1 = iff->in(1);
299
if ( !i1->is_Bool() ) { return false; }
300
BoolNode *bool1 = i1->as_Bool();
301
if( less_than && bool1->_test._test != BoolTest::le ) { return false; }
302
else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
303
const Node *cmpF = bool1->in(1);
304
if( cmpF->Opcode() != Op_CmpF ) { return false; }
305
// Test that the float value being compared against
306
// is equivalent to the int value used as a limit
307
Node *nodef = cmpF->in(2);
308
if( nodef->Opcode() != Op_ConF ) { return false; }
309
jfloat conf = nodef->getf();
310
jint coni = limit->get_int();
311
if( ((int)conf) != coni ) { return false; }
312
input = cmpF->in(1);
313
return true;
314
}
315
316
//------------------------------is_unreachable_region--------------------------
317
// Check if the RegionNode is part of an unsafe loop and unreachable from root.
318
bool RegionNode::is_unreachable_region(const PhaseGVN* phase) {
319
Node* top = phase->C->top();
320
assert(req() == 2 || (req() == 3 && in(1) != NULL && in(2) == top), "sanity check arguments");
321
if (_is_unreachable_region) {
322
// Return cached result from previous evaluation which should still be valid
323
assert(is_unreachable_from_root(phase), "walk the graph again and check if its indeed unreachable");
324
return true;
325
}
326
327
// First, cut the simple case of fallthrough region when NONE of
328
// region's phis references itself directly or through a data node.
329
if (is_possible_unsafe_loop(phase)) {
330
// If we have a possible unsafe loop, check if the region node is actually unreachable from root.
331
if (is_unreachable_from_root(phase)) {
332
_is_unreachable_region = true;
333
return true;
334
}
335
}
336
return false;
337
}
338
339
bool RegionNode::is_possible_unsafe_loop(const PhaseGVN* phase) const {
340
uint max = outcnt();
341
uint i;
342
for (i = 0; i < max; i++) {
343
Node* n = raw_out(i);
344
if (n != NULL && n->is_Phi()) {
345
PhiNode* phi = n->as_Phi();
346
assert(phi->in(0) == this, "sanity check phi");
347
if (phi->outcnt() == 0) {
348
continue; // Safe case - no loops
349
}
350
if (phi->outcnt() == 1) {
351
Node* u = phi->raw_out(0);
352
// Skip if only one use is an other Phi or Call or Uncommon trap.
353
// It is safe to consider this case as fallthrough.
354
if (u != NULL && (u->is_Phi() || u->is_CFG())) {
355
continue;
356
}
357
}
358
// Check when phi references itself directly or through an other node.
359
if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe) {
360
break; // Found possible unsafe data loop.
361
}
362
}
363
}
364
if (i >= max) {
365
return false; // An unsafe case was NOT found - don't need graph walk.
366
}
367
return true;
368
}
369
370
bool RegionNode::is_unreachable_from_root(const PhaseGVN* phase) const {
371
ResourceMark rm;
372
Node_List nstack;
373
VectorSet visited;
374
375
// Mark all control nodes reachable from root outputs
376
Node* n = (Node*)phase->C->root();
377
nstack.push(n);
378
visited.set(n->_idx);
379
while (nstack.size() != 0) {
380
n = nstack.pop();
381
uint max = n->outcnt();
382
for (uint i = 0; i < max; i++) {
383
Node* m = n->raw_out(i);
384
if (m != NULL && m->is_CFG()) {
385
if (m == this) {
386
return false; // We reached the Region node - it is not dead.
387
}
388
if (!visited.test_set(m->_idx))
389
nstack.push(m);
390
}
391
}
392
}
393
return true; // The Region node is unreachable - it is dead.
394
}
395
396
bool RegionNode::try_clean_mem_phi(PhaseGVN *phase) {
397
// Incremental inlining + PhaseStringOpts sometimes produce:
398
//
399
// cmpP with 1 top input
400
// |
401
// If
402
// / \
403
// IfFalse IfTrue /- Some Node
404
// \ / / /
405
// Region / /-MergeMem
406
// \---Phi
407
//
408
//
409
// It's expected by PhaseStringOpts that the Region goes away and is
410
// replaced by If's control input but because there's still a Phi,
411
// the Region stays in the graph. The top input from the cmpP is
412
// propagated forward and a subgraph that is useful goes away. The
413
// code below replaces the Phi with the MergeMem so that the Region
414
// is simplified.
415
416
PhiNode* phi = has_unique_phi();
417
if (phi && phi->type() == Type::MEMORY && req() == 3 && phi->is_diamond_phi(true)) {
418
MergeMemNode* m = NULL;
419
assert(phi->req() == 3, "same as region");
420
for (uint i = 1; i < 3; ++i) {
421
Node *mem = phi->in(i);
422
if (mem && mem->is_MergeMem() && in(i)->outcnt() == 1) {
423
// Nothing is control-dependent on path #i except the region itself.
424
m = mem->as_MergeMem();
425
uint j = 3 - i;
426
Node* other = phi->in(j);
427
if (other && other == m->base_memory()) {
428
// m is a successor memory to other, and is not pinned inside the diamond, so push it out.
429
// This will allow the diamond to collapse completely.
430
phase->is_IterGVN()->replace_node(phi, m);
431
return true;
432
}
433
}
434
}
435
}
436
return false;
437
}
438
439
//------------------------------Ideal------------------------------------------
440
// Return a node which is more "ideal" than the current node. Must preserve
441
// the CFG, but we can still strip out dead paths.
442
Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
443
if( !can_reshape && !in(0) ) return NULL; // Already degraded to a Copy
444
assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
445
446
// Check for RegionNode with no Phi users and both inputs come from either
447
// arm of the same IF. If found, then the control-flow split is useless.
448
bool has_phis = false;
449
if (can_reshape) { // Need DU info to check for Phi users
450
has_phis = (has_phi() != NULL); // Cache result
451
if (has_phis && try_clean_mem_phi(phase)) {
452
has_phis = false;
453
}
454
455
if (!has_phis) { // No Phi users? Nothing merging?
456
for (uint i = 1; i < req()-1; i++) {
457
Node *if1 = in(i);
458
if( !if1 ) continue;
459
Node *iff = if1->in(0);
460
if( !iff || !iff->is_If() ) continue;
461
for( uint j=i+1; j<req(); j++ ) {
462
if( in(j) && in(j)->in(0) == iff &&
463
if1->Opcode() != in(j)->Opcode() ) {
464
// Add the IF Projections to the worklist. They (and the IF itself)
465
// will be eliminated if dead.
466
phase->is_IterGVN()->add_users_to_worklist(iff);
467
set_req(i, iff->in(0));// Skip around the useless IF diamond
468
set_req(j, NULL);
469
return this; // Record progress
470
}
471
}
472
}
473
}
474
}
475
476
// Remove TOP or NULL input paths. If only 1 input path remains, this Region
477
// degrades to a copy.
478
bool add_to_worklist = true;
479
bool modified = false;
480
int cnt = 0; // Count of values merging
481
DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
482
int del_it = 0; // The last input path we delete
483
// For all inputs...
484
for( uint i=1; i<req(); ++i ){// For all paths in
485
Node *n = in(i); // Get the input
486
if( n != NULL ) {
487
// Remove useless control copy inputs
488
if( n->is_Region() && n->as_Region()->is_copy() ) {
489
set_req(i, n->nonnull_req());
490
modified = true;
491
i--;
492
continue;
493
}
494
if( n->is_Proj() ) { // Remove useless rethrows
495
Node *call = n->in(0);
496
if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
497
set_req(i, call->in(0));
498
modified = true;
499
i--;
500
continue;
501
}
502
}
503
if( phase->type(n) == Type::TOP ) {
504
set_req_X(i, NULL, phase); // Ignore TOP inputs
505
modified = true;
506
i--;
507
continue;
508
}
509
cnt++; // One more value merging
510
511
} else if (can_reshape) { // Else found dead path with DU info
512
PhaseIterGVN *igvn = phase->is_IterGVN();
513
del_req(i); // Yank path from self
514
del_it = i;
515
uint max = outcnt();
516
DUIterator j;
517
bool progress = true;
518
while(progress) { // Need to establish property over all users
519
progress = false;
520
for (j = outs(); has_out(j); j++) {
521
Node *n = out(j);
522
if( n->req() != req() && n->is_Phi() ) {
523
assert( n->in(0) == this, "" );
524
igvn->hash_delete(n); // Yank from hash before hacking edges
525
n->set_req_X(i,NULL,igvn);// Correct DU info
526
n->del_req(i); // Yank path from Phis
527
if( max != outcnt() ) {
528
progress = true;
529
j = refresh_out_pos(j);
530
max = outcnt();
531
}
532
}
533
}
534
}
535
add_to_worklist = false;
536
phase->is_IterGVN()->add_users_to_worklist(this);
537
i--;
538
}
539
}
540
541
if (can_reshape && cnt == 1) {
542
// Is it dead loop?
543
// If it is LoopNopde it had 2 (+1 itself) inputs and
544
// one of them was cut. The loop is dead if it was EntryContol.
545
// Loop node may have only one input because entry path
546
// is removed in PhaseIdealLoop::Dominators().
547
assert(!this->is_Loop() || cnt_orig <= 3, "Loop node should have 3 or less inputs");
548
if ((this->is_Loop() && (del_it == LoopNode::EntryControl ||
549
(del_it == 0 && is_unreachable_region(phase)))) ||
550
(!this->is_Loop() && has_phis && is_unreachable_region(phase))) {
551
// This region and therefore all nodes on the input control path(s) are unreachable
552
// from root. To avoid incomplete removal of unreachable subgraphs, walk up the CFG
553
// and aggressively replace all nodes by top.
554
PhaseIterGVN* igvn = phase->is_IterGVN();
555
Node* top = phase->C->top();
556
ResourceMark rm;
557
Node_List nstack;
558
VectorSet visited;
559
nstack.push(this);
560
visited.set(_idx);
561
while (nstack.size() != 0) {
562
Node* n = nstack.pop();
563
for (uint i = 0; i < n->req(); ++i) {
564
Node* m = n->in(i);
565
assert(m != (Node*)phase->C->root(), "Should be unreachable from root");
566
if (m != NULL && m->is_CFG() && !visited.test_set(m->_idx)) {
567
nstack.push(m);
568
}
569
}
570
if (n->is_Region()) {
571
// Eagerly replace phis with top to avoid regionless phis.
572
n->set_req(0, NULL);
573
bool progress = true;
574
uint max = n->outcnt();
575
DUIterator j;
576
while (progress) {
577
progress = false;
578
for (j = n->outs(); n->has_out(j); j++) {
579
Node* u = n->out(j);
580
if (u->is_Phi()) {
581
igvn->replace_node(u, top);
582
if (max != n->outcnt()) {
583
progress = true;
584
j = n->refresh_out_pos(j);
585
max = n->outcnt();
586
}
587
}
588
}
589
}
590
}
591
igvn->replace_node(n, top);
592
}
593
return NULL;
594
}
595
}
596
597
if( cnt <= 1 ) { // Only 1 path in?
598
set_req(0, NULL); // Null control input for region copy
599
if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
600
// No inputs or all inputs are NULL.
601
return NULL;
602
} else if (can_reshape) { // Optimization phase - remove the node
603
PhaseIterGVN *igvn = phase->is_IterGVN();
604
// Strip mined (inner) loop is going away, remove outer loop.
605
if (is_CountedLoop() &&
606
as_Loop()->is_strip_mined()) {
607
Node* outer_sfpt = as_CountedLoop()->outer_safepoint();
608
Node* outer_out = as_CountedLoop()->outer_loop_exit();
609
if (outer_sfpt != NULL && outer_out != NULL) {
610
Node* in = outer_sfpt->in(0);
611
igvn->replace_node(outer_out, in);
612
LoopNode* outer = as_CountedLoop()->outer_loop();
613
igvn->replace_input_of(outer, LoopNode::LoopBackControl, igvn->C->top());
614
}
615
}
616
if (is_CountedLoop()) {
617
Node* opaq = as_CountedLoop()->is_canonical_loop_entry();
618
if (opaq != NULL) {
619
// This is not a loop anymore. No need to keep the Opaque1 node on the test that guards the loop as it won't be
620
// subject to further loop opts.
621
assert(opaq->Opcode() == Op_Opaque1, "");
622
igvn->replace_node(opaq, opaq->in(1));
623
}
624
}
625
Node *parent_ctrl;
626
if( cnt == 0 ) {
627
assert( req() == 1, "no inputs expected" );
628
// During IGVN phase such region will be subsumed by TOP node
629
// so region's phis will have TOP as control node.
630
// Kill phis here to avoid it.
631
// Also set other user's input to top.
632
parent_ctrl = phase->C->top();
633
} else {
634
// The fallthrough case since we already checked dead loops above.
635
parent_ctrl = in(1);
636
assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
637
assert(parent_ctrl != this, "Close dead loop");
638
}
639
if (add_to_worklist) {
640
igvn->add_users_to_worklist(this); // Check for further allowed opts
641
}
642
for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
643
Node* n = last_out(i);
644
igvn->hash_delete(n); // Remove from worklist before modifying edges
645
if (n->outcnt() == 0) {
646
int uses_found = n->replace_edge(this, phase->C->top(), igvn);
647
if (uses_found > 1) { // (--i) done at the end of the loop.
648
i -= (uses_found - 1);
649
}
650
continue;
651
}
652
if( n->is_Phi() ) { // Collapse all Phis
653
// Eagerly replace phis to avoid regionless phis.
654
Node* in;
655
if( cnt == 0 ) {
656
assert( n->req() == 1, "No data inputs expected" );
657
in = parent_ctrl; // replaced by top
658
} else {
659
assert( n->req() == 2 && n->in(1) != NULL, "Only one data input expected" );
660
in = n->in(1); // replaced by unique input
661
if( n->as_Phi()->is_unsafe_data_reference(in) )
662
in = phase->C->top(); // replaced by top
663
}
664
igvn->replace_node(n, in);
665
}
666
else if( n->is_Region() ) { // Update all incoming edges
667
assert(n != this, "Must be removed from DefUse edges");
668
int uses_found = n->replace_edge(this, parent_ctrl, igvn);
669
if (uses_found > 1) { // (--i) done at the end of the loop.
670
i -= (uses_found - 1);
671
}
672
}
673
else {
674
assert(n->in(0) == this, "Expect RegionNode to be control parent");
675
n->set_req(0, parent_ctrl);
676
}
677
#ifdef ASSERT
678
for( uint k=0; k < n->req(); k++ ) {
679
assert(n->in(k) != this, "All uses of RegionNode should be gone");
680
}
681
#endif
682
}
683
// Remove the RegionNode itself from DefUse info
684
igvn->remove_dead_node(this);
685
return NULL;
686
}
687
return this; // Record progress
688
}
689
690
691
// If a Region flows into a Region, merge into one big happy merge.
692
if (can_reshape) {
693
Node *m = merge_region(this, phase);
694
if (m != NULL) return m;
695
}
696
697
// Check if this region is the root of a clipping idiom on floats
698
if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
699
// Check that only one use is a Phi and that it simplifies to two constants +
700
PhiNode* phi = has_unique_phi();
701
if (phi != NULL) { // One Phi user
702
// Check inputs to the Phi
703
ConNode *min;
704
ConNode *max;
705
Node *val;
706
uint min_idx;
707
uint max_idx;
708
uint val_idx;
709
if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx ) ) {
710
IfNode *top_if;
711
IfNode *bot_if;
712
if( check_if_clipping( this, bot_if, top_if ) ) {
713
// Control pattern checks, now verify compares
714
Node *top_in = NULL; // value being compared against
715
Node *bot_in = NULL;
716
if( check_compare_clipping( true, bot_if, min, bot_in ) &&
717
check_compare_clipping( false, top_if, max, top_in ) ) {
718
if( bot_in == top_in ) {
719
PhaseIterGVN *gvn = phase->is_IterGVN();
720
assert( gvn != NULL, "Only had DefUse info in IterGVN");
721
// Only remaining check is that bot_in == top_in == (Phi's val + mods)
722
723
// Check for the ConvF2INode
724
ConvF2INode *convf2i;
725
if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
726
convf2i->in(1) == bot_in ) {
727
// Matched pattern, including LShiftI; RShiftI, replace with integer compares
728
// max test
729
Node *cmp = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, min ));
730
Node *boo = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::lt ));
731
IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
732
Node *if_min= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
733
Node *ifF = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
734
// min test
735
cmp = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, max ));
736
boo = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::gt ));
737
iff = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
738
Node *if_max= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
739
ifF = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
740
// update input edges to region node
741
set_req_X( min_idx, if_min, gvn );
742
set_req_X( max_idx, if_max, gvn );
743
set_req_X( val_idx, ifF, gvn );
744
// remove unnecessary 'LShiftI; RShiftI' idiom
745
gvn->hash_delete(phi);
746
phi->set_req_X( val_idx, convf2i, gvn );
747
gvn->hash_find_insert(phi);
748
// Return transformed region node
749
return this;
750
}
751
}
752
}
753
}
754
}
755
}
756
}
757
758
if (can_reshape) {
759
modified |= optimize_trichotomy(phase->is_IterGVN());
760
}
761
762
return modified ? this : NULL;
763
}
764
765
//------------------------------optimize_trichotomy--------------------------
766
// Optimize nested comparisons of the following kind:
767
//
768
// int compare(int a, int b) {
769
// return (a < b) ? -1 : (a == b) ? 0 : 1;
770
// }
771
//
772
// Shape 1:
773
// if (compare(a, b) == 1) { ... } -> if (a > b) { ... }
774
//
775
// Shape 2:
776
// if (compare(a, b) == 0) { ... } -> if (a == b) { ... }
777
//
778
// Above code leads to the following IR shapes where both Ifs compare the
779
// same value and two out of three region inputs idx1 and idx2 map to
780
// the same value and control flow.
781
//
782
// (1) If (2) If
783
// / \ / \
784
// Proj Proj Proj Proj
785
// | \ | \
786
// | If | If If
787
// | / \ | / \ / \
788
// | Proj Proj | Proj Proj ==> Proj Proj
789
// | / / \ | / | /
790
// Region / \ | / | /
791
// \ / \ | / | /
792
// Region Region Region
793
//
794
// The method returns true if 'this' is modified and false otherwise.
795
bool RegionNode::optimize_trichotomy(PhaseIterGVN* igvn) {
796
int idx1 = 1, idx2 = 2;
797
Node* region = NULL;
798
if (req() == 3 && in(1) != NULL && in(2) != NULL) {
799
// Shape 1: Check if one of the inputs is a region that merges two control
800
// inputs and has no other users (especially no Phi users).
801
region = in(1)->isa_Region() ? in(1) : in(2)->isa_Region();
802
if (region == NULL || region->outcnt() != 2 || region->req() != 3) {
803
return false; // No suitable region input found
804
}
805
} else if (req() == 4) {
806
// Shape 2: Check if two control inputs map to the same value of the unique phi
807
// user and treat these as if they would come from another region (shape (1)).
808
PhiNode* phi = has_unique_phi();
809
if (phi == NULL) {
810
return false; // No unique phi user
811
}
812
if (phi->in(idx1) != phi->in(idx2)) {
813
idx2 = 3;
814
if (phi->in(idx1) != phi->in(idx2)) {
815
idx1 = 2;
816
if (phi->in(idx1) != phi->in(idx2)) {
817
return false; // No equal phi inputs found
818
}
819
}
820
}
821
assert(phi->in(idx1) == phi->in(idx2), "must be"); // Region is merging same value
822
region = this;
823
}
824
if (region == NULL || region->in(idx1) == NULL || region->in(idx2) == NULL) {
825
return false; // Region does not merge two control inputs
826
}
827
// At this point we know that region->in(idx1) and region->(idx2) map to the same
828
// value and control flow. Now search for ifs that feed into these region inputs.
829
ProjNode* proj1 = region->in(idx1)->isa_Proj();
830
ProjNode* proj2 = region->in(idx2)->isa_Proj();
831
if (proj1 == NULL || proj1->outcnt() != 1 ||
832
proj2 == NULL || proj2->outcnt() != 1) {
833
return false; // No projection inputs with region as unique user found
834
}
835
assert(proj1 != proj2, "should be different projections");
836
IfNode* iff1 = proj1->in(0)->isa_If();
837
IfNode* iff2 = proj2->in(0)->isa_If();
838
if (iff1 == NULL || iff1->outcnt() != 2 ||
839
iff2 == NULL || iff2->outcnt() != 2) {
840
return false; // No ifs found
841
}
842
if (iff1 == iff2) {
843
igvn->add_users_to_worklist(iff1); // Make sure dead if is eliminated
844
igvn->replace_input_of(region, idx1, iff1->in(0));
845
igvn->replace_input_of(region, idx2, igvn->C->top());
846
return (region == this); // Remove useless if (both projections map to the same control/value)
847
}
848
BoolNode* bol1 = iff1->in(1)->isa_Bool();
849
BoolNode* bol2 = iff2->in(1)->isa_Bool();
850
if (bol1 == NULL || bol2 == NULL) {
851
return false; // No bool inputs found
852
}
853
Node* cmp1 = bol1->in(1);
854
Node* cmp2 = bol2->in(1);
855
bool commute = false;
856
if (!cmp1->is_Cmp() || !cmp2->is_Cmp()) {
857
return false; // No comparison
858
} else if (cmp1->Opcode() == Op_CmpF || cmp1->Opcode() == Op_CmpD ||
859
cmp2->Opcode() == Op_CmpF || cmp2->Opcode() == Op_CmpD ||
860
cmp1->Opcode() == Op_CmpP || cmp1->Opcode() == Op_CmpN ||
861
cmp2->Opcode() == Op_CmpP || cmp2->Opcode() == Op_CmpN ||
862
cmp1->is_SubTypeCheck() || cmp2->is_SubTypeCheck()) {
863
// Floats and pointers don't exactly obey trichotomy. To be on the safe side, don't transform their tests.
864
// SubTypeCheck is not commutative
865
return false;
866
} else if (cmp1 != cmp2) {
867
if (cmp1->in(1) == cmp2->in(2) &&
868
cmp1->in(2) == cmp2->in(1)) {
869
commute = true; // Same but swapped inputs, commute the test
870
} else {
871
return false; // Ifs are not comparing the same values
872
}
873
}
874
proj1 = proj1->other_if_proj();
875
proj2 = proj2->other_if_proj();
876
if (!((proj1->unique_ctrl_out() == iff2 &&
877
proj2->unique_ctrl_out() == this) ||
878
(proj2->unique_ctrl_out() == iff1 &&
879
proj1->unique_ctrl_out() == this))) {
880
return false; // Ifs are not connected through other projs
881
}
882
// Found 'iff -> proj -> iff -> proj -> this' shape where all other projs are merged
883
// through 'region' and map to the same value. Merge the boolean tests and replace
884
// the ifs by a single comparison.
885
BoolTest test1 = (proj1->_con == 1) ? bol1->_test : bol1->_test.negate();
886
BoolTest test2 = (proj2->_con == 1) ? bol2->_test : bol2->_test.negate();
887
test1 = commute ? test1.commute() : test1;
888
// After possibly commuting test1, if we can merge test1 & test2, then proj2/iff2/bol2 are the nodes to refine.
889
BoolTest::mask res = test1.merge(test2);
890
if (res == BoolTest::illegal) {
891
return false; // Unable to merge tests
892
}
893
// Adjust iff1 to always pass (only iff2 will remain)
894
igvn->replace_input_of(iff1, 1, igvn->intcon(proj1->_con));
895
if (res == BoolTest::never) {
896
// Merged test is always false, adjust iff2 to always fail
897
igvn->replace_input_of(iff2, 1, igvn->intcon(1 - proj2->_con));
898
} else {
899
// Replace bool input of iff2 with merged test
900
BoolNode* new_bol = new BoolNode(bol2->in(1), res);
901
igvn->replace_input_of(iff2, 1, igvn->transform((proj2->_con == 1) ? new_bol : new_bol->negate(igvn)));
902
if (new_bol->outcnt() == 0) {
903
igvn->remove_dead_node(new_bol);
904
}
905
}
906
return false;
907
}
908
909
const RegMask &RegionNode::out_RegMask() const {
910
return RegMask::Empty;
911
}
912
913
// Find the one non-null required input. RegionNode only
914
Node *Node::nonnull_req() const {
915
assert( is_Region(), "" );
916
for( uint i = 1; i < _cnt; i++ )
917
if( in(i) )
918
return in(i);
919
ShouldNotReachHere();
920
return NULL;
921
}
922
923
924
//=============================================================================
925
// note that these functions assume that the _adr_type field is flattened
926
uint PhiNode::hash() const {
927
const Type* at = _adr_type;
928
return TypeNode::hash() + (at ? at->hash() : 0);
929
}
930
bool PhiNode::cmp( const Node &n ) const {
931
return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
932
}
933
static inline
934
const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
935
if (at == NULL || at == TypePtr::BOTTOM) return at;
936
return Compile::current()->alias_type(at)->adr_type();
937
}
938
939
//----------------------------make---------------------------------------------
940
// create a new phi with edges matching r and set (initially) to x
941
PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
942
uint preds = r->req(); // Number of predecessor paths
943
assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
944
PhiNode* p = new PhiNode(r, t, at);
945
for (uint j = 1; j < preds; j++) {
946
// Fill in all inputs, except those which the region does not yet have
947
if (r->in(j) != NULL)
948
p->init_req(j, x);
949
}
950
return p;
951
}
952
PhiNode* PhiNode::make(Node* r, Node* x) {
953
const Type* t = x->bottom_type();
954
const TypePtr* at = NULL;
955
if (t == Type::MEMORY) at = flatten_phi_adr_type(x->adr_type());
956
return make(r, x, t, at);
957
}
958
PhiNode* PhiNode::make_blank(Node* r, Node* x) {
959
const Type* t = x->bottom_type();
960
const TypePtr* at = NULL;
961
if (t == Type::MEMORY) at = flatten_phi_adr_type(x->adr_type());
962
return new PhiNode(r, t, at);
963
}
964
965
966
//------------------------slice_memory-----------------------------------------
967
// create a new phi with narrowed memory type
968
PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
969
PhiNode* mem = (PhiNode*) clone();
970
*(const TypePtr**)&mem->_adr_type = adr_type;
971
// convert self-loops, or else we get a bad graph
972
for (uint i = 1; i < req(); i++) {
973
if ((const Node*)in(i) == this) mem->set_req(i, mem);
974
}
975
mem->verify_adr_type();
976
return mem;
977
}
978
979
//------------------------split_out_instance-----------------------------------
980
// Split out an instance type from a bottom phi.
981
PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
982
const TypeOopPtr *t_oop = at->isa_oopptr();
983
assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
984
const TypePtr *t = adr_type();
985
assert(type() == Type::MEMORY &&
986
(t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
987
t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
988
t->is_oopptr()->cast_to_exactness(true)
989
->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
990
->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
991
"bottom or raw memory required");
992
993
// Check if an appropriate node already exists.
994
Node *region = in(0);
995
for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
996
Node* use = region->fast_out(k);
997
if( use->is_Phi()) {
998
PhiNode *phi2 = use->as_Phi();
999
if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
1000
return phi2;
1001
}
1002
}
1003
}
1004
Compile *C = igvn->C;
1005
Arena *a = Thread::current()->resource_area();
1006
Node_Array node_map = new Node_Array(a);
1007
Node_Stack stack(a, C->live_nodes() >> 4);
1008
PhiNode *nphi = slice_memory(at);
1009
igvn->register_new_node_with_optimizer( nphi );
1010
node_map.map(_idx, nphi);
1011
stack.push((Node *)this, 1);
1012
while(!stack.is_empty()) {
1013
PhiNode *ophi = stack.node()->as_Phi();
1014
uint i = stack.index();
1015
assert(i >= 1, "not control edge");
1016
stack.pop();
1017
nphi = node_map[ophi->_idx]->as_Phi();
1018
for (; i < ophi->req(); i++) {
1019
Node *in = ophi->in(i);
1020
if (in == NULL || igvn->type(in) == Type::TOP)
1021
continue;
1022
Node *opt = MemNode::optimize_simple_memory_chain(in, t_oop, NULL, igvn);
1023
PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
1024
if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
1025
opt = node_map[optphi->_idx];
1026
if (opt == NULL) {
1027
stack.push(ophi, i);
1028
nphi = optphi->slice_memory(at);
1029
igvn->register_new_node_with_optimizer( nphi );
1030
node_map.map(optphi->_idx, nphi);
1031
ophi = optphi;
1032
i = 0; // will get incremented at top of loop
1033
continue;
1034
}
1035
}
1036
nphi->set_req(i, opt);
1037
}
1038
}
1039
return nphi;
1040
}
1041
1042
//------------------------verify_adr_type--------------------------------------
1043
#ifdef ASSERT
1044
void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
1045
if (visited.test_set(_idx)) return; //already visited
1046
1047
// recheck constructor invariants:
1048
verify_adr_type(false);
1049
1050
// recheck local phi/phi consistency:
1051
assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
1052
"adr_type must be consistent across phi nest");
1053
1054
// walk around
1055
for (uint i = 1; i < req(); i++) {
1056
Node* n = in(i);
1057
if (n == NULL) continue;
1058
const Node* np = in(i);
1059
if (np->is_Phi()) {
1060
np->as_Phi()->verify_adr_type(visited, at);
1061
} else if (n->bottom_type() == Type::TOP
1062
|| (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
1063
// ignore top inputs
1064
} else {
1065
const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
1066
// recheck phi/non-phi consistency at leaves:
1067
assert((nat != NULL) == (at != NULL), "");
1068
assert(nat == at || nat == TypePtr::BOTTOM,
1069
"adr_type must be consistent at leaves of phi nest");
1070
}
1071
}
1072
}
1073
1074
// Verify a whole nest of phis rooted at this one.
1075
void PhiNode::verify_adr_type(bool recursive) const {
1076
if (VMError::is_error_reported()) return; // muzzle asserts when debugging an error
1077
if (Node::in_dump()) return; // muzzle asserts when printing
1078
1079
assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
1080
1081
if (!VerifyAliases) return; // verify thoroughly only if requested
1082
1083
assert(_adr_type == flatten_phi_adr_type(_adr_type),
1084
"Phi::adr_type must be pre-normalized");
1085
1086
if (recursive) {
1087
VectorSet visited;
1088
verify_adr_type(visited, _adr_type);
1089
}
1090
}
1091
#endif
1092
1093
1094
//------------------------------Value------------------------------------------
1095
// Compute the type of the PhiNode
1096
const Type* PhiNode::Value(PhaseGVN* phase) const {
1097
Node *r = in(0); // RegionNode
1098
if( !r ) // Copy or dead
1099
return in(1) ? phase->type(in(1)) : Type::TOP;
1100
1101
// Note: During parsing, phis are often transformed before their regions.
1102
// This means we have to use type_or_null to defend against untyped regions.
1103
if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1104
return Type::TOP;
1105
1106
// Check for trip-counted loop. If so, be smarter.
1107
BaseCountedLoopNode* l = r->is_BaseCountedLoop() ? r->as_BaseCountedLoop() : NULL;
1108
if (l && ((const Node*)l->phi() == this)) { // Trip counted loop!
1109
// protect against init_trip() or limit() returning NULL
1110
if (l->can_be_counted_loop(phase)) {
1111
const Node* init = l->init_trip();
1112
const Node* limit = l->limit();
1113
const Node* stride = l->stride();
1114
if (init != NULL && limit != NULL && stride != NULL) {
1115
const TypeInteger* lo = phase->type(init)->isa_integer(l->bt());
1116
const TypeInteger* hi = phase->type(limit)->isa_integer(l->bt());
1117
const TypeInteger* stride_t = phase->type(stride)->isa_integer(l->bt());
1118
if (lo != NULL && hi != NULL && stride_t != NULL) { // Dying loops might have TOP here
1119
assert(stride_t->hi_as_long() >= stride_t->lo_as_long(), "bad stride type");
1120
BoolTest::mask bt = l->loopexit()->test_trip();
1121
// If the loop exit condition is "not equal", the condition
1122
// would not trigger if init > limit (if stride > 0) or if
1123
// init < limit if (stride > 0) so we can't deduce bounds
1124
// for the iv from the exit condition.
1125
if (bt != BoolTest::ne) {
1126
if (stride_t->hi_as_long() < 0) { // Down-counter loop
1127
swap(lo, hi);
1128
return TypeInteger::make(MIN2(lo->lo_as_long(), hi->lo_as_long()), hi->hi_as_long(), 3, l->bt())->filter_speculative(_type);
1129
} else if (stride_t->lo_as_long() >= 0) {
1130
return TypeInteger::make(lo->lo_as_long(), MAX2(lo->hi_as_long(), hi->hi_as_long()), 3, l->bt())->filter_speculative(_type);
1131
}
1132
}
1133
}
1134
}
1135
} else if (l->in(LoopNode::LoopBackControl) != NULL &&
1136
in(LoopNode::EntryControl) != NULL &&
1137
phase->type(l->in(LoopNode::LoopBackControl)) == Type::TOP) {
1138
// During CCP, if we saturate the type of a counted loop's Phi
1139
// before the special code for counted loop above has a chance
1140
// to run (that is as long as the type of the backedge's control
1141
// is top), we might end up with non monotonic types
1142
return phase->type(in(LoopNode::EntryControl))->filter_speculative(_type);
1143
}
1144
}
1145
1146
// Until we have harmony between classes and interfaces in the type
1147
// lattice, we must tread carefully around phis which implicitly
1148
// convert the one to the other.
1149
const TypePtr* ttp = _type->make_ptr();
1150
const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
1151
const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
1152
bool is_intf = false;
1153
if (ttip != NULL) {
1154
ciKlass* k = ttip->klass();
1155
if (k->is_loaded() && k->is_interface())
1156
is_intf = true;
1157
}
1158
if (ttkp != NULL) {
1159
ciKlass* k = ttkp->klass();
1160
if (k->is_loaded() && k->is_interface())
1161
is_intf = true;
1162
}
1163
1164
// Default case: merge all inputs
1165
const Type *t = Type::TOP; // Merged type starting value
1166
for (uint i = 1; i < req(); ++i) {// For all paths in
1167
// Reachable control path?
1168
if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
1169
const Type* ti = phase->type(in(i));
1170
// We assume that each input of an interface-valued Phi is a true
1171
// subtype of that interface. This might not be true of the meet
1172
// of all the input types. The lattice is not distributive in
1173
// such cases. Ward off asserts in type.cpp by refusing to do
1174
// meets between interfaces and proper classes.
1175
const TypePtr* tip = ti->make_ptr();
1176
const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
1177
if (tiip) {
1178
bool ti_is_intf = false;
1179
ciKlass* k = tiip->klass();
1180
if (k->is_loaded() && k->is_interface())
1181
ti_is_intf = true;
1182
if (is_intf != ti_is_intf)
1183
{ t = _type; break; }
1184
}
1185
t = t->meet_speculative(ti);
1186
}
1187
}
1188
1189
// The worst-case type (from ciTypeFlow) should be consistent with "t".
1190
// That is, we expect that "t->higher_equal(_type)" holds true.
1191
// There are various exceptions:
1192
// - Inputs which are phis might in fact be widened unnecessarily.
1193
// For example, an input might be a widened int while the phi is a short.
1194
// - Inputs might be BotPtrs but this phi is dependent on a null check,
1195
// and postCCP has removed the cast which encodes the result of the check.
1196
// - The type of this phi is an interface, and the inputs are classes.
1197
// - Value calls on inputs might produce fuzzy results.
1198
// (Occurrences of this case suggest improvements to Value methods.)
1199
//
1200
// It is not possible to see Type::BOTTOM values as phi inputs,
1201
// because the ciTypeFlow pre-pass produces verifier-quality types.
1202
const Type* ft = t->filter_speculative(_type); // Worst case type
1203
1204
#ifdef ASSERT
1205
// The following logic has been moved into TypeOopPtr::filter.
1206
const Type* jt = t->join_speculative(_type);
1207
if (jt->empty()) { // Emptied out???
1208
1209
// Check for evil case of 't' being a class and '_type' expecting an
1210
// interface. This can happen because the bytecodes do not contain
1211
// enough type info to distinguish a Java-level interface variable
1212
// from a Java-level object variable. If we meet 2 classes which
1213
// both implement interface I, but their meet is at 'j/l/O' which
1214
// doesn't implement I, we have no way to tell if the result should
1215
// be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
1216
// into a Phi which "knows" it's an Interface type we'll have to
1217
// uplift the type.
1218
if (!t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface()) {
1219
assert(ft == _type, ""); // Uplift to interface
1220
} else if (!t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface()) {
1221
assert(ft == _type, ""); // Uplift to interface
1222
} else {
1223
// We also have to handle 'evil cases' of interface- vs. class-arrays
1224
Type::get_arrays_base_elements(jt, _type, NULL, &ttip);
1225
if (!t->empty() && ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) {
1226
assert(ft == _type, ""); // Uplift to array of interface
1227
} else {
1228
// Otherwise it's something stupid like non-overlapping int ranges
1229
// found on dying counted loops.
1230
assert(ft == Type::TOP, ""); // Canonical empty value
1231
}
1232
}
1233
}
1234
1235
else {
1236
1237
// If we have an interface-typed Phi and we narrow to a class type, the join
1238
// should report back the class. However, if we have a J/L/Object
1239
// class-typed Phi and an interface flows in, it's possible that the meet &
1240
// join report an interface back out. This isn't possible but happens
1241
// because the type system doesn't interact well with interfaces.
1242
const TypePtr *jtp = jt->make_ptr();
1243
const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
1244
const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
1245
if( jtip && ttip ) {
1246
if( jtip->is_loaded() && jtip->klass()->is_interface() &&
1247
ttip->is_loaded() && !ttip->klass()->is_interface() ) {
1248
assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
1249
ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
1250
jt = ft;
1251
}
1252
}
1253
if( jtkp && ttkp ) {
1254
if( jtkp->is_loaded() && jtkp->klass()->is_interface() &&
1255
!jtkp->klass_is_exact() && // Keep exact interface klass (6894807)
1256
ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
1257
assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
1258
ft->isa_narrowklass() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
1259
jt = ft;
1260
}
1261
}
1262
if (jt != ft && jt->base() == ft->base()) {
1263
if (jt->isa_int() &&
1264
jt->is_int()->_lo == ft->is_int()->_lo &&
1265
jt->is_int()->_hi == ft->is_int()->_hi)
1266
jt = ft;
1267
if (jt->isa_long() &&
1268
jt->is_long()->_lo == ft->is_long()->_lo &&
1269
jt->is_long()->_hi == ft->is_long()->_hi)
1270
jt = ft;
1271
}
1272
if (jt != ft) {
1273
tty->print("merge type: "); t->dump(); tty->cr();
1274
tty->print("kill type: "); _type->dump(); tty->cr();
1275
tty->print("join type: "); jt->dump(); tty->cr();
1276
tty->print("filter type: "); ft->dump(); tty->cr();
1277
}
1278
assert(jt == ft, "");
1279
}
1280
#endif //ASSERT
1281
1282
// Deal with conversion problems found in data loops.
1283
ft = phase->saturate(ft, phase->type_or_null(this), _type);
1284
1285
return ft;
1286
}
1287
1288
1289
//------------------------------is_diamond_phi---------------------------------
1290
// Does this Phi represent a simple well-shaped diamond merge? Return the
1291
// index of the true path or 0 otherwise.
1292
// If check_control_only is true, do not inspect the If node at the
1293
// top, and return -1 (not an edge number) on success.
1294
int PhiNode::is_diamond_phi(bool check_control_only) const {
1295
// Check for a 2-path merge
1296
Node *region = in(0);
1297
if( !region ) return 0;
1298
if( region->req() != 3 ) return 0;
1299
if( req() != 3 ) return 0;
1300
// Check that both paths come from the same If
1301
Node *ifp1 = region->in(1);
1302
Node *ifp2 = region->in(2);
1303
if( !ifp1 || !ifp2 ) return 0;
1304
Node *iff = ifp1->in(0);
1305
if( !iff || !iff->is_If() ) return 0;
1306
if( iff != ifp2->in(0) ) return 0;
1307
if (check_control_only) return -1;
1308
// Check for a proper bool/cmp
1309
const Node *b = iff->in(1);
1310
if( !b->is_Bool() ) return 0;
1311
const Node *cmp = b->in(1);
1312
if( !cmp->is_Cmp() ) return 0;
1313
1314
// Check for branching opposite expected
1315
if( ifp2->Opcode() == Op_IfTrue ) {
1316
assert( ifp1->Opcode() == Op_IfFalse, "" );
1317
return 2;
1318
} else {
1319
assert( ifp1->Opcode() == Op_IfTrue, "" );
1320
return 1;
1321
}
1322
}
1323
1324
//----------------------------check_cmove_id-----------------------------------
1325
// Check for CMove'ing a constant after comparing against the constant.
1326
// Happens all the time now, since if we compare equality vs a constant in
1327
// the parser, we "know" the variable is constant on one path and we force
1328
// it. Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
1329
// conditional move: "x = (x==0)?0:x;". Yucko. This fix is slightly more
1330
// general in that we don't need constants. Since CMove's are only inserted
1331
// in very special circumstances, we do it here on generic Phi's.
1332
Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
1333
assert(true_path !=0, "only diamond shape graph expected");
1334
1335
// is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1336
// phi->region->if_proj->ifnode->bool->cmp
1337
Node* region = in(0);
1338
Node* iff = region->in(1)->in(0);
1339
BoolNode* b = iff->in(1)->as_Bool();
1340
Node* cmp = b->in(1);
1341
Node* tval = in(true_path);
1342
Node* fval = in(3-true_path);
1343
Node* id = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
1344
if (id == NULL)
1345
return NULL;
1346
1347
// Either value might be a cast that depends on a branch of 'iff'.
1348
// Since the 'id' value will float free of the diamond, either
1349
// decast or return failure.
1350
Node* ctl = id->in(0);
1351
if (ctl != NULL && ctl->in(0) == iff) {
1352
if (id->is_ConstraintCast()) {
1353
return id->in(1);
1354
} else {
1355
// Don't know how to disentangle this value.
1356
return NULL;
1357
}
1358
}
1359
1360
return id;
1361
}
1362
1363
//------------------------------Identity---------------------------------------
1364
// Check for Region being Identity.
1365
Node* PhiNode::Identity(PhaseGVN* phase) {
1366
// Check for no merging going on
1367
// (There used to be special-case code here when this->region->is_Loop.
1368
// It would check for a tributary phi on the backedge that the main phi
1369
// trivially, perhaps with a single cast. The unique_input method
1370
// does all this and more, by reducing such tributaries to 'this'.)
1371
Node* uin = unique_input(phase, false);
1372
if (uin != NULL) {
1373
return uin;
1374
}
1375
1376
int true_path = is_diamond_phi();
1377
// Delay CMove'ing identity if Ideal has not had the chance to handle unsafe cases, yet.
1378
if (true_path != 0 && !(phase->is_IterGVN() && wait_for_region_igvn(phase))) {
1379
Node* id = is_cmove_id(phase, true_path);
1380
if (id != NULL) {
1381
return id;
1382
}
1383
}
1384
1385
// Looking for phis with identical inputs. If we find one that has
1386
// type TypePtr::BOTTOM, replace the current phi with the bottom phi.
1387
if (phase->is_IterGVN() && type() == Type::MEMORY && adr_type() !=
1388
TypePtr::BOTTOM && !adr_type()->is_known_instance()) {
1389
uint phi_len = req();
1390
Node* phi_reg = region();
1391
for (DUIterator_Fast imax, i = phi_reg->fast_outs(imax); i < imax; i++) {
1392
Node* u = phi_reg->fast_out(i);
1393
if (u->is_Phi() && u->as_Phi()->type() == Type::MEMORY &&
1394
u->adr_type() == TypePtr::BOTTOM && u->in(0) == phi_reg &&
1395
u->req() == phi_len) {
1396
for (uint j = 1; j < phi_len; j++) {
1397
if (in(j) != u->in(j)) {
1398
u = NULL;
1399
break;
1400
}
1401
}
1402
if (u != NULL) {
1403
return u;
1404
}
1405
}
1406
}
1407
}
1408
1409
return this; // No identity
1410
}
1411
1412
//-----------------------------unique_input------------------------------------
1413
// Find the unique value, discounting top, self-loops, and casts.
1414
// Return top if there are no inputs, and self if there are multiple.
1415
Node* PhiNode::unique_input(PhaseTransform* phase, bool uncast) {
1416
// 1) One unique direct input,
1417
// or if uncast is true:
1418
// 2) some of the inputs have an intervening ConstraintCast
1419
// 3) an input is a self loop
1420
//
1421
// 1) input or 2) input or 3) input __
1422
// / \ / \ \ / \
1423
// \ / | cast phi cast
1424
// phi \ / / \ /
1425
// phi / --
1426
1427
Node* r = in(0); // RegionNode
1428
Node* input = NULL; // The unique direct input (maybe uncasted = ConstraintCasts removed)
1429
1430
for (uint i = 1, cnt = req(); i < cnt; ++i) {
1431
Node* rc = r->in(i);
1432
if (rc == NULL || phase->type(rc) == Type::TOP)
1433
continue; // ignore unreachable control path
1434
Node* n = in(i);
1435
if (n == NULL)
1436
continue;
1437
Node* un = n;
1438
if (uncast) {
1439
#ifdef ASSERT
1440
Node* m = un->uncast();
1441
#endif
1442
while (un != NULL && un->req() == 2 && un->is_ConstraintCast()) {
1443
Node* next = un->in(1);
1444
if (phase->type(next)->isa_rawptr() && phase->type(un)->isa_oopptr()) {
1445
// risk exposing raw ptr at safepoint
1446
break;
1447
}
1448
un = next;
1449
}
1450
assert(m == un || un->in(1) == m, "Only expected at CheckCastPP from allocation");
1451
}
1452
if (un == NULL || un == this || phase->type(un) == Type::TOP) {
1453
continue; // ignore if top, or in(i) and "this" are in a data cycle
1454
}
1455
// Check for a unique input (maybe uncasted)
1456
if (input == NULL) {
1457
input = un;
1458
} else if (input != un) {
1459
input = NodeSentinel; // no unique input
1460
}
1461
}
1462
if (input == NULL) {
1463
return phase->C->top(); // no inputs
1464
}
1465
1466
if (input != NodeSentinel) {
1467
return input; // one unique direct input
1468
}
1469
1470
// Nothing.
1471
return NULL;
1472
}
1473
1474
//------------------------------is_x2logic-------------------------------------
1475
// Check for simple convert-to-boolean pattern
1476
// If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
1477
// Convert Phi to an ConvIB.
1478
static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
1479
assert(true_path !=0, "only diamond shape graph expected");
1480
// Convert the true/false index into an expected 0/1 return.
1481
// Map 2->0 and 1->1.
1482
int flipped = 2-true_path;
1483
1484
// is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1485
// phi->region->if_proj->ifnode->bool->cmp
1486
Node *region = phi->in(0);
1487
Node *iff = region->in(1)->in(0);
1488
BoolNode *b = (BoolNode*)iff->in(1);
1489
const CmpNode *cmp = (CmpNode*)b->in(1);
1490
1491
Node *zero = phi->in(1);
1492
Node *one = phi->in(2);
1493
const Type *tzero = phase->type( zero );
1494
const Type *tone = phase->type( one );
1495
1496
// Check for compare vs 0
1497
const Type *tcmp = phase->type(cmp->in(2));
1498
if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
1499
// Allow cmp-vs-1 if the other input is bounded by 0-1
1500
if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
1501
return NULL;
1502
flipped = 1-flipped; // Test is vs 1 instead of 0!
1503
}
1504
1505
// Check for setting zero/one opposite expected
1506
if( tzero == TypeInt::ZERO ) {
1507
if( tone == TypeInt::ONE ) {
1508
} else return NULL;
1509
} else if( tzero == TypeInt::ONE ) {
1510
if( tone == TypeInt::ZERO ) {
1511
flipped = 1-flipped;
1512
} else return NULL;
1513
} else return NULL;
1514
1515
// Check for boolean test backwards
1516
if( b->_test._test == BoolTest::ne ) {
1517
} else if( b->_test._test == BoolTest::eq ) {
1518
flipped = 1-flipped;
1519
} else return NULL;
1520
1521
// Build int->bool conversion
1522
Node *n = new Conv2BNode(cmp->in(1));
1523
if( flipped )
1524
n = new XorINode( phase->transform(n), phase->intcon(1) );
1525
1526
return n;
1527
}
1528
1529
//------------------------------is_cond_add------------------------------------
1530
// Check for simple conditional add pattern: "(P < Q) ? X+Y : X;"
1531
// To be profitable the control flow has to disappear; there can be no other
1532
// values merging here. We replace the test-and-branch with:
1533
// "(sgn(P-Q))&Y) + X". Basically, convert "(P < Q)" into 0 or -1 by
1534
// moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
1535
// Then convert Y to 0-or-Y and finally add.
1536
// This is a key transform for SpecJava _201_compress.
1537
static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
1538
assert(true_path !=0, "only diamond shape graph expected");
1539
1540
// is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1541
// phi->region->if_proj->ifnode->bool->cmp
1542
RegionNode *region = (RegionNode*)phi->in(0);
1543
Node *iff = region->in(1)->in(0);
1544
BoolNode* b = iff->in(1)->as_Bool();
1545
const CmpNode *cmp = (CmpNode*)b->in(1);
1546
1547
// Make sure only merging this one phi here
1548
if (region->has_unique_phi() != phi) return NULL;
1549
1550
// Make sure each arm of the diamond has exactly one output, which we assume
1551
// is the region. Otherwise, the control flow won't disappear.
1552
if (region->in(1)->outcnt() != 1) return NULL;
1553
if (region->in(2)->outcnt() != 1) return NULL;
1554
1555
// Check for "(P < Q)" of type signed int
1556
if (b->_test._test != BoolTest::lt) return NULL;
1557
if (cmp->Opcode() != Op_CmpI) return NULL;
1558
1559
Node *p = cmp->in(1);
1560
Node *q = cmp->in(2);
1561
Node *n1 = phi->in( true_path);
1562
Node *n2 = phi->in(3-true_path);
1563
1564
int op = n1->Opcode();
1565
if( op != Op_AddI // Need zero as additive identity
1566
/*&&op != Op_SubI &&
1567
op != Op_AddP &&
1568
op != Op_XorI &&
1569
op != Op_OrI*/ )
1570
return NULL;
1571
1572
Node *x = n2;
1573
Node *y = NULL;
1574
if( x == n1->in(1) ) {
1575
y = n1->in(2);
1576
} else if( x == n1->in(2) ) {
1577
y = n1->in(1);
1578
} else return NULL;
1579
1580
// Not so profitable if compare and add are constants
1581
if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
1582
return NULL;
1583
1584
Node *cmplt = phase->transform( new CmpLTMaskNode(p,q) );
1585
Node *j_and = phase->transform( new AndINode(cmplt,y) );
1586
return new AddINode(j_and,x);
1587
}
1588
1589
//------------------------------is_absolute------------------------------------
1590
// Check for absolute value.
1591
static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
1592
assert(true_path !=0, "only diamond shape graph expected");
1593
1594
int cmp_zero_idx = 0; // Index of compare input where to look for zero
1595
int phi_x_idx = 0; // Index of phi input where to find naked x
1596
1597
// ABS ends with the merge of 2 control flow paths.
1598
// Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
1599
int false_path = 3 - true_path;
1600
1601
// is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1602
// phi->region->if_proj->ifnode->bool->cmp
1603
BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
1604
Node *cmp = bol->in(1);
1605
1606
// Check bool sense
1607
if (cmp->Opcode() == Op_CmpF || cmp->Opcode() == Op_CmpD) {
1608
switch (bol->_test._test) {
1609
case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path; break;
1610
case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1611
case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path; break;
1612
case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
1613
default: return NULL; break;
1614
}
1615
} else if (cmp->Opcode() == Op_CmpI || cmp->Opcode() == Op_CmpL) {
1616
switch (bol->_test._test) {
1617
case BoolTest::lt:
1618
case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1619
case BoolTest::gt:
1620
case BoolTest::ge: cmp_zero_idx = 2; phi_x_idx = true_path; break;
1621
default: return NULL; break;
1622
}
1623
}
1624
1625
// Test is next
1626
const Type *tzero = NULL;
1627
switch (cmp->Opcode()) {
1628
case Op_CmpI: tzero = TypeInt::ZERO; break; // Integer ABS
1629
case Op_CmpL: tzero = TypeLong::ZERO; break; // Long ABS
1630
case Op_CmpF: tzero = TypeF::ZERO; break; // Float ABS
1631
case Op_CmpD: tzero = TypeD::ZERO; break; // Double ABS
1632
default: return NULL;
1633
}
1634
1635
// Find zero input of compare; the other input is being abs'd
1636
Node *x = NULL;
1637
bool flip = false;
1638
if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
1639
x = cmp->in(3 - cmp_zero_idx);
1640
} else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
1641
// The test is inverted, we should invert the result...
1642
x = cmp->in(cmp_zero_idx);
1643
flip = true;
1644
} else {
1645
return NULL;
1646
}
1647
1648
// Next get the 2 pieces being selected, one is the original value
1649
// and the other is the negated value.
1650
if( phi_root->in(phi_x_idx) != x ) return NULL;
1651
1652
// Check other phi input for subtract node
1653
Node *sub = phi_root->in(3 - phi_x_idx);
1654
1655
bool is_sub = sub->Opcode() == Op_SubF || sub->Opcode() == Op_SubD ||
1656
sub->Opcode() == Op_SubI || sub->Opcode() == Op_SubL;
1657
1658
// Allow only Sub(0,X) and fail out for all others; Neg is not OK
1659
if (!is_sub || phase->type(sub->in(1)) != tzero || sub->in(2) != x) return NULL;
1660
1661
if (tzero == TypeF::ZERO) {
1662
x = new AbsFNode(x);
1663
if (flip) {
1664
x = new SubFNode(sub->in(1), phase->transform(x));
1665
}
1666
} else if (tzero == TypeD::ZERO) {
1667
x = new AbsDNode(x);
1668
if (flip) {
1669
x = new SubDNode(sub->in(1), phase->transform(x));
1670
}
1671
} else if (tzero == TypeInt::ZERO && Matcher::match_rule_supported(Op_AbsI)) {
1672
x = new AbsINode(x);
1673
if (flip) {
1674
x = new SubINode(sub->in(1), phase->transform(x));
1675
}
1676
} else if (tzero == TypeLong::ZERO && Matcher::match_rule_supported(Op_AbsL)) {
1677
x = new AbsLNode(x);
1678
if (flip) {
1679
x = new SubLNode(sub->in(1), phase->transform(x));
1680
}
1681
} else return NULL;
1682
1683
return x;
1684
}
1685
1686
//------------------------------split_once-------------------------------------
1687
// Helper for split_flow_path
1688
static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
1689
igvn->hash_delete(n); // Remove from hash before hacking edges
1690
1691
uint j = 1;
1692
for (uint i = phi->req()-1; i > 0; i--) {
1693
if (phi->in(i) == val) { // Found a path with val?
1694
// Add to NEW Region/Phi, no DU info
1695
newn->set_req( j++, n->in(i) );
1696
// Remove from OLD Region/Phi
1697
n->del_req(i);
1698
}
1699
}
1700
1701
// Register the new node but do not transform it. Cannot transform until the
1702
// entire Region/Phi conglomerate has been hacked as a single huge transform.
1703
igvn->register_new_node_with_optimizer( newn );
1704
1705
// Now I can point to the new node.
1706
n->add_req(newn);
1707
igvn->_worklist.push(n);
1708
}
1709
1710
//------------------------------split_flow_path--------------------------------
1711
// Check for merging identical values and split flow paths
1712
static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
1713
BasicType bt = phi->type()->basic_type();
1714
if( bt == T_ILLEGAL || type2size[bt] <= 0 )
1715
return NULL; // Bail out on funny non-value stuff
1716
if( phi->req() <= 3 ) // Need at least 2 matched inputs and a
1717
return NULL; // third unequal input to be worth doing
1718
1719
// Scan for a constant
1720
uint i;
1721
for( i = 1; i < phi->req()-1; i++ ) {
1722
Node *n = phi->in(i);
1723
if( !n ) return NULL;
1724
if( phase->type(n) == Type::TOP ) return NULL;
1725
if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN || n->Opcode() == Op_ConNKlass )
1726
break;
1727
}
1728
if( i >= phi->req() ) // Only split for constants
1729
return NULL;
1730
1731
Node *val = phi->in(i); // Constant to split for
1732
uint hit = 0; // Number of times it occurs
1733
Node *r = phi->region();
1734
1735
for( ; i < phi->req(); i++ ){ // Count occurrences of constant
1736
Node *n = phi->in(i);
1737
if( !n ) return NULL;
1738
if( phase->type(n) == Type::TOP ) return NULL;
1739
if( phi->in(i) == val ) {
1740
hit++;
1741
if (PhaseIdealLoop::find_predicate(r->in(i)) != NULL) {
1742
return NULL; // don't split loop entry path
1743
}
1744
}
1745
}
1746
1747
if( hit <= 1 || // Make sure we find 2 or more
1748
hit == phi->req()-1 ) // and not ALL the same value
1749
return NULL;
1750
1751
// Now start splitting out the flow paths that merge the same value.
1752
// Split first the RegionNode.
1753
PhaseIterGVN *igvn = phase->is_IterGVN();
1754
RegionNode *newr = new RegionNode(hit+1);
1755
split_once(igvn, phi, val, r, newr);
1756
1757
// Now split all other Phis than this one
1758
for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
1759
Node* phi2 = r->fast_out(k);
1760
if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
1761
PhiNode *newphi = PhiNode::make_blank(newr, phi2);
1762
split_once(igvn, phi, val, phi2, newphi);
1763
}
1764
}
1765
1766
// Clean up this guy
1767
igvn->hash_delete(phi);
1768
for( i = phi->req()-1; i > 0; i-- ) {
1769
if( phi->in(i) == val ) {
1770
phi->del_req(i);
1771
}
1772
}
1773
phi->add_req(val);
1774
1775
return phi;
1776
}
1777
1778
//=============================================================================
1779
//------------------------------simple_data_loop_check-------------------------
1780
// Try to determining if the phi node in a simple safe/unsafe data loop.
1781
// Returns:
1782
// enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
1783
// Safe - safe case when the phi and it's inputs reference only safe data
1784
// nodes;
1785
// Unsafe - the phi and it's inputs reference unsafe data nodes but there
1786
// is no reference back to the phi - need a graph walk
1787
// to determine if it is in a loop;
1788
// UnsafeLoop - unsafe case when the phi references itself directly or through
1789
// unsafe data node.
1790
// Note: a safe data node is a node which could/never reference itself during
1791
// GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
1792
// I mark Phi nodes as safe node not only because they can reference itself
1793
// but also to prevent mistaking the fallthrough case inside an outer loop
1794
// as dead loop when the phi references itselfs through an other phi.
1795
PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
1796
// It is unsafe loop if the phi node references itself directly.
1797
if (in == (Node*)this)
1798
return UnsafeLoop; // Unsafe loop
1799
// Unsafe loop if the phi node references itself through an unsafe data node.
1800
// Exclude cases with null inputs or data nodes which could reference
1801
// itself (safe for dead loops).
1802
if (in != NULL && !in->is_dead_loop_safe()) {
1803
// Check inputs of phi's inputs also.
1804
// It is much less expensive then full graph walk.
1805
uint cnt = in->req();
1806
uint i = (in->is_Proj() && !in->is_CFG()) ? 0 : 1;
1807
for (; i < cnt; ++i) {
1808
Node* m = in->in(i);
1809
if (m == (Node*)this)
1810
return UnsafeLoop; // Unsafe loop
1811
if (m != NULL && !m->is_dead_loop_safe()) {
1812
// Check the most common case (about 30% of all cases):
1813
// phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
1814
Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
1815
if (m1 == (Node*)this)
1816
return UnsafeLoop; // Unsafe loop
1817
if (m1 != NULL && m1 == m->in(2) &&
1818
m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
1819
continue; // Safe case
1820
}
1821
// The phi references an unsafe node - need full analysis.
1822
return Unsafe;
1823
}
1824
}
1825
}
1826
return Safe; // Safe case - we can optimize the phi node.
1827
}
1828
1829
//------------------------------is_unsafe_data_reference-----------------------
1830
// If phi can be reached through the data input - it is data loop.
1831
bool PhiNode::is_unsafe_data_reference(Node *in) const {
1832
assert(req() > 1, "");
1833
// First, check simple cases when phi references itself directly or
1834
// through an other node.
1835
LoopSafety safety = simple_data_loop_check(in);
1836
if (safety == UnsafeLoop)
1837
return true; // phi references itself - unsafe loop
1838
else if (safety == Safe)
1839
return false; // Safe case - phi could be replaced with the unique input.
1840
1841
// Unsafe case when we should go through data graph to determine
1842
// if the phi references itself.
1843
1844
ResourceMark rm;
1845
1846
Node_List nstack;
1847
VectorSet visited;
1848
1849
nstack.push(in); // Start with unique input.
1850
visited.set(in->_idx);
1851
while (nstack.size() != 0) {
1852
Node* n = nstack.pop();
1853
uint cnt = n->req();
1854
uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
1855
for (; i < cnt; i++) {
1856
Node* m = n->in(i);
1857
if (m == (Node*)this) {
1858
return true; // Data loop
1859
}
1860
if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
1861
if (!visited.test_set(m->_idx))
1862
nstack.push(m);
1863
}
1864
}
1865
}
1866
return false; // The phi is not reachable from its inputs
1867
}
1868
1869
// Is this Phi's region or some inputs to the region enqueued for IGVN
1870
// and so could cause the region to be optimized out?
1871
bool PhiNode::wait_for_region_igvn(PhaseGVN* phase) {
1872
PhaseIterGVN* igvn = phase->is_IterGVN();
1873
Unique_Node_List& worklist = igvn->_worklist;
1874
bool delay = false;
1875
Node* r = in(0);
1876
for (uint j = 1; j < req(); j++) {
1877
Node* rc = r->in(j);
1878
Node* n = in(j);
1879
if (rc != NULL &&
1880
rc->is_Proj()) {
1881
if (worklist.member(rc)) {
1882
delay = true;
1883
} else if (rc->in(0) != NULL &&
1884
rc->in(0)->is_If()) {
1885
if (worklist.member(rc->in(0))) {
1886
delay = true;
1887
} else if (rc->in(0)->in(1) != NULL &&
1888
rc->in(0)->in(1)->is_Bool()) {
1889
if (worklist.member(rc->in(0)->in(1))) {
1890
delay = true;
1891
} else if (rc->in(0)->in(1)->in(1) != NULL &&
1892
rc->in(0)->in(1)->in(1)->is_Cmp()) {
1893
if (worklist.member(rc->in(0)->in(1)->in(1))) {
1894
delay = true;
1895
}
1896
}
1897
}
1898
}
1899
}
1900
}
1901
if (delay) {
1902
worklist.push(this);
1903
}
1904
return delay;
1905
}
1906
1907
//------------------------------Ideal------------------------------------------
1908
// Return a node which is more "ideal" than the current node. Must preserve
1909
// the CFG, but we can still strip out dead paths.
1910
Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1911
Node *r = in(0); // RegionNode
1912
assert(r != NULL && r->is_Region(), "this phi must have a region");
1913
assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
1914
1915
// Note: During parsing, phis are often transformed before their regions.
1916
// This means we have to use type_or_null to defend against untyped regions.
1917
if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1918
return NULL; // No change
1919
1920
Node *top = phase->C->top();
1921
bool new_phi = (outcnt() == 0); // transforming new Phi
1922
// No change for igvn if new phi is not hooked
1923
if (new_phi && can_reshape)
1924
return NULL;
1925
1926
// The are 2 situations when only one valid phi's input is left
1927
// (in addition to Region input).
1928
// One: region is not loop - replace phi with this input.
1929
// Two: region is loop - replace phi with top since this data path is dead
1930
// and we need to break the dead data loop.
1931
Node* progress = NULL; // Record if any progress made
1932
for( uint j = 1; j < req(); ++j ){ // For all paths in
1933
// Check unreachable control paths
1934
Node* rc = r->in(j);
1935
Node* n = in(j); // Get the input
1936
if (rc == NULL || phase->type(rc) == Type::TOP) {
1937
if (n != top) { // Not already top?
1938
PhaseIterGVN *igvn = phase->is_IterGVN();
1939
if (can_reshape && igvn != NULL) {
1940
igvn->_worklist.push(r);
1941
}
1942
// Nuke it down
1943
set_req_X(j, top, phase);
1944
progress = this; // Record progress
1945
}
1946
}
1947
}
1948
1949
if (can_reshape && outcnt() == 0) {
1950
// set_req() above may kill outputs if Phi is referenced
1951
// only by itself on the dead (top) control path.
1952
return top;
1953
}
1954
1955
bool uncasted = false;
1956
Node* uin = unique_input(phase, false);
1957
if (uin == NULL && can_reshape &&
1958
// If there is a chance that the region can be optimized out do
1959
// not add a cast node that we can't remove yet.
1960
!wait_for_region_igvn(phase)) {
1961
uncasted = true;
1962
uin = unique_input(phase, true);
1963
}
1964
if (uin == top) { // Simplest case: no alive inputs.
1965
if (can_reshape) // IGVN transformation
1966
return top;
1967
else
1968
return NULL; // Identity will return TOP
1969
} else if (uin != NULL) {
1970
// Only one not-NULL unique input path is left.
1971
// Determine if this input is backedge of a loop.
1972
// (Skip new phis which have no uses and dead regions).
1973
if (outcnt() > 0 && r->in(0) != NULL) {
1974
if (is_data_loop(r->as_Region(), uin, phase)) {
1975
// Break this data loop to avoid creation of a dead loop.
1976
if (can_reshape) {
1977
return top;
1978
} else {
1979
// We can't return top if we are in Parse phase - cut inputs only
1980
// let Identity to handle the case.
1981
replace_edge(uin, top, phase);
1982
return NULL;
1983
}
1984
}
1985
}
1986
1987
if (uncasted) {
1988
// Add cast nodes between the phi to be removed and its unique input.
1989
// Wait until after parsing for the type information to propagate from the casts.
1990
assert(can_reshape, "Invalid during parsing");
1991
const Type* phi_type = bottom_type();
1992
// Add casts to carry the control dependency of the Phi that is
1993
// going away
1994
Node* cast = NULL;
1995
if (phi_type->isa_ptr()) {
1996
const Type* uin_type = phase->type(uin);
1997
if (!phi_type->isa_oopptr() && !uin_type->isa_oopptr()) {
1998
cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, ConstraintCastNode::StrongDependency);
1999
} else {
2000
// Use a CastPP for a cast to not null and a CheckCastPP for
2001
// a cast to a new klass (and both if both null-ness and
2002
// klass change).
2003
2004
// If the type of phi is not null but the type of uin may be
2005
// null, uin's type must be casted to not null
2006
if (phi_type->join(TypePtr::NOTNULL) == phi_type->remove_speculative() &&
2007
uin_type->join(TypePtr::NOTNULL) != uin_type->remove_speculative()) {
2008
cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, TypePtr::NOTNULL, ConstraintCastNode::StrongDependency);
2009
}
2010
2011
// If the type of phi and uin, both casted to not null,
2012
// differ the klass of uin must be (check)cast'ed to match
2013
// that of phi
2014
if (phi_type->join_speculative(TypePtr::NOTNULL) != uin_type->join_speculative(TypePtr::NOTNULL)) {
2015
Node* n = uin;
2016
if (cast != NULL) {
2017
cast = phase->transform(cast);
2018
n = cast;
2019
}
2020
cast = ConstraintCastNode::make_cast(Op_CheckCastPP, r, n, phi_type, ConstraintCastNode::StrongDependency);
2021
}
2022
if (cast == NULL) {
2023
cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, ConstraintCastNode::StrongDependency);
2024
}
2025
}
2026
} else {
2027
cast = ConstraintCastNode::make_cast_for_type(r, uin, phi_type, ConstraintCastNode::StrongDependency);
2028
}
2029
assert(cast != NULL, "cast should be set");
2030
cast = phase->transform(cast);
2031
// set all inputs to the new cast(s) so the Phi is removed by Identity
2032
PhaseIterGVN* igvn = phase->is_IterGVN();
2033
for (uint i = 1; i < req(); i++) {
2034
set_req_X(i, cast, igvn);
2035
}
2036
uin = cast;
2037
}
2038
2039
// One unique input.
2040
debug_only(Node* ident = Identity(phase));
2041
// The unique input must eventually be detected by the Identity call.
2042
#ifdef ASSERT
2043
if (ident != uin && !ident->is_top()) {
2044
// print this output before failing assert
2045
r->dump(3);
2046
this->dump(3);
2047
ident->dump();
2048
uin->dump();
2049
}
2050
#endif
2051
assert(ident == uin || ident->is_top(), "Identity must clean this up");
2052
return NULL;
2053
}
2054
2055
Node* opt = NULL;
2056
int true_path = is_diamond_phi();
2057
if (true_path != 0 &&
2058
// If one of the diamond's branch is in the process of dying then, the Phi's input for that branch might transform
2059
// to top. If that happens replacing the Phi with an operation that consumes the Phi's inputs will cause the Phi
2060
// to be replaced by top. To prevent that, delay the transformation until the branch has a chance to be removed.
2061
!(can_reshape && wait_for_region_igvn(phase))) {
2062
// Check for CMove'ing identity. If it would be unsafe,
2063
// handle it here. In the safe case, let Identity handle it.
2064
Node* unsafe_id = is_cmove_id(phase, true_path);
2065
if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
2066
opt = unsafe_id;
2067
2068
// Check for simple convert-to-boolean pattern
2069
if( opt == NULL )
2070
opt = is_x2logic(phase, this, true_path);
2071
2072
// Check for absolute value
2073
if( opt == NULL )
2074
opt = is_absolute(phase, this, true_path);
2075
2076
// Check for conditional add
2077
if( opt == NULL && can_reshape )
2078
opt = is_cond_add(phase, this, true_path);
2079
2080
// These 4 optimizations could subsume the phi:
2081
// have to check for a dead data loop creation.
2082
if( opt != NULL ) {
2083
if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
2084
// Found dead loop.
2085
if( can_reshape )
2086
return top;
2087
// We can't return top if we are in Parse phase - cut inputs only
2088
// to stop further optimizations for this phi. Identity will return TOP.
2089
assert(req() == 3, "only diamond merge phi here");
2090
set_req(1, top);
2091
set_req(2, top);
2092
return NULL;
2093
} else {
2094
return opt;
2095
}
2096
}
2097
}
2098
2099
// Check for merging identical values and split flow paths
2100
if (can_reshape) {
2101
opt = split_flow_path(phase, this);
2102
// This optimization only modifies phi - don't need to check for dead loop.
2103
assert(opt == NULL || opt == this, "do not elide phi");
2104
if (opt != NULL) return opt;
2105
}
2106
2107
if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) {
2108
// Try to undo Phi of AddP:
2109
// (Phi (AddP base address offset) (AddP base2 address2 offset2))
2110
// becomes:
2111
// newbase := (Phi base base2)
2112
// newaddress := (Phi address address2)
2113
// newoffset := (Phi offset offset2)
2114
// (AddP newbase newaddress newoffset)
2115
//
2116
// This occurs as a result of unsuccessful split_thru_phi and
2117
// interferes with taking advantage of addressing modes. See the
2118
// clone_shift_expressions code in matcher.cpp
2119
Node* addp = in(1);
2120
Node* base = addp->in(AddPNode::Base);
2121
Node* address = addp->in(AddPNode::Address);
2122
Node* offset = addp->in(AddPNode::Offset);
2123
if (base != NULL && address != NULL && offset != NULL &&
2124
!base->is_top() && !address->is_top() && !offset->is_top()) {
2125
const Type* base_type = base->bottom_type();
2126
const Type* address_type = address->bottom_type();
2127
// make sure that all the inputs are similar to the first one,
2128
// i.e. AddP with base == address and same offset as first AddP
2129
bool doit = true;
2130
for (uint i = 2; i < req(); i++) {
2131
if (in(i) == NULL ||
2132
in(i)->Opcode() != Op_AddP ||
2133
in(i)->in(AddPNode::Base) == NULL ||
2134
in(i)->in(AddPNode::Address) == NULL ||
2135
in(i)->in(AddPNode::Offset) == NULL ||
2136
in(i)->in(AddPNode::Base)->is_top() ||
2137
in(i)->in(AddPNode::Address)->is_top() ||
2138
in(i)->in(AddPNode::Offset)->is_top()) {
2139
doit = false;
2140
break;
2141
}
2142
if (in(i)->in(AddPNode::Base) != base) {
2143
base = NULL;
2144
}
2145
if (in(i)->in(AddPNode::Offset) != offset) {
2146
offset = NULL;
2147
}
2148
if (in(i)->in(AddPNode::Address) != address) {
2149
address = NULL;
2150
}
2151
// Accumulate type for resulting Phi
2152
base_type = base_type->meet_speculative(in(i)->in(AddPNode::Base)->bottom_type());
2153
address_type = address_type->meet_speculative(in(i)->in(AddPNode::Address)->bottom_type());
2154
}
2155
if (doit && base == NULL) {
2156
// Check for neighboring AddP nodes in a tree.
2157
// If they have a base, use that it.
2158
for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
2159
Node* u = this->fast_out(k);
2160
if (u->is_AddP()) {
2161
Node* base2 = u->in(AddPNode::Base);
2162
if (base2 != NULL && !base2->is_top()) {
2163
if (base == NULL)
2164
base = base2;
2165
else if (base != base2)
2166
{ doit = false; break; }
2167
}
2168
}
2169
}
2170
}
2171
if (doit) {
2172
if (base == NULL) {
2173
base = new PhiNode(in(0), base_type, NULL);
2174
for (uint i = 1; i < req(); i++) {
2175
base->init_req(i, in(i)->in(AddPNode::Base));
2176
}
2177
phase->is_IterGVN()->register_new_node_with_optimizer(base);
2178
}
2179
if (address == NULL) {
2180
address = new PhiNode(in(0), address_type, NULL);
2181
for (uint i = 1; i < req(); i++) {
2182
address->init_req(i, in(i)->in(AddPNode::Address));
2183
}
2184
phase->is_IterGVN()->register_new_node_with_optimizer(address);
2185
}
2186
if (offset == NULL) {
2187
offset = new PhiNode(in(0), TypeX_X, NULL);
2188
for (uint i = 1; i < req(); i++) {
2189
offset->init_req(i, in(i)->in(AddPNode::Offset));
2190
}
2191
phase->is_IterGVN()->register_new_node_with_optimizer(offset);
2192
}
2193
return new AddPNode(base, address, offset);
2194
}
2195
}
2196
}
2197
2198
// Split phis through memory merges, so that the memory merges will go away.
2199
// Piggy-back this transformation on the search for a unique input....
2200
// It will be as if the merged memory is the unique value of the phi.
2201
// (Do not attempt this optimization unless parsing is complete.
2202
// It would make the parser's memory-merge logic sick.)
2203
// (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
2204
if (progress == NULL && can_reshape && type() == Type::MEMORY) {
2205
// see if this phi should be sliced
2206
uint merge_width = 0;
2207
bool saw_self = false;
2208
for( uint i=1; i<req(); ++i ) {// For all paths in
2209
Node *ii = in(i);
2210
// TOP inputs should not be counted as safe inputs because if the
2211
// Phi references itself through all other inputs then splitting the
2212
// Phi through memory merges would create dead loop at later stage.
2213
if (ii == top) {
2214
return NULL; // Delay optimization until graph is cleaned.
2215
}
2216
if (ii->is_MergeMem()) {
2217
MergeMemNode* n = ii->as_MergeMem();
2218
merge_width = MAX2(merge_width, n->req());
2219
saw_self = saw_self || (n->base_memory() == this);
2220
}
2221
}
2222
2223
// This restriction is temporarily necessary to ensure termination:
2224
if (!saw_self && adr_type() == TypePtr::BOTTOM) merge_width = 0;
2225
2226
if (merge_width > Compile::AliasIdxRaw) {
2227
// found at least one non-empty MergeMem
2228
const TypePtr* at = adr_type();
2229
if (at != TypePtr::BOTTOM) {
2230
// Patch the existing phi to select an input from the merge:
2231
// Phi:AT1(...MergeMem(m0, m1, m2)...) into
2232
// Phi:AT1(...m1...)
2233
int alias_idx = phase->C->get_alias_index(at);
2234
for (uint i=1; i<req(); ++i) {
2235
Node *ii = in(i);
2236
if (ii->is_MergeMem()) {
2237
MergeMemNode* n = ii->as_MergeMem();
2238
// compress paths and change unreachable cycles to TOP
2239
// If not, we can update the input infinitely along a MergeMem cycle
2240
// Equivalent code is in MemNode::Ideal_common
2241
Node *m = phase->transform(n);
2242
if (outcnt() == 0) { // Above transform() may kill us!
2243
return top;
2244
}
2245
// If transformed to a MergeMem, get the desired slice
2246
// Otherwise the returned node represents memory for every slice
2247
Node *new_mem = (m->is_MergeMem()) ?
2248
m->as_MergeMem()->memory_at(alias_idx) : m;
2249
// Update input if it is progress over what we have now
2250
if (new_mem != ii) {
2251
set_req_X(i, new_mem, phase->is_IterGVN());
2252
progress = this;
2253
}
2254
}
2255
}
2256
} else {
2257
// We know that at least one MergeMem->base_memory() == this
2258
// (saw_self == true). If all other inputs also references this phi
2259
// (directly or through data nodes) - it is a dead loop.
2260
bool saw_safe_input = false;
2261
for (uint j = 1; j < req(); ++j) {
2262
Node* n = in(j);
2263
if (n->is_MergeMem()) {
2264
MergeMemNode* mm = n->as_MergeMem();
2265
if (mm->base_memory() == this || mm->base_memory() == mm->empty_memory()) {
2266
// Skip this input if it references back to this phi or if the memory path is dead
2267
continue;
2268
}
2269
}
2270
if (!is_unsafe_data_reference(n)) {
2271
saw_safe_input = true; // found safe input
2272
break;
2273
}
2274
}
2275
if (!saw_safe_input) {
2276
// There is a dead loop: All inputs are either dead or reference back to this phi
2277
return top;
2278
}
2279
2280
// Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
2281
// MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
2282
PhaseIterGVN* igvn = phase->is_IterGVN();
2283
assert(igvn != NULL, "sanity check");
2284
Node* hook = new Node(1);
2285
PhiNode* new_base = (PhiNode*) clone();
2286
// Must eagerly register phis, since they participate in loops.
2287
igvn->register_new_node_with_optimizer(new_base);
2288
hook->add_req(new_base);
2289
2290
MergeMemNode* result = MergeMemNode::make(new_base);
2291
for (uint i = 1; i < req(); ++i) {
2292
Node *ii = in(i);
2293
if (ii->is_MergeMem()) {
2294
MergeMemNode* n = ii->as_MergeMem();
2295
for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
2296
// If we have not seen this slice yet, make a phi for it.
2297
bool made_new_phi = false;
2298
if (mms.is_empty()) {
2299
Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
2300
made_new_phi = true;
2301
igvn->register_new_node_with_optimizer(new_phi);
2302
hook->add_req(new_phi);
2303
mms.set_memory(new_phi);
2304
}
2305
Node* phi = mms.memory();
2306
assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
2307
phi->set_req(i, mms.memory2());
2308
}
2309
}
2310
}
2311
// Distribute all self-loops.
2312
{ // (Extra braces to hide mms.)
2313
for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2314
Node* phi = mms.memory();
2315
for (uint i = 1; i < req(); ++i) {
2316
if (phi->in(i) == this) phi->set_req(i, phi);
2317
}
2318
}
2319
}
2320
// Already replace this phi node to cut it off from the graph to not interfere in dead loop checks during the
2321
// transformations of the new phi nodes below. Otherwise, we could wrongly conclude that there is no dead loop
2322
// because we are finding this phi node again. Also set the type of the new MergeMem node in case we are also
2323
// visiting it in the transformations below.
2324
igvn->replace_node(this, result);
2325
igvn->set_type(result, result->bottom_type());
2326
2327
// now transform the new nodes, and return the mergemem
2328
for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2329
Node* phi = mms.memory();
2330
mms.set_memory(phase->transform(phi));
2331
}
2332
hook->destruct(igvn);
2333
// Replace self with the result.
2334
return result;
2335
}
2336
}
2337
//
2338
// Other optimizations on the memory chain
2339
//
2340
const TypePtr* at = adr_type();
2341
for( uint i=1; i<req(); ++i ) {// For all paths in
2342
Node *ii = in(i);
2343
Node *new_in = MemNode::optimize_memory_chain(ii, at, NULL, phase);
2344
if (ii != new_in ) {
2345
set_req(i, new_in);
2346
progress = this;
2347
}
2348
}
2349
}
2350
2351
#ifdef _LP64
2352
// Push DecodeN/DecodeNKlass down through phi.
2353
// The rest of phi graph will transform by split EncodeP node though phis up.
2354
if ((UseCompressedOops || UseCompressedClassPointers) && can_reshape && progress == NULL) {
2355
bool may_push = true;
2356
bool has_decodeN = false;
2357
bool is_decodeN = false;
2358
for (uint i=1; i<req(); ++i) {// For all paths in
2359
Node *ii = in(i);
2360
if (ii->is_DecodeNarrowPtr() && ii->bottom_type() == bottom_type()) {
2361
// Do optimization if a non dead path exist.
2362
if (ii->in(1)->bottom_type() != Type::TOP) {
2363
has_decodeN = true;
2364
is_decodeN = ii->is_DecodeN();
2365
}
2366
} else if (!ii->is_Phi()) {
2367
may_push = false;
2368
}
2369
}
2370
2371
if (has_decodeN && may_push) {
2372
PhaseIterGVN *igvn = phase->is_IterGVN();
2373
// Make narrow type for new phi.
2374
const Type* narrow_t;
2375
if (is_decodeN) {
2376
narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr());
2377
} else {
2378
narrow_t = TypeNarrowKlass::make(this->bottom_type()->is_ptr());
2379
}
2380
PhiNode* new_phi = new PhiNode(r, narrow_t);
2381
uint orig_cnt = req();
2382
for (uint i=1; i<req(); ++i) {// For all paths in
2383
Node *ii = in(i);
2384
Node* new_ii = NULL;
2385
if (ii->is_DecodeNarrowPtr()) {
2386
assert(ii->bottom_type() == bottom_type(), "sanity");
2387
new_ii = ii->in(1);
2388
} else {
2389
assert(ii->is_Phi(), "sanity");
2390
if (ii->as_Phi() == this) {
2391
new_ii = new_phi;
2392
} else {
2393
if (is_decodeN) {
2394
new_ii = new EncodePNode(ii, narrow_t);
2395
} else {
2396
new_ii = new EncodePKlassNode(ii, narrow_t);
2397
}
2398
igvn->register_new_node_with_optimizer(new_ii);
2399
}
2400
}
2401
new_phi->set_req(i, new_ii);
2402
}
2403
igvn->register_new_node_with_optimizer(new_phi, this);
2404
if (is_decodeN) {
2405
progress = new DecodeNNode(new_phi, bottom_type());
2406
} else {
2407
progress = new DecodeNKlassNode(new_phi, bottom_type());
2408
}
2409
}
2410
}
2411
#endif
2412
2413
// Phi (VB ... VB) => VB (Phi ...) (Phi ...)
2414
if (EnableVectorReboxing && can_reshape && progress == NULL) {
2415
PhaseIterGVN* igvn = phase->is_IterGVN();
2416
2417
bool all_inputs_are_equiv_vboxes = true;
2418
for (uint i = 1; i < req(); ++i) {
2419
Node* n = in(i);
2420
if (in(i)->Opcode() != Op_VectorBox) {
2421
all_inputs_are_equiv_vboxes = false;
2422
break;
2423
}
2424
// Check that vector type of vboxes is equivalent
2425
if (i != 1) {
2426
if (Type::cmp(in(i-0)->in(VectorBoxNode::Value)->bottom_type(),
2427
in(i-1)->in(VectorBoxNode::Value)->bottom_type()) != 0) {
2428
all_inputs_are_equiv_vboxes = false;
2429
break;
2430
}
2431
if (Type::cmp(in(i-0)->in(VectorBoxNode::Box)->bottom_type(),
2432
in(i-1)->in(VectorBoxNode::Box)->bottom_type()) != 0) {
2433
all_inputs_are_equiv_vboxes = false;
2434
break;
2435
}
2436
}
2437
}
2438
2439
if (all_inputs_are_equiv_vboxes) {
2440
VectorBoxNode* vbox = static_cast<VectorBoxNode*>(in(1));
2441
PhiNode* new_vbox_phi = new PhiNode(r, vbox->box_type());
2442
PhiNode* new_vect_phi = new PhiNode(r, vbox->vec_type());
2443
for (uint i = 1; i < req(); ++i) {
2444
VectorBoxNode* old_vbox = static_cast<VectorBoxNode*>(in(i));
2445
new_vbox_phi->set_req(i, old_vbox->in(VectorBoxNode::Box));
2446
new_vect_phi->set_req(i, old_vbox->in(VectorBoxNode::Value));
2447
}
2448
igvn->register_new_node_with_optimizer(new_vbox_phi, this);
2449
igvn->register_new_node_with_optimizer(new_vect_phi, this);
2450
progress = new VectorBoxNode(igvn->C, new_vbox_phi, new_vect_phi, vbox->box_type(), vbox->vec_type());
2451
}
2452
}
2453
2454
return progress; // Return any progress
2455
}
2456
2457
bool PhiNode::is_data_loop(RegionNode* r, Node* uin, const PhaseGVN* phase) {
2458
// First, take the short cut when we know it is a loop and the EntryControl data path is dead.
2459
// The loop node may only have one input because the entry path was removed in PhaseIdealLoop::Dominators().
2460
// Then, check if there is a data loop when the phi references itself directly or through other data nodes.
2461
assert(!r->is_Loop() || r->req() <= 3, "Loop node should have 3 or less inputs");
2462
const bool is_loop = (r->is_Loop() && r->req() == 3);
2463
const Node* top = phase->C->top();
2464
if (is_loop) {
2465
return !uin->eqv_uncast(in(LoopNode::EntryControl));
2466
} else {
2467
// We have a data loop either with an unsafe data reference or if a region is unreachable.
2468
return is_unsafe_data_reference(uin)
2469
|| (r->req() == 3 && (r->in(1) != top && r->in(2) == top && r->is_unreachable_region(phase)));
2470
}
2471
}
2472
2473
//------------------------------is_tripcount-----------------------------------
2474
bool PhiNode::is_tripcount(BasicType bt) const {
2475
return (in(0) != NULL && in(0)->is_BaseCountedLoop() &&
2476
in(0)->as_BaseCountedLoop()->operates_on(bt, true) &&
2477
in(0)->as_BaseCountedLoop()->phi() == this);
2478
}
2479
2480
//------------------------------out_RegMask------------------------------------
2481
const RegMask &PhiNode::in_RegMask(uint i) const {
2482
return i ? out_RegMask() : RegMask::Empty;
2483
}
2484
2485
const RegMask &PhiNode::out_RegMask() const {
2486
uint ideal_reg = _type->ideal_reg();
2487
assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
2488
if( ideal_reg == 0 ) return RegMask::Empty;
2489
assert(ideal_reg != Op_RegFlags, "flags register is not spillable");
2490
return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
2491
}
2492
2493
#ifndef PRODUCT
2494
void PhiNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2495
// For a PhiNode, the set of related nodes includes all inputs till level 2,
2496
// and all outputs till level 1. In compact mode, inputs till level 1 are
2497
// collected.
2498
this->collect_nodes(in_rel, compact ? 1 : 2, false, false);
2499
this->collect_nodes(out_rel, -1, false, false);
2500
}
2501
2502
void PhiNode::dump_spec(outputStream *st) const {
2503
TypeNode::dump_spec(st);
2504
if (is_tripcount(T_INT) || is_tripcount(T_LONG)) {
2505
st->print(" #tripcount");
2506
}
2507
}
2508
#endif
2509
2510
2511
//=============================================================================
2512
const Type* GotoNode::Value(PhaseGVN* phase) const {
2513
// If the input is reachable, then we are executed.
2514
// If the input is not reachable, then we are not executed.
2515
return phase->type(in(0));
2516
}
2517
2518
Node* GotoNode::Identity(PhaseGVN* phase) {
2519
return in(0); // Simple copy of incoming control
2520
}
2521
2522
const RegMask &GotoNode::out_RegMask() const {
2523
return RegMask::Empty;
2524
}
2525
2526
#ifndef PRODUCT
2527
//-----------------------------related-----------------------------------------
2528
// The related nodes of a GotoNode are all inputs at level 1, as well as the
2529
// outputs at level 1. This is regardless of compact mode.
2530
void GotoNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2531
this->collect_nodes(in_rel, 1, false, false);
2532
this->collect_nodes(out_rel, -1, false, false);
2533
}
2534
#endif
2535
2536
2537
//=============================================================================
2538
const RegMask &JumpNode::out_RegMask() const {
2539
return RegMask::Empty;
2540
}
2541
2542
#ifndef PRODUCT
2543
//-----------------------------related-----------------------------------------
2544
// The related nodes of a JumpNode are all inputs at level 1, as well as the
2545
// outputs at level 2 (to include actual jump targets beyond projection nodes).
2546
// This is regardless of compact mode.
2547
void JumpNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2548
this->collect_nodes(in_rel, 1, false, false);
2549
this->collect_nodes(out_rel, -2, false, false);
2550
}
2551
#endif
2552
2553
//=============================================================================
2554
const RegMask &JProjNode::out_RegMask() const {
2555
return RegMask::Empty;
2556
}
2557
2558
//=============================================================================
2559
const RegMask &CProjNode::out_RegMask() const {
2560
return RegMask::Empty;
2561
}
2562
2563
2564
2565
//=============================================================================
2566
2567
uint PCTableNode::hash() const { return Node::hash() + _size; }
2568
bool PCTableNode::cmp( const Node &n ) const
2569
{ return _size == ((PCTableNode&)n)._size; }
2570
2571
const Type *PCTableNode::bottom_type() const {
2572
const Type** f = TypeTuple::fields(_size);
2573
for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2574
return TypeTuple::make(_size, f);
2575
}
2576
2577
//------------------------------Value------------------------------------------
2578
// Compute the type of the PCTableNode. If reachable it is a tuple of
2579
// Control, otherwise the table targets are not reachable
2580
const Type* PCTableNode::Value(PhaseGVN* phase) const {
2581
if( phase->type(in(0)) == Type::CONTROL )
2582
return bottom_type();
2583
return Type::TOP; // All paths dead? Then so are we
2584
}
2585
2586
//------------------------------Ideal------------------------------------------
2587
// Return a node which is more "ideal" than the current node. Strip out
2588
// control copies
2589
Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2590
return remove_dead_region(phase, can_reshape) ? this : NULL;
2591
}
2592
2593
//=============================================================================
2594
uint JumpProjNode::hash() const {
2595
return Node::hash() + _dest_bci;
2596
}
2597
2598
bool JumpProjNode::cmp( const Node &n ) const {
2599
return ProjNode::cmp(n) &&
2600
_dest_bci == ((JumpProjNode&)n)._dest_bci;
2601
}
2602
2603
#ifndef PRODUCT
2604
void JumpProjNode::dump_spec(outputStream *st) const {
2605
ProjNode::dump_spec(st);
2606
st->print("@bci %d ",_dest_bci);
2607
}
2608
2609
void JumpProjNode::dump_compact_spec(outputStream *st) const {
2610
ProjNode::dump_compact_spec(st);
2611
st->print("(%d)%d@%d", _switch_val, _proj_no, _dest_bci);
2612
}
2613
2614
void JumpProjNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2615
// The related nodes of a JumpProjNode are its inputs and outputs at level 1.
2616
this->collect_nodes(in_rel, 1, false, false);
2617
this->collect_nodes(out_rel, -1, false, false);
2618
}
2619
#endif
2620
2621
//=============================================================================
2622
//------------------------------Value------------------------------------------
2623
// Check for being unreachable, or for coming from a Rethrow. Rethrow's cannot
2624
// have the default "fall_through_index" path.
2625
const Type* CatchNode::Value(PhaseGVN* phase) const {
2626
// Unreachable? Then so are all paths from here.
2627
if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
2628
// First assume all paths are reachable
2629
const Type** f = TypeTuple::fields(_size);
2630
for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2631
// Identify cases that will always throw an exception
2632
// () rethrow call
2633
// () virtual or interface call with NULL receiver
2634
// () call is a check cast with incompatible arguments
2635
if( in(1)->is_Proj() ) {
2636
Node *i10 = in(1)->in(0);
2637
if( i10->is_Call() ) {
2638
CallNode *call = i10->as_Call();
2639
// Rethrows always throw exceptions, never return
2640
if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2641
f[CatchProjNode::fall_through_index] = Type::TOP;
2642
} else if (call->is_AllocateArray()) {
2643
Node* klass_node = call->in(AllocateNode::KlassNode);
2644
Node* length = call->in(AllocateNode::ALength);
2645
const Type* length_type = phase->type(length);
2646
const Type* klass_type = phase->type(klass_node);
2647
Node* valid_length_test = call->in(AllocateNode::ValidLengthTest);
2648
const Type* valid_length_test_t = phase->type(valid_length_test);
2649
if (length_type == Type::TOP || klass_type == Type::TOP || valid_length_test_t == Type::TOP ||
2650
valid_length_test_t->is_int()->is_con(0)) {
2651
f[CatchProjNode::fall_through_index] = Type::TOP;
2652
}
2653
} else if( call->req() > TypeFunc::Parms ) {
2654
const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
2655
// Check for null receiver to virtual or interface calls
2656
if( call->is_CallDynamicJava() &&
2657
arg0->higher_equal(TypePtr::NULL_PTR) ) {
2658
f[CatchProjNode::fall_through_index] = Type::TOP;
2659
}
2660
} // End of if not a runtime stub
2661
} // End of if have call above me
2662
} // End of slot 1 is not a projection
2663
return TypeTuple::make(_size, f);
2664
}
2665
2666
//=============================================================================
2667
uint CatchProjNode::hash() const {
2668
return Node::hash() + _handler_bci;
2669
}
2670
2671
2672
bool CatchProjNode::cmp( const Node &n ) const {
2673
return ProjNode::cmp(n) &&
2674
_handler_bci == ((CatchProjNode&)n)._handler_bci;
2675
}
2676
2677
2678
//------------------------------Identity---------------------------------------
2679
// If only 1 target is possible, choose it if it is the main control
2680
Node* CatchProjNode::Identity(PhaseGVN* phase) {
2681
// If my value is control and no other value is, then treat as ID
2682
const TypeTuple *t = phase->type(in(0))->is_tuple();
2683
if (t->field_at(_con) != Type::CONTROL) return this;
2684
// If we remove the last CatchProj and elide the Catch/CatchProj, then we
2685
// also remove any exception table entry. Thus we must know the call
2686
// feeding the Catch will not really throw an exception. This is ok for
2687
// the main fall-thru control (happens when we know a call can never throw
2688
// an exception) or for "rethrow", because a further optimization will
2689
// yank the rethrow (happens when we inline a function that can throw an
2690
// exception and the caller has no handler). Not legal, e.g., for passing
2691
// a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
2692
// These cases MUST throw an exception via the runtime system, so the VM
2693
// will be looking for a table entry.
2694
Node *proj = in(0)->in(1); // Expect a proj feeding CatchNode
2695
CallNode *call;
2696
if (_con != TypeFunc::Control && // Bail out if not the main control.
2697
!(proj->is_Proj() && // AND NOT a rethrow
2698
proj->in(0)->is_Call() &&
2699
(call = proj->in(0)->as_Call()) &&
2700
call->entry_point() == OptoRuntime::rethrow_stub()))
2701
return this;
2702
2703
// Search for any other path being control
2704
for (uint i = 0; i < t->cnt(); i++) {
2705
if (i != _con && t->field_at(i) == Type::CONTROL)
2706
return this;
2707
}
2708
// Only my path is possible; I am identity on control to the jump
2709
return in(0)->in(0);
2710
}
2711
2712
2713
#ifndef PRODUCT
2714
void CatchProjNode::dump_spec(outputStream *st) const {
2715
ProjNode::dump_spec(st);
2716
st->print("@bci %d ",_handler_bci);
2717
}
2718
#endif
2719
2720
//=============================================================================
2721
//------------------------------Identity---------------------------------------
2722
// Check for CreateEx being Identity.
2723
Node* CreateExNode::Identity(PhaseGVN* phase) {
2724
if( phase->type(in(1)) == Type::TOP ) return in(1);
2725
if( phase->type(in(0)) == Type::TOP ) return in(0);
2726
// We only come from CatchProj, unless the CatchProj goes away.
2727
// If the CatchProj is optimized away, then we just carry the
2728
// exception oop through.
2729
CallNode *call = in(1)->in(0)->as_Call();
2730
2731
return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
2732
? this
2733
: call->in(TypeFunc::Parms);
2734
}
2735
2736
//=============================================================================
2737
//------------------------------Value------------------------------------------
2738
// Check for being unreachable.
2739
const Type* NeverBranchNode::Value(PhaseGVN* phase) const {
2740
if (!in(0) || in(0)->is_top()) return Type::TOP;
2741
return bottom_type();
2742
}
2743
2744
//------------------------------Ideal------------------------------------------
2745
// Check for no longer being part of a loop
2746
Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2747
if (can_reshape && !in(0)->is_Region()) {
2748
// Dead code elimination can sometimes delete this projection so
2749
// if it's not there, there's nothing to do.
2750
Node* fallthru = proj_out_or_null(0);
2751
if (fallthru != NULL) {
2752
phase->is_IterGVN()->replace_node(fallthru, in(0));
2753
}
2754
return phase->C->top();
2755
}
2756
return NULL;
2757
}
2758
2759
#ifndef PRODUCT
2760
void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
2761
st->print("%s", Name());
2762
}
2763
#endif
2764
2765