Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/jdk17u
Path: blob/master/src/hotspot/share/opto/doCall.cpp
64441 views
1
/*
2
* Copyright (c) 1998, 2022, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation.
8
*
9
* This code is distributed in the hope that it will be useful, but WITHOUT
10
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12
* version 2 for more details (a copy is included in the LICENSE file that
13
* accompanied this code).
14
*
15
* You should have received a copy of the GNU General Public License version
16
* 2 along with this work; if not, write to the Free Software Foundation,
17
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18
*
19
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20
* or visit www.oracle.com if you need additional information or have any
21
* questions.
22
*
23
*/
24
25
#include "precompiled.hpp"
26
#include "ci/ciCallSite.hpp"
27
#include "ci/ciMethodHandle.hpp"
28
#include "ci/ciSymbols.hpp"
29
#include "classfile/vmSymbols.hpp"
30
#include "compiler/compileBroker.hpp"
31
#include "compiler/compileLog.hpp"
32
#include "interpreter/linkResolver.hpp"
33
#include "opto/addnode.hpp"
34
#include "opto/callGenerator.hpp"
35
#include "opto/castnode.hpp"
36
#include "opto/cfgnode.hpp"
37
#include "opto/mulnode.hpp"
38
#include "opto/parse.hpp"
39
#include "opto/rootnode.hpp"
40
#include "opto/runtime.hpp"
41
#include "opto/subnode.hpp"
42
#include "prims/methodHandles.hpp"
43
#include "runtime/sharedRuntime.hpp"
44
45
void trace_type_profile(Compile* C, ciMethod *method, int depth, int bci, ciMethod *prof_method, ciKlass *prof_klass, int site_count, int receiver_count) {
46
if (TraceTypeProfile || C->print_inlining()) {
47
outputStream* out = tty;
48
if (!C->print_inlining()) {
49
if (!PrintOpto && !PrintCompilation) {
50
method->print_short_name();
51
tty->cr();
52
}
53
CompileTask::print_inlining_tty(prof_method, depth, bci);
54
} else {
55
out = C->print_inlining_stream();
56
}
57
CompileTask::print_inline_indent(depth, out);
58
out->print(" \\-> TypeProfile (%d/%d counts) = ", receiver_count, site_count);
59
stringStream ss;
60
prof_klass->name()->print_symbol_on(&ss);
61
out->print("%s", ss.as_string());
62
out->cr();
63
}
64
}
65
66
CallGenerator* Compile::call_generator(ciMethod* callee, int vtable_index, bool call_does_dispatch,
67
JVMState* jvms, bool allow_inline,
68
float prof_factor, ciKlass* speculative_receiver_type,
69
bool allow_intrinsics) {
70
assert(callee != NULL, "failed method resolution");
71
72
ciMethod* caller = jvms->method();
73
int bci = jvms->bci();
74
Bytecodes::Code bytecode = caller->java_code_at_bci(bci);
75
ciMethod* orig_callee = caller->get_method_at_bci(bci);
76
77
const bool is_virtual_or_interface = (bytecode == Bytecodes::_invokevirtual) ||
78
(bytecode == Bytecodes::_invokeinterface) ||
79
(orig_callee->intrinsic_id() == vmIntrinsics::_linkToVirtual) ||
80
(orig_callee->intrinsic_id() == vmIntrinsics::_linkToInterface);
81
82
// Dtrace currently doesn't work unless all calls are vanilla
83
if (env()->dtrace_method_probes()) {
84
allow_inline = false;
85
}
86
87
// Note: When we get profiling during stage-1 compiles, we want to pull
88
// from more specific profile data which pertains to this inlining.
89
// Right now, ignore the information in jvms->caller(), and do method[bci].
90
ciCallProfile profile = caller->call_profile_at_bci(bci);
91
92
// See how many times this site has been invoked.
93
int site_count = profile.count();
94
int receiver_count = -1;
95
if (call_does_dispatch && UseTypeProfile && profile.has_receiver(0)) {
96
// Receivers in the profile structure are ordered by call counts
97
// so that the most called (major) receiver is profile.receiver(0).
98
receiver_count = profile.receiver_count(0);
99
}
100
101
CompileLog* log = this->log();
102
if (log != NULL) {
103
int rid = (receiver_count >= 0)? log->identify(profile.receiver(0)): -1;
104
int r2id = (rid != -1 && profile.has_receiver(1))? log->identify(profile.receiver(1)):-1;
105
log->begin_elem("call method='%d' count='%d' prof_factor='%f'",
106
log->identify(callee), site_count, prof_factor);
107
if (call_does_dispatch) log->print(" virtual='1'");
108
if (allow_inline) log->print(" inline='1'");
109
if (receiver_count >= 0) {
110
log->print(" receiver='%d' receiver_count='%d'", rid, receiver_count);
111
if (profile.has_receiver(1)) {
112
log->print(" receiver2='%d' receiver2_count='%d'", r2id, profile.receiver_count(1));
113
}
114
}
115
if (callee->is_method_handle_intrinsic()) {
116
log->print(" method_handle_intrinsic='1'");
117
}
118
log->end_elem();
119
}
120
121
// Special case the handling of certain common, profitable library
122
// methods. If these methods are replaced with specialized code,
123
// then we return it as the inlined version of the call.
124
CallGenerator* cg_intrinsic = NULL;
125
if (allow_inline && allow_intrinsics) {
126
CallGenerator* cg = find_intrinsic(callee, call_does_dispatch);
127
if (cg != NULL) {
128
if (cg->is_predicated()) {
129
// Code without intrinsic but, hopefully, inlined.
130
CallGenerator* inline_cg = this->call_generator(callee,
131
vtable_index, call_does_dispatch, jvms, allow_inline, prof_factor, speculative_receiver_type, false);
132
if (inline_cg != NULL) {
133
cg = CallGenerator::for_predicated_intrinsic(cg, inline_cg);
134
}
135
}
136
137
// If intrinsic does the virtual dispatch, we try to use the type profile
138
// first, and hopefully inline it as the regular virtual call below.
139
// We will retry the intrinsic if nothing had claimed it afterwards.
140
if (cg->does_virtual_dispatch()) {
141
cg_intrinsic = cg;
142
cg = NULL;
143
} else if (IncrementalInline && should_delay_vector_inlining(callee, jvms)) {
144
return CallGenerator::for_late_inline(callee, cg);
145
} else {
146
return cg;
147
}
148
}
149
}
150
151
// Do method handle calls.
152
// NOTE: This must happen before normal inlining logic below since
153
// MethodHandle.invoke* are native methods which obviously don't
154
// have bytecodes and so normal inlining fails.
155
if (callee->is_method_handle_intrinsic()) {
156
CallGenerator* cg = CallGenerator::for_method_handle_call(jvms, caller, callee, allow_inline);
157
return cg;
158
}
159
160
// Attempt to inline...
161
if (allow_inline) {
162
// The profile data is only partly attributable to this caller,
163
// scale back the call site information.
164
float past_uses = jvms->method()->scale_count(site_count, prof_factor);
165
// This is the number of times we expect the call code to be used.
166
float expected_uses = past_uses;
167
168
// Try inlining a bytecoded method:
169
if (!call_does_dispatch) {
170
InlineTree* ilt = InlineTree::find_subtree_from_root(this->ilt(), jvms->caller(), jvms->method());
171
bool should_delay = false;
172
if (ilt->ok_to_inline(callee, jvms, profile, should_delay)) {
173
CallGenerator* cg = CallGenerator::for_inline(callee, expected_uses);
174
// For optimized virtual calls assert at runtime that receiver object
175
// is a subtype of the inlined method holder. CHA can report a method
176
// as a unique target under an abstract method, but receiver type
177
// sometimes has a broader type. Similar scenario is possible with
178
// default methods when type system loses information about implemented
179
// interfaces.
180
if (cg != NULL && is_virtual_or_interface && !callee->is_static()) {
181
CallGenerator* trap_cg = CallGenerator::for_uncommon_trap(callee,
182
Deoptimization::Reason_receiver_constraint, Deoptimization::Action_none);
183
184
cg = CallGenerator::for_guarded_call(callee->holder(), trap_cg, cg);
185
}
186
if (cg != NULL) {
187
// Delay the inlining of this method to give us the
188
// opportunity to perform some high level optimizations
189
// first.
190
if (should_delay_string_inlining(callee, jvms)) {
191
return CallGenerator::for_string_late_inline(callee, cg);
192
} else if (should_delay_boxing_inlining(callee, jvms)) {
193
return CallGenerator::for_boxing_late_inline(callee, cg);
194
} else if (should_delay_vector_reboxing_inlining(callee, jvms)) {
195
return CallGenerator::for_vector_reboxing_late_inline(callee, cg);
196
} else if ((should_delay || AlwaysIncrementalInline)) {
197
return CallGenerator::for_late_inline(callee, cg);
198
} else {
199
return cg;
200
}
201
}
202
}
203
}
204
205
// Try using the type profile.
206
if (call_does_dispatch && site_count > 0 && UseTypeProfile) {
207
// The major receiver's count >= TypeProfileMajorReceiverPercent of site_count.
208
bool have_major_receiver = profile.has_receiver(0) && (100.*profile.receiver_prob(0) >= (float)TypeProfileMajorReceiverPercent);
209
ciMethod* receiver_method = NULL;
210
211
int morphism = profile.morphism();
212
if (speculative_receiver_type != NULL) {
213
if (!too_many_traps_or_recompiles(caller, bci, Deoptimization::Reason_speculate_class_check)) {
214
// We have a speculative type, we should be able to resolve
215
// the call. We do that before looking at the profiling at
216
// this invoke because it may lead to bimorphic inlining which
217
// a speculative type should help us avoid.
218
receiver_method = callee->resolve_invoke(jvms->method()->holder(),
219
speculative_receiver_type);
220
if (receiver_method == NULL) {
221
speculative_receiver_type = NULL;
222
} else {
223
morphism = 1;
224
}
225
} else {
226
// speculation failed before. Use profiling at the call
227
// (could allow bimorphic inlining for instance).
228
speculative_receiver_type = NULL;
229
}
230
}
231
if (receiver_method == NULL &&
232
(have_major_receiver || morphism == 1 ||
233
(morphism == 2 && UseBimorphicInlining))) {
234
// receiver_method = profile.method();
235
// Profiles do not suggest methods now. Look it up in the major receiver.
236
receiver_method = callee->resolve_invoke(jvms->method()->holder(),
237
profile.receiver(0));
238
}
239
if (receiver_method != NULL) {
240
// The single majority receiver sufficiently outweighs the minority.
241
CallGenerator* hit_cg = this->call_generator(receiver_method,
242
vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor);
243
if (hit_cg != NULL) {
244
// Look up second receiver.
245
CallGenerator* next_hit_cg = NULL;
246
ciMethod* next_receiver_method = NULL;
247
if (morphism == 2 && UseBimorphicInlining) {
248
next_receiver_method = callee->resolve_invoke(jvms->method()->holder(),
249
profile.receiver(1));
250
if (next_receiver_method != NULL) {
251
next_hit_cg = this->call_generator(next_receiver_method,
252
vtable_index, !call_does_dispatch, jvms,
253
allow_inline, prof_factor);
254
if (next_hit_cg != NULL && !next_hit_cg->is_inline() &&
255
have_major_receiver && UseOnlyInlinedBimorphic) {
256
// Skip if we can't inline second receiver's method
257
next_hit_cg = NULL;
258
}
259
}
260
}
261
CallGenerator* miss_cg;
262
Deoptimization::DeoptReason reason = (morphism == 2
263
? Deoptimization::Reason_bimorphic
264
: Deoptimization::reason_class_check(speculative_receiver_type != NULL));
265
if ((morphism == 1 || (morphism == 2 && next_hit_cg != NULL)) &&
266
!too_many_traps_or_recompiles(caller, bci, reason)
267
) {
268
// Generate uncommon trap for class check failure path
269
// in case of monomorphic or bimorphic virtual call site.
270
miss_cg = CallGenerator::for_uncommon_trap(callee, reason,
271
Deoptimization::Action_maybe_recompile);
272
} else {
273
// Generate virtual call for class check failure path
274
// in case of polymorphic virtual call site.
275
miss_cg = (IncrementalInlineVirtual ? CallGenerator::for_late_inline_virtual(callee, vtable_index, prof_factor)
276
: CallGenerator::for_virtual_call(callee, vtable_index));
277
}
278
if (miss_cg != NULL) {
279
if (next_hit_cg != NULL) {
280
assert(speculative_receiver_type == NULL, "shouldn't end up here if we used speculation");
281
trace_type_profile(C, jvms->method(), jvms->depth() - 1, jvms->bci(), next_receiver_method, profile.receiver(1), site_count, profile.receiver_count(1));
282
// We don't need to record dependency on a receiver here and below.
283
// Whenever we inline, the dependency is added by Parse::Parse().
284
miss_cg = CallGenerator::for_predicted_call(profile.receiver(1), miss_cg, next_hit_cg, PROB_MAX);
285
}
286
if (miss_cg != NULL) {
287
ciKlass* k = speculative_receiver_type != NULL ? speculative_receiver_type : profile.receiver(0);
288
trace_type_profile(C, jvms->method(), jvms->depth() - 1, jvms->bci(), receiver_method, k, site_count, receiver_count);
289
float hit_prob = speculative_receiver_type != NULL ? 1.0 : profile.receiver_prob(0);
290
CallGenerator* cg = CallGenerator::for_predicted_call(k, miss_cg, hit_cg, hit_prob);
291
if (cg != NULL) return cg;
292
}
293
}
294
}
295
}
296
}
297
298
// If there is only one implementor of this interface then we
299
// may be able to bind this invoke directly to the implementing
300
// klass but we need both a dependence on the single interface
301
// and on the method we bind to. Additionally since all we know
302
// about the receiver type is that it's supposed to implement the
303
// interface we have to insert a check that it's the class we
304
// expect. Interface types are not checked by the verifier so
305
// they are roughly equivalent to Object.
306
// The number of implementors for declared_interface is less or
307
// equal to the number of implementors for target->holder() so
308
// if number of implementors of target->holder() == 1 then
309
// number of implementors for decl_interface is 0 or 1. If
310
// it's 0 then no class implements decl_interface and there's
311
// no point in inlining.
312
if (call_does_dispatch && bytecode == Bytecodes::_invokeinterface) {
313
ciInstanceKlass* declared_interface =
314
caller->get_declared_method_holder_at_bci(bci)->as_instance_klass();
315
ciInstanceKlass* singleton = declared_interface->unique_implementor();
316
317
if (singleton != NULL) {
318
assert(singleton != declared_interface, "not a unique implementor");
319
320
ciMethod* cha_monomorphic_target =
321
callee->find_monomorphic_target(caller->holder(), declared_interface, singleton);
322
323
if (cha_monomorphic_target != NULL &&
324
cha_monomorphic_target->holder() != env()->Object_klass()) { // subtype check against Object is useless
325
ciKlass* holder = cha_monomorphic_target->holder();
326
327
// Try to inline the method found by CHA. Inlined method is guarded by the type check.
328
CallGenerator* hit_cg = call_generator(cha_monomorphic_target,
329
vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor);
330
331
// Deoptimize on type check fail. The interpreter will throw ICCE for us.
332
CallGenerator* miss_cg = CallGenerator::for_uncommon_trap(callee,
333
Deoptimization::Reason_class_check, Deoptimization::Action_none);
334
335
ciKlass* constraint = (holder->is_subclass_of(singleton) ? holder : singleton); // avoid upcasts
336
CallGenerator* cg = CallGenerator::for_guarded_call(constraint, miss_cg, hit_cg);
337
if (hit_cg != NULL && cg != NULL) {
338
dependencies()->assert_unique_implementor(declared_interface, singleton);
339
dependencies()->assert_unique_concrete_method(declared_interface, cha_monomorphic_target, declared_interface, callee);
340
return cg;
341
}
342
}
343
}
344
} // call_does_dispatch && bytecode == Bytecodes::_invokeinterface
345
346
// Nothing claimed the intrinsic, we go with straight-forward inlining
347
// for already discovered intrinsic.
348
if (allow_intrinsics && cg_intrinsic != NULL) {
349
assert(cg_intrinsic->does_virtual_dispatch(), "sanity");
350
return cg_intrinsic;
351
}
352
} // allow_inline
353
354
// There was no special inlining tactic, or it bailed out.
355
// Use a more generic tactic, like a simple call.
356
if (call_does_dispatch) {
357
const char* msg = "virtual call";
358
if (C->print_inlining()) {
359
print_inlining(callee, jvms->depth() - 1, jvms->bci(), msg);
360
}
361
C->log_inline_failure(msg);
362
if (IncrementalInlineVirtual && allow_inline) {
363
return CallGenerator::for_late_inline_virtual(callee, vtable_index, prof_factor); // attempt to inline through virtual call later
364
} else {
365
return CallGenerator::for_virtual_call(callee, vtable_index);
366
}
367
} else {
368
// Class Hierarchy Analysis or Type Profile reveals a unique target, or it is a static or special call.
369
CallGenerator* cg = CallGenerator::for_direct_call(callee, should_delay_inlining(callee, jvms));
370
// For optimized virtual calls assert at runtime that receiver object
371
// is a subtype of the method holder.
372
if (cg != NULL && is_virtual_or_interface && !callee->is_static()) {
373
CallGenerator* trap_cg = CallGenerator::for_uncommon_trap(callee,
374
Deoptimization::Reason_receiver_constraint, Deoptimization::Action_none);
375
cg = CallGenerator::for_guarded_call(callee->holder(), trap_cg, cg);
376
}
377
return cg;
378
}
379
}
380
381
// Return true for methods that shouldn't be inlined early so that
382
// they are easier to analyze and optimize as intrinsics.
383
bool Compile::should_delay_string_inlining(ciMethod* call_method, JVMState* jvms) {
384
if (has_stringbuilder()) {
385
386
if ((call_method->holder() == C->env()->StringBuilder_klass() ||
387
call_method->holder() == C->env()->StringBuffer_klass()) &&
388
(jvms->method()->holder() == C->env()->StringBuilder_klass() ||
389
jvms->method()->holder() == C->env()->StringBuffer_klass())) {
390
// Delay SB calls only when called from non-SB code
391
return false;
392
}
393
394
switch (call_method->intrinsic_id()) {
395
case vmIntrinsics::_StringBuilder_void:
396
case vmIntrinsics::_StringBuilder_int:
397
case vmIntrinsics::_StringBuilder_String:
398
case vmIntrinsics::_StringBuilder_append_char:
399
case vmIntrinsics::_StringBuilder_append_int:
400
case vmIntrinsics::_StringBuilder_append_String:
401
case vmIntrinsics::_StringBuilder_toString:
402
case vmIntrinsics::_StringBuffer_void:
403
case vmIntrinsics::_StringBuffer_int:
404
case vmIntrinsics::_StringBuffer_String:
405
case vmIntrinsics::_StringBuffer_append_char:
406
case vmIntrinsics::_StringBuffer_append_int:
407
case vmIntrinsics::_StringBuffer_append_String:
408
case vmIntrinsics::_StringBuffer_toString:
409
case vmIntrinsics::_Integer_toString:
410
return true;
411
412
case vmIntrinsics::_String_String:
413
{
414
Node* receiver = jvms->map()->in(jvms->argoff() + 1);
415
if (receiver->is_Proj() && receiver->in(0)->is_CallStaticJava()) {
416
CallStaticJavaNode* csj = receiver->in(0)->as_CallStaticJava();
417
ciMethod* m = csj->method();
418
if (m != NULL &&
419
(m->intrinsic_id() == vmIntrinsics::_StringBuffer_toString ||
420
m->intrinsic_id() == vmIntrinsics::_StringBuilder_toString))
421
// Delay String.<init>(new SB())
422
return true;
423
}
424
return false;
425
}
426
427
default:
428
return false;
429
}
430
}
431
return false;
432
}
433
434
bool Compile::should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms) {
435
if (eliminate_boxing() && call_method->is_boxing_method()) {
436
set_has_boxed_value(true);
437
return aggressive_unboxing();
438
}
439
return false;
440
}
441
442
bool Compile::should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms) {
443
return EnableVectorSupport && call_method->is_vector_method();
444
}
445
446
bool Compile::should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms) {
447
return EnableVectorSupport && (call_method->intrinsic_id() == vmIntrinsics::_VectorRebox);
448
}
449
450
// uncommon-trap call-sites where callee is unloaded, uninitialized or will not link
451
bool Parse::can_not_compile_call_site(ciMethod *dest_method, ciInstanceKlass* klass) {
452
// Additional inputs to consider...
453
// bc = bc()
454
// caller = method()
455
// iter().get_method_holder_index()
456
assert( dest_method->is_loaded(), "ciTypeFlow should not let us get here" );
457
// Interface classes can be loaded & linked and never get around to
458
// being initialized. Uncommon-trap for not-initialized static or
459
// v-calls. Let interface calls happen.
460
ciInstanceKlass* holder_klass = dest_method->holder();
461
if (!holder_klass->is_being_initialized() &&
462
!holder_klass->is_initialized() &&
463
!holder_klass->is_interface()) {
464
uncommon_trap(Deoptimization::Reason_uninitialized,
465
Deoptimization::Action_reinterpret,
466
holder_klass);
467
return true;
468
}
469
470
assert(dest_method->is_loaded(), "dest_method: typeflow responsibility");
471
return false;
472
}
473
474
#ifdef ASSERT
475
static bool check_call_consistency(JVMState* jvms, CallGenerator* cg) {
476
ciMethod* symbolic_info = jvms->method()->get_method_at_bci(jvms->bci());
477
ciMethod* resolved_method = cg->method();
478
if (!ciMethod::is_consistent_info(symbolic_info, resolved_method)) {
479
tty->print_cr("JVMS:");
480
jvms->dump();
481
tty->print_cr("Bytecode info:");
482
jvms->method()->get_method_at_bci(jvms->bci())->print(); tty->cr();
483
tty->print_cr("Resolved method:");
484
cg->method()->print(); tty->cr();
485
return false;
486
}
487
return true;
488
}
489
#endif // ASSERT
490
491
//------------------------------do_call----------------------------------------
492
// Handle your basic call. Inline if we can & want to, else just setup call.
493
void Parse::do_call() {
494
// It's likely we are going to add debug info soon.
495
// Also, if we inline a guy who eventually needs debug info for this JVMS,
496
// our contribution to it is cleaned up right here.
497
kill_dead_locals();
498
499
C->print_inlining_assert_ready();
500
501
// Set frequently used booleans
502
const bool is_virtual = bc() == Bytecodes::_invokevirtual;
503
const bool is_virtual_or_interface = is_virtual || bc() == Bytecodes::_invokeinterface;
504
const bool has_receiver = Bytecodes::has_receiver(bc());
505
506
// Find target being called
507
bool will_link;
508
ciSignature* declared_signature = NULL;
509
ciMethod* orig_callee = iter().get_method(will_link, &declared_signature); // callee in the bytecode
510
ciInstanceKlass* holder_klass = orig_callee->holder();
511
ciKlass* holder = iter().get_declared_method_holder();
512
ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder);
513
assert(declared_signature != NULL, "cannot be null");
514
515
// Bump max node limit for JSR292 users
516
if (bc() == Bytecodes::_invokedynamic || orig_callee->is_method_handle_intrinsic()) {
517
C->set_max_node_limit(3*MaxNodeLimit);
518
}
519
520
// uncommon-trap when callee is unloaded, uninitialized or will not link
521
// bailout when too many arguments for register representation
522
if (!will_link || can_not_compile_call_site(orig_callee, klass)) {
523
if (PrintOpto && (Verbose || WizardMode)) {
524
method()->print_name(); tty->print_cr(" can not compile call at bci %d to:", bci());
525
orig_callee->print_name(); tty->cr();
526
}
527
return;
528
}
529
assert(holder_klass->is_loaded(), "");
530
//assert((bc_callee->is_static() || is_invokedynamic) == !has_receiver , "must match bc"); // XXX invokehandle (cur_bc_raw)
531
// Note: this takes into account invokeinterface of methods declared in java/lang/Object,
532
// which should be invokevirtuals but according to the VM spec may be invokeinterfaces
533
assert(holder_klass->is_interface() || holder_klass->super() == NULL || (bc() != Bytecodes::_invokeinterface), "must match bc");
534
// Note: In the absence of miranda methods, an abstract class K can perform
535
// an invokevirtual directly on an interface method I.m if K implements I.
536
537
// orig_callee is the resolved callee which's signature includes the
538
// appendix argument.
539
const int nargs = orig_callee->arg_size();
540
const bool is_signature_polymorphic = MethodHandles::is_signature_polymorphic(orig_callee->intrinsic_id());
541
542
// Push appendix argument (MethodType, CallSite, etc.), if one.
543
if (iter().has_appendix()) {
544
ciObject* appendix_arg = iter().get_appendix();
545
const TypeOopPtr* appendix_arg_type = TypeOopPtr::make_from_constant(appendix_arg, /* require_const= */ true);
546
Node* appendix_arg_node = _gvn.makecon(appendix_arg_type);
547
push(appendix_arg_node);
548
}
549
550
// ---------------------
551
// Does Class Hierarchy Analysis reveal only a single target of a v-call?
552
// Then we may inline or make a static call, but become dependent on there being only 1 target.
553
// Does the call-site type profile reveal only one receiver?
554
// Then we may introduce a run-time check and inline on the path where it succeeds.
555
// The other path may uncommon_trap, check for another receiver, or do a v-call.
556
557
// Try to get the most accurate receiver type
558
ciMethod* callee = orig_callee;
559
int vtable_index = Method::invalid_vtable_index;
560
bool call_does_dispatch = false;
561
562
// Speculative type of the receiver if any
563
ciKlass* speculative_receiver_type = NULL;
564
if (is_virtual_or_interface) {
565
Node* receiver_node = stack(sp() - nargs);
566
const TypeOopPtr* receiver_type = _gvn.type(receiver_node)->isa_oopptr();
567
// call_does_dispatch and vtable_index are out-parameters. They might be changed.
568
// For arrays, klass below is Object. When vtable calls are used,
569
// resolving the call with Object would allow an illegal call to
570
// finalize() on an array. We use holder instead: illegal calls to
571
// finalize() won't be compiled as vtable calls (IC call
572
// resolution will catch the illegal call) and the few legal calls
573
// on array types won't be either.
574
callee = C->optimize_virtual_call(method(), klass, holder, orig_callee,
575
receiver_type, is_virtual,
576
call_does_dispatch, vtable_index); // out-parameters
577
speculative_receiver_type = receiver_type != NULL ? receiver_type->speculative_type() : NULL;
578
}
579
580
// Additional receiver subtype checks for interface calls via invokespecial or invokeinterface.
581
ciKlass* receiver_constraint = NULL;
582
if (iter().cur_bc_raw() == Bytecodes::_invokespecial && !orig_callee->is_object_initializer()) {
583
ciInstanceKlass* calling_klass = method()->holder();
584
ciInstanceKlass* sender_klass = calling_klass;
585
if (sender_klass->is_interface()) {
586
receiver_constraint = sender_klass;
587
}
588
} else if (iter().cur_bc_raw() == Bytecodes::_invokeinterface && orig_callee->is_private()) {
589
assert(holder->is_interface(), "How did we get a non-interface method here!");
590
receiver_constraint = holder;
591
}
592
593
if (receiver_constraint != NULL) {
594
Node* receiver_node = stack(sp() - nargs);
595
Node* cls_node = makecon(TypeKlassPtr::make(receiver_constraint));
596
Node* bad_type_ctrl = NULL;
597
Node* casted_receiver = gen_checkcast(receiver_node, cls_node, &bad_type_ctrl);
598
if (bad_type_ctrl != NULL) {
599
PreserveJVMState pjvms(this);
600
set_control(bad_type_ctrl);
601
uncommon_trap(Deoptimization::Reason_class_check,
602
Deoptimization::Action_none);
603
}
604
if (stopped()) {
605
return; // MUST uncommon-trap?
606
}
607
set_stack(sp() - nargs, casted_receiver);
608
}
609
610
// Note: It's OK to try to inline a virtual call.
611
// The call generator will not attempt to inline a polymorphic call
612
// unless it knows how to optimize the receiver dispatch.
613
bool try_inline = (C->do_inlining() || InlineAccessors);
614
615
// ---------------------
616
dec_sp(nargs); // Temporarily pop args for JVM state of call
617
JVMState* jvms = sync_jvms();
618
619
// ---------------------
620
// Decide call tactic.
621
// This call checks with CHA, the interpreter profile, intrinsics table, etc.
622
// It decides whether inlining is desirable or not.
623
CallGenerator* cg = C->call_generator(callee, vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type);
624
625
// NOTE: Don't use orig_callee and callee after this point! Use cg->method() instead.
626
orig_callee = callee = NULL;
627
628
// ---------------------
629
// Round double arguments before call
630
round_double_arguments(cg->method());
631
632
// Feed profiling data for arguments to the type system so it can
633
// propagate it as speculative types
634
record_profiled_arguments_for_speculation(cg->method(), bc());
635
636
#ifndef PRODUCT
637
// bump global counters for calls
638
count_compiled_calls(/*at_method_entry*/ false, cg->is_inline());
639
640
// Record first part of parsing work for this call
641
parse_histogram()->record_change();
642
#endif // not PRODUCT
643
644
assert(jvms == this->jvms(), "still operating on the right JVMS");
645
assert(jvms_in_sync(), "jvms must carry full info into CG");
646
647
// save across call, for a subsequent cast_not_null.
648
Node* receiver = has_receiver ? argument(0) : NULL;
649
650
// The extra CheckCastPPs for speculative types mess with PhaseStringOpts
651
if (receiver != NULL && !call_does_dispatch && !cg->is_string_late_inline()) {
652
// Feed profiling data for a single receiver to the type system so
653
// it can propagate it as a speculative type
654
receiver = record_profiled_receiver_for_speculation(receiver);
655
}
656
657
JVMState* new_jvms = cg->generate(jvms);
658
if (new_jvms == NULL) {
659
// When inlining attempt fails (e.g., too many arguments),
660
// it may contaminate the current compile state, making it
661
// impossible to pull back and try again. Once we call
662
// cg->generate(), we are committed. If it fails, the whole
663
// compilation task is compromised.
664
if (failing()) return;
665
666
// This can happen if a library intrinsic is available, but refuses
667
// the call site, perhaps because it did not match a pattern the
668
// intrinsic was expecting to optimize. Should always be possible to
669
// get a normal java call that may inline in that case
670
cg = C->call_generator(cg->method(), vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type, /* allow_intrinsics= */ false);
671
new_jvms = cg->generate(jvms);
672
if (new_jvms == NULL) {
673
guarantee(failing(), "call failed to generate: calls should work");
674
return;
675
}
676
}
677
678
if (cg->is_inline()) {
679
// Accumulate has_loops estimate
680
C->env()->notice_inlined_method(cg->method());
681
}
682
683
// Reset parser state from [new_]jvms, which now carries results of the call.
684
// Return value (if any) is already pushed on the stack by the cg.
685
add_exception_states_from(new_jvms);
686
if (new_jvms->map()->control() == top()) {
687
stop_and_kill_map();
688
} else {
689
assert(new_jvms->same_calls_as(jvms), "method/bci left unchanged");
690
set_jvms(new_jvms);
691
}
692
693
assert(check_call_consistency(jvms, cg), "inconsistent info");
694
695
if (!stopped()) {
696
// This was some sort of virtual call, which did a null check for us.
697
// Now we can assert receiver-not-null, on the normal return path.
698
if (receiver != NULL && cg->is_virtual()) {
699
Node* cast = cast_not_null(receiver);
700
// %%% assert(receiver == cast, "should already have cast the receiver");
701
}
702
703
ciType* rtype = cg->method()->return_type();
704
ciType* ctype = declared_signature->return_type();
705
706
if (Bytecodes::has_optional_appendix(iter().cur_bc_raw()) || is_signature_polymorphic) {
707
// Be careful here with return types.
708
if (ctype != rtype) {
709
BasicType rt = rtype->basic_type();
710
BasicType ct = ctype->basic_type();
711
if (ct == T_VOID) {
712
// It's OK for a method to return a value that is discarded.
713
// The discarding does not require any special action from the caller.
714
// The Java code knows this, at VerifyType.isNullConversion.
715
pop_node(rt); // whatever it was, pop it
716
} else if (rt == T_INT || is_subword_type(rt)) {
717
// Nothing. These cases are handled in lambda form bytecode.
718
assert(ct == T_INT || is_subword_type(ct), "must match: rt=%s, ct=%s", type2name(rt), type2name(ct));
719
} else if (is_reference_type(rt)) {
720
assert(is_reference_type(ct), "rt=%s, ct=%s", type2name(rt), type2name(ct));
721
if (ctype->is_loaded()) {
722
const TypeOopPtr* arg_type = TypeOopPtr::make_from_klass(rtype->as_klass());
723
const Type* sig_type = TypeOopPtr::make_from_klass(ctype->as_klass());
724
if (arg_type != NULL && !arg_type->higher_equal(sig_type)) {
725
Node* retnode = pop();
726
Node* cast_obj = _gvn.transform(new CheckCastPPNode(control(), retnode, sig_type));
727
push(cast_obj);
728
}
729
}
730
} else {
731
assert(rt == ct, "unexpected mismatch: rt=%s, ct=%s", type2name(rt), type2name(ct));
732
// push a zero; it's better than getting an oop/int mismatch
733
pop_node(rt);
734
Node* retnode = zerocon(ct);
735
push_node(ct, retnode);
736
}
737
// Now that the value is well-behaved, continue with the call-site type.
738
rtype = ctype;
739
}
740
} else {
741
// Symbolic resolution enforces the types to be the same.
742
// NOTE: We must relax the assert for unloaded types because two
743
// different ciType instances of the same unloaded class type
744
// can appear to be "loaded" by different loaders (depending on
745
// the accessing class).
746
assert(!rtype->is_loaded() || !ctype->is_loaded() || rtype == ctype,
747
"mismatched return types: rtype=%s, ctype=%s", rtype->name(), ctype->name());
748
}
749
750
// If the return type of the method is not loaded, assert that the
751
// value we got is a null. Otherwise, we need to recompile.
752
if (!rtype->is_loaded()) {
753
if (PrintOpto && (Verbose || WizardMode)) {
754
method()->print_name(); tty->print_cr(" asserting nullness of result at bci: %d", bci());
755
cg->method()->print_name(); tty->cr();
756
}
757
if (C->log() != NULL) {
758
C->log()->elem("assert_null reason='return' klass='%d'",
759
C->log()->identify(rtype));
760
}
761
// If there is going to be a trap, put it at the next bytecode:
762
set_bci(iter().next_bci());
763
null_assert(peek());
764
set_bci(iter().cur_bci()); // put it back
765
}
766
BasicType ct = ctype->basic_type();
767
if (is_reference_type(ct)) {
768
record_profiled_return_for_speculation();
769
}
770
}
771
772
// Restart record of parsing work after possible inlining of call
773
#ifndef PRODUCT
774
parse_histogram()->set_initial_state(bc());
775
#endif
776
}
777
778
//---------------------------catch_call_exceptions-----------------------------
779
// Put a Catch and CatchProj nodes behind a just-created call.
780
// Send their caught exceptions to the proper handler.
781
// This may be used after a call to the rethrow VM stub,
782
// when it is needed to process unloaded exception classes.
783
void Parse::catch_call_exceptions(ciExceptionHandlerStream& handlers) {
784
// Exceptions are delivered through this channel:
785
Node* i_o = this->i_o();
786
787
// Add a CatchNode.
788
GrowableArray<int>* bcis = new (C->node_arena()) GrowableArray<int>(C->node_arena(), 8, 0, -1);
789
GrowableArray<const Type*>* extypes = new (C->node_arena()) GrowableArray<const Type*>(C->node_arena(), 8, 0, NULL);
790
GrowableArray<int>* saw_unloaded = new (C->node_arena()) GrowableArray<int>(C->node_arena(), 8, 0, 0);
791
792
bool default_handler = false;
793
for (; !handlers.is_done(); handlers.next()) {
794
ciExceptionHandler* h = handlers.handler();
795
int h_bci = h->handler_bci();
796
ciInstanceKlass* h_klass = h->is_catch_all() ? env()->Throwable_klass() : h->catch_klass();
797
// Do not introduce unloaded exception types into the graph:
798
if (!h_klass->is_loaded()) {
799
if (saw_unloaded->contains(h_bci)) {
800
/* We've already seen an unloaded exception with h_bci,
801
so don't duplicate. Duplication will cause the CatchNode to be
802
unnecessarily large. See 4713716. */
803
continue;
804
} else {
805
saw_unloaded->append(h_bci);
806
}
807
}
808
const Type* h_extype = TypeOopPtr::make_from_klass(h_klass);
809
// (We use make_from_klass because it respects UseUniqueSubclasses.)
810
h_extype = h_extype->join(TypeInstPtr::NOTNULL);
811
assert(!h_extype->empty(), "sanity");
812
// Note: It's OK if the BCIs repeat themselves.
813
bcis->append(h_bci);
814
extypes->append(h_extype);
815
if (h_bci == -1) {
816
default_handler = true;
817
}
818
}
819
820
if (!default_handler) {
821
bcis->append(-1);
822
extypes->append(TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr());
823
}
824
825
int len = bcis->length();
826
CatchNode *cn = new CatchNode(control(), i_o, len+1);
827
Node *catch_ = _gvn.transform(cn);
828
829
// now branch with the exception state to each of the (potential)
830
// handlers
831
for(int i=0; i < len; i++) {
832
// Setup JVM state to enter the handler.
833
PreserveJVMState pjvms(this);
834
// Locals are just copied from before the call.
835
// Get control from the CatchNode.
836
int handler_bci = bcis->at(i);
837
Node* ctrl = _gvn.transform( new CatchProjNode(catch_, i+1,handler_bci));
838
// This handler cannot happen?
839
if (ctrl == top()) continue;
840
set_control(ctrl);
841
842
// Create exception oop
843
const TypeInstPtr* extype = extypes->at(i)->is_instptr();
844
Node *ex_oop = _gvn.transform(new CreateExNode(extypes->at(i), ctrl, i_o));
845
846
// Handle unloaded exception classes.
847
if (saw_unloaded->contains(handler_bci)) {
848
// An unloaded exception type is coming here. Do an uncommon trap.
849
#ifndef PRODUCT
850
// We do not expect the same handler bci to take both cold unloaded
851
// and hot loaded exceptions. But, watch for it.
852
if ((Verbose || WizardMode) && extype->is_loaded()) {
853
tty->print("Warning: Handler @%d takes mixed loaded/unloaded exceptions in ", bci());
854
method()->print_name(); tty->cr();
855
} else if (PrintOpto && (Verbose || WizardMode)) {
856
tty->print("Bailing out on unloaded exception type ");
857
extype->klass()->print_name();
858
tty->print(" at bci:%d in ", bci());
859
method()->print_name(); tty->cr();
860
}
861
#endif
862
// Emit an uncommon trap instead of processing the block.
863
set_bci(handler_bci);
864
push_ex_oop(ex_oop);
865
uncommon_trap(Deoptimization::Reason_unloaded,
866
Deoptimization::Action_reinterpret,
867
extype->klass(), "!loaded exception");
868
set_bci(iter().cur_bci()); // put it back
869
continue;
870
}
871
872
// go to the exception handler
873
if (handler_bci < 0) { // merge with corresponding rethrow node
874
throw_to_exit(make_exception_state(ex_oop));
875
} else { // Else jump to corresponding handle
876
push_ex_oop(ex_oop); // Clear stack and push just the oop.
877
merge_exception(handler_bci);
878
}
879
}
880
881
// The first CatchProj is for the normal return.
882
// (Note: If this is a call to rethrow_Java, this node goes dead.)
883
set_control(_gvn.transform( new CatchProjNode(catch_, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci)));
884
}
885
886
887
//----------------------------catch_inline_exceptions--------------------------
888
// Handle all exceptions thrown by an inlined method or individual bytecode.
889
// Common case 1: we have no handler, so all exceptions merge right into
890
// the rethrow case.
891
// Case 2: we have some handlers, with loaded exception klasses that have
892
// no subklasses. We do a Deutsch-Shiffman style type-check on the incoming
893
// exception oop and branch to the handler directly.
894
// Case 3: We have some handlers with subklasses or are not loaded at
895
// compile-time. We have to call the runtime to resolve the exception.
896
// So we insert a RethrowCall and all the logic that goes with it.
897
void Parse::catch_inline_exceptions(SafePointNode* ex_map) {
898
// Caller is responsible for saving away the map for normal control flow!
899
assert(stopped(), "call set_map(NULL) first");
900
assert(method()->has_exception_handlers(), "don't come here w/o work to do");
901
902
Node* ex_node = saved_ex_oop(ex_map);
903
if (ex_node == top()) {
904
// No action needed.
905
return;
906
}
907
const TypeInstPtr* ex_type = _gvn.type(ex_node)->isa_instptr();
908
NOT_PRODUCT(if (ex_type==NULL) tty->print_cr("*** Exception not InstPtr"));
909
if (ex_type == NULL)
910
ex_type = TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr();
911
912
// determine potential exception handlers
913
ciExceptionHandlerStream handlers(method(), bci(),
914
ex_type->klass()->as_instance_klass(),
915
ex_type->klass_is_exact());
916
917
// Start executing from the given throw state. (Keep its stack, for now.)
918
// Get the exception oop as known at compile time.
919
ex_node = use_exception_state(ex_map);
920
921
// Get the exception oop klass from its header
922
Node* ex_klass_node = NULL;
923
if (has_ex_handler() && !ex_type->klass_is_exact()) {
924
Node* p = basic_plus_adr( ex_node, ex_node, oopDesc::klass_offset_in_bytes());
925
ex_klass_node = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT));
926
927
// Compute the exception klass a little more cleverly.
928
// Obvious solution is to simple do a LoadKlass from the 'ex_node'.
929
// However, if the ex_node is a PhiNode, I'm going to do a LoadKlass for
930
// each arm of the Phi. If I know something clever about the exceptions
931
// I'm loading the class from, I can replace the LoadKlass with the
932
// klass constant for the exception oop.
933
if (ex_node->is_Phi()) {
934
ex_klass_node = new PhiNode(ex_node->in(0), TypeKlassPtr::OBJECT);
935
for (uint i = 1; i < ex_node->req(); i++) {
936
Node* ex_in = ex_node->in(i);
937
if (ex_in == top() || ex_in == NULL) {
938
// This path was not taken.
939
ex_klass_node->init_req(i, top());
940
continue;
941
}
942
Node* p = basic_plus_adr(ex_in, ex_in, oopDesc::klass_offset_in_bytes());
943
Node* k = _gvn.transform( LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT));
944
ex_klass_node->init_req( i, k );
945
}
946
_gvn.set_type(ex_klass_node, TypeKlassPtr::OBJECT);
947
948
}
949
}
950
951
// Scan the exception table for applicable handlers.
952
// If none, we can call rethrow() and be done!
953
// If precise (loaded with no subklasses), insert a D.S. style
954
// pointer compare to the correct handler and loop back.
955
// If imprecise, switch to the Rethrow VM-call style handling.
956
957
int remaining = handlers.count_remaining();
958
959
// iterate through all entries sequentially
960
for (;!handlers.is_done(); handlers.next()) {
961
ciExceptionHandler* handler = handlers.handler();
962
963
if (handler->is_rethrow()) {
964
// If we fell off the end of the table without finding an imprecise
965
// exception klass (and without finding a generic handler) then we
966
// know this exception is not handled in this method. We just rethrow
967
// the exception into the caller.
968
throw_to_exit(make_exception_state(ex_node));
969
return;
970
}
971
972
// exception handler bci range covers throw_bci => investigate further
973
int handler_bci = handler->handler_bci();
974
975
if (remaining == 1) {
976
push_ex_oop(ex_node); // Push exception oop for handler
977
if (PrintOpto && WizardMode) {
978
tty->print_cr(" Catching every inline exception bci:%d -> handler_bci:%d", bci(), handler_bci);
979
}
980
merge_exception(handler_bci); // jump to handler
981
return; // No more handling to be done here!
982
}
983
984
// Get the handler's klass
985
ciInstanceKlass* klass = handler->catch_klass();
986
987
if (!klass->is_loaded()) { // klass is not loaded?
988
// fall through into catch_call_exceptions which will emit a
989
// handler with an uncommon trap.
990
break;
991
}
992
993
if (klass->is_interface()) // should not happen, but...
994
break; // bail out
995
996
// Check the type of the exception against the catch type
997
const TypeKlassPtr *tk = TypeKlassPtr::make(klass);
998
Node* con = _gvn.makecon(tk);
999
Node* not_subtype_ctrl = gen_subtype_check(ex_klass_node, con);
1000
if (!stopped()) {
1001
PreserveJVMState pjvms(this);
1002
const TypeInstPtr* tinst = TypeOopPtr::make_from_klass_unique(klass)->cast_to_ptr_type(TypePtr::NotNull)->is_instptr();
1003
assert(klass->has_subklass() || tinst->klass_is_exact(), "lost exactness");
1004
Node* ex_oop = _gvn.transform(new CheckCastPPNode(control(), ex_node, tinst));
1005
push_ex_oop(ex_oop); // Push exception oop for handler
1006
if (PrintOpto && WizardMode) {
1007
tty->print(" Catching inline exception bci:%d -> handler_bci:%d -- ", bci(), handler_bci);
1008
klass->print_name();
1009
tty->cr();
1010
}
1011
merge_exception(handler_bci);
1012
}
1013
set_control(not_subtype_ctrl);
1014
1015
// Come here if exception does not match handler.
1016
// Carry on with more handler checks.
1017
--remaining;
1018
}
1019
1020
assert(!stopped(), "you should return if you finish the chain");
1021
1022
// Oops, need to call into the VM to resolve the klasses at runtime.
1023
// Note: This call must not deoptimize, since it is not a real at this bci!
1024
kill_dead_locals();
1025
1026
make_runtime_call(RC_NO_LEAF | RC_MUST_THROW,
1027
OptoRuntime::rethrow_Type(),
1028
OptoRuntime::rethrow_stub(),
1029
NULL, NULL,
1030
ex_node);
1031
1032
// Rethrow is a pure call, no side effects, only a result.
1033
// The result cannot be allocated, so we use I_O
1034
1035
// Catch exceptions from the rethrow
1036
catch_call_exceptions(handlers);
1037
}
1038
1039
1040
// (Note: Moved add_debug_info into GraphKit::add_safepoint_edges.)
1041
1042
1043
#ifndef PRODUCT
1044
void Parse::count_compiled_calls(bool at_method_entry, bool is_inline) {
1045
if( CountCompiledCalls ) {
1046
if( at_method_entry ) {
1047
// bump invocation counter if top method (for statistics)
1048
if (CountCompiledCalls && depth() == 1) {
1049
const TypePtr* addr_type = TypeMetadataPtr::make(method());
1050
Node* adr1 = makecon(addr_type);
1051
Node* adr2 = basic_plus_adr(adr1, adr1, in_bytes(Method::compiled_invocation_counter_offset()));
1052
increment_counter(adr2);
1053
}
1054
} else if (is_inline) {
1055
switch (bc()) {
1056
case Bytecodes::_invokevirtual: increment_counter(SharedRuntime::nof_inlined_calls_addr()); break;
1057
case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_inlined_interface_calls_addr()); break;
1058
case Bytecodes::_invokestatic:
1059
case Bytecodes::_invokedynamic:
1060
case Bytecodes::_invokespecial: increment_counter(SharedRuntime::nof_inlined_static_calls_addr()); break;
1061
default: fatal("unexpected call bytecode");
1062
}
1063
} else {
1064
switch (bc()) {
1065
case Bytecodes::_invokevirtual: increment_counter(SharedRuntime::nof_normal_calls_addr()); break;
1066
case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_interface_calls_addr()); break;
1067
case Bytecodes::_invokestatic:
1068
case Bytecodes::_invokedynamic:
1069
case Bytecodes::_invokespecial: increment_counter(SharedRuntime::nof_static_calls_addr()); break;
1070
default: fatal("unexpected call bytecode");
1071
}
1072
}
1073
}
1074
}
1075
#endif //PRODUCT
1076
1077
1078
ciMethod* Compile::optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass,
1079
ciKlass* holder, ciMethod* callee,
1080
const TypeOopPtr* receiver_type, bool is_virtual,
1081
bool& call_does_dispatch, int& vtable_index,
1082
bool check_access) {
1083
// Set default values for out-parameters.
1084
call_does_dispatch = true;
1085
vtable_index = Method::invalid_vtable_index;
1086
1087
// Choose call strategy.
1088
ciMethod* optimized_virtual_method = optimize_inlining(caller, klass, holder, callee,
1089
receiver_type, check_access);
1090
1091
// Have the call been sufficiently improved such that it is no longer a virtual?
1092
if (optimized_virtual_method != NULL) {
1093
callee = optimized_virtual_method;
1094
call_does_dispatch = false;
1095
} else if (!UseInlineCaches && is_virtual && callee->is_loaded()) {
1096
// We can make a vtable call at this site
1097
vtable_index = callee->resolve_vtable_index(caller->holder(), holder);
1098
}
1099
return callee;
1100
}
1101
1102
// Identify possible target method and inlining style
1103
ciMethod* Compile::optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder,
1104
ciMethod* callee, const TypeOopPtr* receiver_type,
1105
bool check_access) {
1106
// only use for virtual or interface calls
1107
1108
// If it is obviously final, do not bother to call find_monomorphic_target,
1109
// because the class hierarchy checks are not needed, and may fail due to
1110
// incompletely loaded classes. Since we do our own class loading checks
1111
// in this module, we may confidently bind to any method.
1112
if (callee->can_be_statically_bound()) {
1113
return callee;
1114
}
1115
1116
if (receiver_type == NULL) {
1117
return NULL; // no receiver type info
1118
}
1119
1120
// Attempt to improve the receiver
1121
bool actual_receiver_is_exact = false;
1122
ciInstanceKlass* actual_receiver = klass;
1123
// Array methods are all inherited from Object, and are monomorphic.
1124
// finalize() call on array is not allowed.
1125
if (receiver_type->isa_aryptr() &&
1126
callee->holder() == env()->Object_klass() &&
1127
callee->name() != ciSymbols::finalize_method_name()) {
1128
return callee;
1129
}
1130
1131
// All other interesting cases are instance klasses.
1132
if (!receiver_type->isa_instptr()) {
1133
return NULL;
1134
}
1135
1136
ciInstanceKlass* receiver_klass = receiver_type->klass()->as_instance_klass();
1137
if (receiver_klass->is_loaded() && receiver_klass->is_initialized() && !receiver_klass->is_interface() &&
1138
(receiver_klass == actual_receiver || receiver_klass->is_subtype_of(actual_receiver))) {
1139
// ikl is a same or better type than the original actual_receiver,
1140
// e.g. static receiver from bytecodes.
1141
actual_receiver = receiver_klass;
1142
// Is the actual_receiver exact?
1143
actual_receiver_is_exact = receiver_type->klass_is_exact();
1144
}
1145
1146
ciInstanceKlass* calling_klass = caller->holder();
1147
ciMethod* cha_monomorphic_target = callee->find_monomorphic_target(calling_klass, klass, actual_receiver, check_access);
1148
1149
if (cha_monomorphic_target != NULL) {
1150
// Hardwiring a virtual.
1151
assert(!callee->can_be_statically_bound(), "should have been handled earlier");
1152
assert(!cha_monomorphic_target->is_abstract(), "");
1153
if (!cha_monomorphic_target->can_be_statically_bound(actual_receiver)) {
1154
// If we inlined because CHA revealed only a single target method,
1155
// then we are dependent on that target method not getting overridden
1156
// by dynamic class loading. Be sure to test the "static" receiver
1157
// dest_method here, as opposed to the actual receiver, which may
1158
// falsely lead us to believe that the receiver is final or private.
1159
dependencies()->assert_unique_concrete_method(actual_receiver, cha_monomorphic_target, holder, callee);
1160
}
1161
return cha_monomorphic_target;
1162
}
1163
1164
// If the type is exact, we can still bind the method w/o a vcall.
1165
// (This case comes after CHA so we can see how much extra work it does.)
1166
if (actual_receiver_is_exact) {
1167
// In case of evolution, there is a dependence on every inlined method, since each
1168
// such method can be changed when its class is redefined.
1169
ciMethod* exact_method = callee->resolve_invoke(calling_klass, actual_receiver);
1170
if (exact_method != NULL) {
1171
return exact_method;
1172
}
1173
}
1174
1175
return NULL;
1176
}
1177
1178