Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/jdk17u
Path: blob/master/src/java.desktop/share/classes/sun/font/CMap.java
66645 views
1
/*
2
* Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
3
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4
*
5
* This code is free software; you can redistribute it and/or modify it
6
* under the terms of the GNU General Public License version 2 only, as
7
* published by the Free Software Foundation. Oracle designates this
8
* particular file as subject to the "Classpath" exception as provided
9
* by Oracle in the LICENSE file that accompanied this code.
10
*
11
* This code is distributed in the hope that it will be useful, but WITHOUT
12
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14
* version 2 for more details (a copy is included in the LICENSE file that
15
* accompanied this code).
16
*
17
* You should have received a copy of the GNU General Public License version
18
* 2 along with this work; if not, write to the Free Software Foundation,
19
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20
*
21
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22
* or visit www.oracle.com if you need additional information or have any
23
* questions.
24
*/
25
26
package sun.font;
27
28
import java.nio.ByteBuffer;
29
import java.nio.CharBuffer;
30
import java.nio.IntBuffer;
31
import java.util.Locale;
32
import java.nio.charset.*;
33
34
/*
35
* A tt font has a CMAP table which is in turn made up of sub-tables which
36
* describe the char to glyph mapping in (possibly) multiple ways.
37
* CMAP subtables are described by 3 values.
38
* 1. Platform ID (eg 3=Microsoft, which is the id we look for in JDK)
39
* 2. Encoding (eg 0=symbol, 1=unicode)
40
* 3. TrueType subtable format (how the char->glyph mapping for the encoding
41
* is stored in the subtable). See the TrueType spec. Format 4 is required
42
* by MS in fonts for windows. Its uses segmented mapping to delta values.
43
* Most typically we see are (3,1,4) :
44
* CMAP Platform ID=3 is what we use.
45
* Encodings that are used in practice by JDK on Solaris are
46
* symbol (3,0)
47
* unicode (3,1)
48
* GBK (3,5) (note that solaris zh fonts report 3,4 but are really 3,5)
49
* The format for almost all subtables is 4. However the solaris (3,5)
50
* encodings are typically in format 2.
51
*/
52
abstract class CMap {
53
54
// static char WingDings_b2c[] = {
55
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
56
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
57
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
58
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
59
// 0xfffd, 0xfffd, 0x2702, 0x2701, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
60
// 0xfffd, 0x2706, 0x2709, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
61
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
62
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0x2707, 0x270d,
63
// 0xfffd, 0x270c, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
64
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
65
// 0xfffd, 0x2708, 0xfffd, 0xfffd, 0x2744, 0xfffd, 0x271e, 0xfffd,
66
// 0x2720, 0x2721, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
67
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
68
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
69
// 0xfffd, 0x2751, 0x2752, 0xfffd, 0xfffd, 0x2756, 0xfffd, 0xfffd,
70
// 0xfffd, 0xfffd, 0xfffd, 0x2740, 0x273f, 0x275d, 0x275e, 0xfffd,
71
// 0xfffd, 0x2780, 0x2781, 0x2782, 0x2783, 0x2784, 0x2785, 0x2786,
72
// 0x2787, 0x2788, 0x2789, 0xfffd, 0x278a, 0x278b, 0x278c, 0x278d,
73
// 0x278e, 0x278f, 0x2790, 0x2791, 0x2792, 0x2793, 0xfffd, 0xfffd,
74
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
75
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0x274d, 0xfffd,
76
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0x2736, 0x2734, 0xfffd, 0x2735,
77
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0x272a, 0x2730, 0xfffd,
78
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
79
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0x27a5, 0xfffd, 0x27a6, 0xfffd,
80
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
81
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
82
// 0x27a2, 0xfffd, 0xfffd, 0xfffd, 0x27b3, 0xfffd, 0xfffd, 0xfffd,
83
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
84
// 0x27a1, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
85
// 0x27a9, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
86
// 0xfffd, 0xfffd, 0xfffd, 0x2717, 0x2713, 0xfffd, 0xfffd, 0xfffd,
87
// };
88
89
// static char Symbols_b2c[] = {
90
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
91
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
92
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
93
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
94
// 0xfffd, 0xfffd, 0x2200, 0xfffd, 0x2203, 0xfffd, 0xfffd, 0x220d,
95
// 0xfffd, 0xfffd, 0x2217, 0xfffd, 0xfffd, 0x2212, 0xfffd, 0xfffd,
96
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
97
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
98
// 0x2245, 0x0391, 0x0392, 0x03a7, 0x0394, 0x0395, 0x03a6, 0x0393,
99
// 0x0397, 0x0399, 0x03d1, 0x039a, 0x039b, 0x039c, 0x039d, 0x039f,
100
// 0x03a0, 0x0398, 0x03a1, 0x03a3, 0x03a4, 0x03a5, 0x03c2, 0x03a9,
101
// 0x039e, 0x03a8, 0x0396, 0xfffd, 0x2234, 0xfffd, 0x22a5, 0xfffd,
102
// 0xfffd, 0x03b1, 0x03b2, 0x03c7, 0x03b4, 0x03b5, 0x03c6, 0x03b3,
103
// 0x03b7, 0x03b9, 0x03d5, 0x03ba, 0x03bb, 0x03bc, 0x03bd, 0x03bf,
104
// 0x03c0, 0x03b8, 0x03c1, 0x03c3, 0x03c4, 0x03c5, 0x03d6, 0x03c9,
105
// 0x03be, 0x03c8, 0x03b6, 0xfffd, 0xfffd, 0xfffd, 0x223c, 0xfffd,
106
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
107
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
108
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
109
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
110
// 0xfffd, 0x03d2, 0xfffd, 0x2264, 0x2215, 0x221e, 0xfffd, 0xfffd,
111
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
112
// 0x2218, 0xfffd, 0xfffd, 0x2265, 0xfffd, 0x221d, 0xfffd, 0x2219,
113
// 0xfffd, 0x2260, 0x2261, 0x2248, 0x22ef, 0x2223, 0xfffd, 0xfffd,
114
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0x2297, 0x2295, 0x2205, 0x2229,
115
// 0x222a, 0x2283, 0x2287, 0x2284, 0x2282, 0x2286, 0x2208, 0x2209,
116
// 0xfffd, 0x2207, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0x221a, 0x22c5,
117
// 0xfffd, 0x2227, 0x2228, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
118
// 0x22c4, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0x2211, 0xfffd, 0xfffd,
119
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
120
// 0xfffd, 0xfffd, 0x222b, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
121
// 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
122
// };
123
124
static final short ShiftJISEncoding = 2;
125
static final short GBKEncoding = 3;
126
static final short Big5Encoding = 4;
127
static final short WansungEncoding = 5;
128
static final short JohabEncoding = 6;
129
static final short MSUnicodeSurrogateEncoding = 10;
130
131
static final char noSuchChar = (char)0xfffd;
132
static final int SHORTMASK = 0x0000ffff;
133
static final int INTMASK = 0x7fffffff;
134
135
static final char[][] converterMaps = new char[7][];
136
137
/*
138
* Unicode->other encoding translation array. A pre-computed look up
139
* which can be shared across all fonts using that encoding.
140
* Using this saves running character coverters repeatedly.
141
*/
142
char[] xlat;
143
UVS uvs = null;
144
145
static CMap initialize(TrueTypeFont font) {
146
147
CMap cmap = null;
148
149
int offset, platformID, encodingID=-1;
150
151
int three0=0, three1=0, three2=0, three3=0, three4=0, three5=0,
152
three6=0, three10=0;
153
int zero5 = 0; // for Unicode Variation Sequences
154
boolean threeStar = false;
155
156
ByteBuffer cmapBuffer = font.getTableBuffer(TrueTypeFont.cmapTag);
157
int cmapTableOffset = font.getTableSize(TrueTypeFont.cmapTag);
158
short numberSubTables = cmapBuffer.getShort(2);
159
160
/* locate the offsets of all 3,* (ie Microsoft platform) encodings */
161
for (int i=0; i<numberSubTables; i++) {
162
cmapBuffer.position(i * 8 + 4);
163
platformID = cmapBuffer.getShort();
164
if (platformID == 3) {
165
threeStar = true;
166
encodingID = cmapBuffer.getShort();
167
offset = cmapBuffer.getInt();
168
switch (encodingID) {
169
case 0: three0 = offset; break; // MS Symbol encoding
170
case 1: three1 = offset; break; // MS Unicode cmap
171
case 2: three2 = offset; break; // ShiftJIS cmap.
172
case 3: three3 = offset; break; // GBK cmap
173
case 4: three4 = offset; break; // Big 5 cmap
174
case 5: three5 = offset; break; // Wansung
175
case 6: three6 = offset; break; // Johab
176
case 10: three10 = offset; break; // MS Unicode surrogates
177
}
178
} else if (platformID == 0) {
179
encodingID = cmapBuffer.getShort();
180
offset = cmapBuffer.getInt();
181
if (encodingID == 5) {
182
zero5 = offset;
183
}
184
}
185
}
186
187
/* This defines the preference order for cmap subtables */
188
if (threeStar) {
189
if (three10 != 0) {
190
cmap = createCMap(cmapBuffer, three10, null);
191
}
192
else if (three0 != 0) {
193
/* The special case treatment of these fonts leads to
194
* anomalies where a user can view "wingdings" and "wingdings2"
195
* and the latter shows all its code points in the unicode
196
* private use area at 0xF000->0XF0FF and the former shows
197
* a scattered subset of its glyphs that are known mappings to
198
* unicode code points.
199
* The primary purpose of these mappings was to facilitate
200
* display of symbol chars etc in composite fonts, however
201
* this is not needed as all these code points are covered
202
* by some other platform symbol font.
203
* Commenting this out reduces the role of these two files
204
* (assuming that they continue to be used in font.properties)
205
* to just one of contributing to the overall composite
206
* font metrics, and also AWT can still access the fonts.
207
* Clients which explicitly accessed these fonts as names
208
* "Symbol" and "Wingdings" (ie as physical fonts) and
209
* expected to see a scattering of these characters will
210
* see them now as missing. How much of a problem is this?
211
* Perhaps we could still support this mapping just for
212
* "Symbol.ttf" but I suspect some users would prefer it
213
* to be mapped in to the Latin range as that is how
214
* the "symbol" font is used in native apps.
215
*/
216
// String name = font.platName.toLowerCase(Locale.ENGLISH);
217
// if (name.endsWith("symbol.ttf")) {
218
// cmap = createSymbolCMap(cmapBuffer, three0, Symbols_b2c);
219
// } else if (name.endsWith("wingding.ttf")) {
220
// cmap = createSymbolCMap(cmapBuffer, three0, WingDings_b2c);
221
// } else {
222
cmap = createCMap(cmapBuffer, three0, null);
223
// }
224
}
225
else if (three1 != 0) {
226
cmap = createCMap(cmapBuffer, three1, null);
227
}
228
else if (three2 != 0) {
229
cmap = createCMap(cmapBuffer, three2,
230
getConverterMap(ShiftJISEncoding));
231
}
232
else if (three3 != 0) {
233
cmap = createCMap(cmapBuffer, three3,
234
getConverterMap(GBKEncoding));
235
}
236
else if (three4 != 0) {
237
cmap = createCMap(cmapBuffer, three4,
238
getConverterMap(Big5Encoding));
239
}
240
else if (three5 != 0) {
241
cmap = createCMap(cmapBuffer, three5,
242
getConverterMap(WansungEncoding));
243
}
244
else if (three6 != 0) {
245
cmap = createCMap(cmapBuffer, three6,
246
getConverterMap(JohabEncoding));
247
}
248
} else {
249
/* No 3,* subtable was found. Just use whatever is the first
250
* table listed. Not very useful but maybe better than
251
* rejecting the font entirely?
252
*/
253
cmap = createCMap(cmapBuffer, cmapBuffer.getInt(8), null);
254
}
255
// For Unicode Variation Sequences
256
if (cmap != null && zero5 != 0) {
257
cmap.createUVS(cmapBuffer, zero5);
258
}
259
return cmap;
260
}
261
262
/* speed up the converting by setting the range for double
263
* byte characters;
264
*/
265
static char[] getConverter(short encodingID) {
266
int dBegin = 0x8000;
267
int dEnd = 0xffff;
268
String encoding;
269
270
switch (encodingID) {
271
case ShiftJISEncoding:
272
dBegin = 0x8140;
273
dEnd = 0xfcfc;
274
encoding = "SJIS";
275
break;
276
case GBKEncoding:
277
dBegin = 0x8140;
278
dEnd = 0xfea0;
279
encoding = "GBK";
280
break;
281
case Big5Encoding:
282
dBegin = 0xa140;
283
dEnd = 0xfefe;
284
encoding = "Big5";
285
break;
286
case WansungEncoding:
287
dBegin = 0xa1a1;
288
dEnd = 0xfede;
289
encoding = "EUC_KR";
290
break;
291
case JohabEncoding:
292
dBegin = 0x8141;
293
dEnd = 0xfdfe;
294
encoding = "Johab";
295
break;
296
default:
297
return null;
298
}
299
300
try {
301
char[] convertedChars = new char[65536];
302
for (int i=0; i<65536; i++) {
303
convertedChars[i] = noSuchChar;
304
}
305
306
byte[] inputBytes = new byte[(dEnd-dBegin+1)*2];
307
char[] outputChars = new char[(dEnd-dBegin+1)];
308
309
int j = 0;
310
int firstByte;
311
if (encodingID == ShiftJISEncoding) {
312
for (int i = dBegin; i <= dEnd; i++) {
313
firstByte = (i >> 8 & 0xff);
314
if (firstByte >= 0xa1 && firstByte <= 0xdf) {
315
//sjis halfwidth katakana
316
inputBytes[j++] = (byte)0xff;
317
inputBytes[j++] = (byte)0xff;
318
} else {
319
inputBytes[j++] = (byte)firstByte;
320
inputBytes[j++] = (byte)(i & 0xff);
321
}
322
}
323
} else {
324
for (int i = dBegin; i <= dEnd; i++) {
325
inputBytes[j++] = (byte)(i>>8 & 0xff);
326
inputBytes[j++] = (byte)(i & 0xff);
327
}
328
}
329
330
Charset.forName(encoding).newDecoder()
331
.onMalformedInput(CodingErrorAction.REPLACE)
332
.onUnmappableCharacter(CodingErrorAction.REPLACE)
333
.replaceWith("\u0000")
334
.decode(ByteBuffer.wrap(inputBytes, 0, inputBytes.length),
335
CharBuffer.wrap(outputChars, 0, outputChars.length),
336
true);
337
338
// ensure single byte ascii
339
for (int i = 0x20; i <= 0x7e; i++) {
340
convertedChars[i] = (char)i;
341
}
342
343
//sjis halfwidth katakana
344
if (encodingID == ShiftJISEncoding) {
345
for (int i = 0xa1; i <= 0xdf; i++) {
346
convertedChars[i] = (char)(i - 0xa1 + 0xff61);
347
}
348
}
349
350
/* It would save heap space (approx 60Kbytes for each of these
351
* converters) if stored only valid ranges (ie returned
352
* outputChars directly. But this is tricky since want to
353
* include the ASCII range too.
354
*/
355
// System.err.println("oc.len="+outputChars.length);
356
// System.err.println("cc.len="+convertedChars.length);
357
// System.err.println("dbegin="+dBegin);
358
System.arraycopy(outputChars, 0, convertedChars, dBegin,
359
outputChars.length);
360
361
//return convertedChars;
362
/* invert this map as now want it to map from Unicode
363
* to other encoding.
364
*/
365
char [] invertedChars = new char[65536];
366
for (int i=0;i<65536;i++) {
367
if (convertedChars[i] != noSuchChar) {
368
invertedChars[convertedChars[i]] = (char)i;
369
}
370
}
371
return invertedChars;
372
373
} catch (Exception e) {
374
e.printStackTrace();
375
}
376
return null;
377
}
378
379
/*
380
* The returned array maps to unicode from some other 2 byte encoding
381
* eg for a 2byte index which represents a SJIS char, the indexed
382
* value is the corresponding unicode char.
383
*/
384
static char[] getConverterMap(short encodingID) {
385
if (converterMaps[encodingID] == null) {
386
converterMaps[encodingID] = getConverter(encodingID);
387
}
388
return converterMaps[encodingID];
389
}
390
391
392
static CMap createCMap(ByteBuffer buffer, int offset, char[] xlat) {
393
/* First do a sanity check that this cmap subtable is contained
394
* within the cmap table.
395
*/
396
int subtableFormat = buffer.getChar(offset);
397
long subtableLength;
398
if (subtableFormat < 8) {
399
subtableLength = buffer.getChar(offset+2);
400
} else {
401
subtableLength = buffer.getInt(offset+4) & INTMASK;
402
}
403
if (FontUtilities.isLogging() && offset + subtableLength > buffer.capacity()) {
404
FontUtilities.logWarning("Cmap subtable overflows buffer.");
405
}
406
switch (subtableFormat) {
407
case 0: return new CMapFormat0(buffer, offset);
408
case 2: return new CMapFormat2(buffer, offset, xlat);
409
case 4: return new CMapFormat4(buffer, offset, xlat);
410
case 6: return new CMapFormat6(buffer, offset, xlat);
411
case 8: return new CMapFormat8(buffer, offset, xlat);
412
case 10: return new CMapFormat10(buffer, offset, xlat);
413
case 12: return new CMapFormat12(buffer, offset, xlat);
414
default: throw new RuntimeException("Cmap format unimplemented: " +
415
(int)buffer.getChar(offset));
416
}
417
}
418
419
private void createUVS(ByteBuffer buffer, int offset) {
420
int subtableFormat = buffer.getChar(offset);
421
if (subtableFormat == 14) {
422
long subtableLength = buffer.getInt(offset + 2) & INTMASK;
423
if (FontUtilities.isLogging() && offset + subtableLength > buffer.capacity()) {
424
FontUtilities.logWarning("Cmap UVS subtable overflows buffer.");
425
}
426
try {
427
this.uvs = new UVS(buffer, offset);
428
} catch (Throwable t) {
429
}
430
}
431
return;
432
}
433
434
/*
435
final char charVal(byte[] cmap, int index) {
436
return (char)(((0xff & cmap[index]) << 8)+(0xff & cmap[index+1]));
437
}
438
439
final short shortVal(byte[] cmap, int index) {
440
return (short)(((0xff & cmap[index]) << 8)+(0xff & cmap[index+1]));
441
}
442
*/
443
abstract char getGlyph(int charCode);
444
445
/* Format 4 Header is
446
* ushort format (off=0)
447
* ushort length (off=2)
448
* ushort language (off=4)
449
* ushort segCountX2 (off=6)
450
* ushort searchRange (off=8)
451
* ushort entrySelector (off=10)
452
* ushort rangeShift (off=12)
453
* ushort endCount[segCount] (off=14)
454
* ushort reservedPad
455
* ushort startCount[segCount]
456
* short idDelta[segCount]
457
* idRangeOFfset[segCount]
458
* ushort glyphIdArray[]
459
*/
460
static class CMapFormat4 extends CMap {
461
int segCount;
462
int entrySelector;
463
int rangeShift;
464
char[] endCount;
465
char[] startCount;
466
short[] idDelta;
467
char[] idRangeOffset;
468
char[] glyphIds;
469
470
CMapFormat4(ByteBuffer bbuffer, int offset, char[] xlat) {
471
472
this.xlat = xlat;
473
474
bbuffer.position(offset);
475
CharBuffer buffer = bbuffer.asCharBuffer();
476
buffer.get(); // skip, we already know format=4
477
int subtableLength = buffer.get();
478
/* Try to recover from some bad fonts which specify a subtable
479
* length that would overflow the byte buffer holding the whole
480
* cmap table. If this isn't a recoverable situation an exception
481
* may be thrown which is caught higher up the call stack.
482
* Whilst this may seem lenient, in practice, unless the "bad"
483
* subtable we are using is the last one in the cmap table we
484
* would have no way of knowing about this problem anyway.
485
*/
486
if (offset+subtableLength > bbuffer.capacity()) {
487
subtableLength = bbuffer.capacity() - offset;
488
}
489
buffer.get(); // skip language
490
segCount = buffer.get()/2;
491
int searchRange = buffer.get();
492
entrySelector = buffer.get();
493
rangeShift = buffer.get()/2;
494
startCount = new char[segCount];
495
endCount = new char[segCount];
496
idDelta = new short[segCount];
497
idRangeOffset = new char[segCount];
498
499
for (int i=0; i<segCount; i++) {
500
endCount[i] = buffer.get();
501
}
502
buffer.get(); // 2 bytes for reserved pad
503
for (int i=0; i<segCount; i++) {
504
startCount[i] = buffer.get();
505
}
506
507
for (int i=0; i<segCount; i++) {
508
idDelta[i] = (short)buffer.get();
509
}
510
511
for (int i=0; i<segCount; i++) {
512
char ctmp = buffer.get();
513
idRangeOffset[i] = (char)((ctmp>>1)&0xffff);
514
}
515
/* Can calculate the number of glyph IDs by subtracting
516
* "pos" from the length of the cmap
517
*/
518
int pos = (segCount*8+16)/2;
519
buffer.position(pos);
520
int numGlyphIds = (subtableLength/2 - pos);
521
glyphIds = new char[numGlyphIds];
522
for (int i=0;i<numGlyphIds;i++) {
523
glyphIds[i] = buffer.get();
524
}
525
/*
526
System.err.println("segcount="+segCount);
527
System.err.println("entrySelector="+entrySelector);
528
System.err.println("rangeShift="+rangeShift);
529
for (int j=0;j<segCount;j++) {
530
System.err.println("j="+j+ " sc="+(int)(startCount[j]&0xffff)+
531
" ec="+(int)(endCount[j]&0xffff)+
532
" delta="+idDelta[j] +
533
" ro="+(int)idRangeOffset[j]);
534
}
535
536
//System.err.println("numglyphs="+glyphIds.length);
537
for (int i=0;i<numGlyphIds;i++) {
538
System.err.println("gid["+i+"]="+(int)glyphIds[i]);
539
}
540
*/
541
}
542
543
char getGlyph(int charCode) {
544
545
final int origCharCode = charCode;
546
int index = 0;
547
char glyphCode = 0;
548
549
int controlGlyph = getControlCodeGlyph(charCode, true);
550
if (controlGlyph >= 0) {
551
return (char)controlGlyph;
552
}
553
554
/* presence of translation array indicates that this
555
* cmap is in some other (non-unicode encoding).
556
* In order to look-up a char->glyph mapping we need to
557
* translate the unicode code point to the encoding of
558
* the cmap.
559
* REMIND: VALID CHARCODES??
560
*/
561
if (xlat != null) {
562
charCode = xlat[charCode];
563
}
564
565
/*
566
* Citation from the TrueType (and OpenType) spec:
567
* The segments are sorted in order of increasing endCode
568
* values, and the segment values are specified in four parallel
569
* arrays. You search for the first endCode that is greater than
570
* or equal to the character code you want to map. If the
571
* corresponding startCode is less than or equal to the
572
* character code, then you use the corresponding idDelta and
573
* idRangeOffset to map the character code to a glyph index
574
* (otherwise, the missingGlyph is returned).
575
*/
576
577
/*
578
* CMAP format4 defines several fields for optimized search of
579
* the segment list (entrySelector, searchRange, rangeShift).
580
* However, benefits are neglible and some fonts have incorrect
581
* data - so we use straightforward binary search (see bug 6247425)
582
*/
583
int left = 0, right = startCount.length;
584
index = startCount.length >> 1;
585
while (left < right) {
586
if (endCount[index] < charCode) {
587
left = index + 1;
588
} else {
589
right = index;
590
}
591
index = (left + right) >> 1;
592
}
593
594
if (charCode >= startCount[index] && charCode <= endCount[index]) {
595
int rangeOffset = idRangeOffset[index];
596
597
if (rangeOffset == 0) {
598
glyphCode = (char)(charCode + idDelta[index]);
599
} else {
600
/* Calculate an index into the glyphIds array */
601
602
/*
603
System.err.println("rangeoffset="+rangeOffset+
604
" charCode=" + charCode +
605
" scnt["+index+"]="+(int)startCount[index] +
606
" segCnt="+segCount);
607
*/
608
609
int glyphIDIndex = rangeOffset - segCount + index
610
+ (charCode - startCount[index]);
611
glyphCode = glyphIds[glyphIDIndex];
612
if (glyphCode != 0) {
613
glyphCode = (char)(glyphCode + idDelta[index]);
614
}
615
}
616
}
617
if (glyphCode == 0) {
618
glyphCode = getFormatCharGlyph(origCharCode);
619
}
620
return glyphCode;
621
}
622
}
623
624
// Format 0: Byte Encoding table
625
static class CMapFormat0 extends CMap {
626
byte [] cmap;
627
628
CMapFormat0(ByteBuffer buffer, int offset) {
629
630
/* skip 6 bytes of format, length, and version */
631
int len = buffer.getChar(offset+2);
632
cmap = new byte[len-6];
633
buffer.position(offset+6);
634
buffer.get(cmap);
635
}
636
637
char getGlyph(int charCode) {
638
if (charCode < 256) {
639
if (charCode < 0x0010) {
640
switch (charCode) {
641
case 0x0009:
642
case 0x000a:
643
case 0x000d: return CharToGlyphMapper.INVISIBLE_GLYPH_ID;
644
}
645
}
646
return (char)(0xff & cmap[charCode]);
647
} else {
648
return 0;
649
}
650
}
651
}
652
653
// static CMap createSymbolCMap(ByteBuffer buffer, int offset, char[] syms) {
654
655
// CMap cmap = createCMap(buffer, offset, null);
656
// if (cmap == null) {
657
// return null;
658
// } else {
659
// return new CMapFormatSymbol(cmap, syms);
660
// }
661
// }
662
663
// static class CMapFormatSymbol extends CMap {
664
665
// CMap cmap;
666
// static final int NUM_BUCKETS = 128;
667
// Bucket[] buckets = new Bucket[NUM_BUCKETS];
668
669
// class Bucket {
670
// char unicode;
671
// char glyph;
672
// Bucket next;
673
674
// Bucket(char u, char g) {
675
// unicode = u;
676
// glyph = g;
677
// }
678
// }
679
680
// CMapFormatSymbol(CMap cmap, char[] syms) {
681
682
// this.cmap = cmap;
683
684
// for (int i=0;i<syms.length;i++) {
685
// char unicode = syms[i];
686
// if (unicode != noSuchChar) {
687
// char glyph = cmap.getGlyph(i + 0xf000);
688
// int hash = unicode % NUM_BUCKETS;
689
// Bucket bucket = new Bucket(unicode, glyph);
690
// if (buckets[hash] == null) {
691
// buckets[hash] = bucket;
692
// } else {
693
// Bucket b = buckets[hash];
694
// while (b.next != null) {
695
// b = b.next;
696
// }
697
// b.next = bucket;
698
// }
699
// }
700
// }
701
// }
702
703
// char getGlyph(int unicode) {
704
// if (unicode >= 0x1000) {
705
// return 0;
706
// }
707
// else if (unicode >=0xf000 && unicode < 0xf100) {
708
// return cmap.getGlyph(unicode);
709
// } else {
710
// Bucket b = buckets[unicode % NUM_BUCKETS];
711
// while (b != null) {
712
// if (b.unicode == unicode) {
713
// return b.glyph;
714
// } else {
715
// b = b.next;
716
// }
717
// }
718
// return 0;
719
// }
720
// }
721
// }
722
723
// Format 2: High-byte mapping through table
724
static class CMapFormat2 extends CMap {
725
726
char[] subHeaderKey = new char[256];
727
/* Store subheaders in individual arrays
728
* A SubHeader entry theortically looks like {
729
* char firstCode;
730
* char entryCount;
731
* short idDelta;
732
* char idRangeOffset;
733
* }
734
*/
735
char[] firstCodeArray;
736
char[] entryCountArray;
737
short[] idDeltaArray;
738
char[] idRangeOffSetArray;
739
740
char[] glyphIndexArray;
741
742
CMapFormat2(ByteBuffer buffer, int offset, char[] xlat) {
743
744
this.xlat = xlat;
745
746
int tableLen = buffer.getChar(offset+2);
747
buffer.position(offset+6);
748
CharBuffer cBuffer = buffer.asCharBuffer();
749
char maxSubHeader = 0;
750
for (int i=0;i<256;i++) {
751
subHeaderKey[i] = cBuffer.get();
752
if (subHeaderKey[i] > maxSubHeader) {
753
maxSubHeader = subHeaderKey[i];
754
}
755
}
756
/* The value of the subHeaderKey is 8 * the subHeader index,
757
* so the number of subHeaders can be obtained by dividing
758
* this value bv 8 and adding 1.
759
*/
760
int numSubHeaders = (maxSubHeader >> 3) +1;
761
firstCodeArray = new char[numSubHeaders];
762
entryCountArray = new char[numSubHeaders];
763
idDeltaArray = new short[numSubHeaders];
764
idRangeOffSetArray = new char[numSubHeaders];
765
for (int i=0; i<numSubHeaders; i++) {
766
firstCodeArray[i] = cBuffer.get();
767
entryCountArray[i] = cBuffer.get();
768
idDeltaArray[i] = (short)cBuffer.get();
769
idRangeOffSetArray[i] = cBuffer.get();
770
// System.out.println("sh["+i+"]:fc="+(int)firstCodeArray[i]+
771
// " ec="+(int)entryCountArray[i]+
772
// " delta="+(int)idDeltaArray[i]+
773
// " offset="+(int)idRangeOffSetArray[i]);
774
}
775
776
int glyphIndexArrSize = (tableLen-518-numSubHeaders*8)/2;
777
glyphIndexArray = new char[glyphIndexArrSize];
778
for (int i=0; i<glyphIndexArrSize;i++) {
779
glyphIndexArray[i] = cBuffer.get();
780
}
781
}
782
783
char getGlyph(int charCode) {
784
final int origCharCode = charCode;
785
int controlGlyph = getControlCodeGlyph(charCode, true);
786
if (controlGlyph >= 0) {
787
return (char)controlGlyph;
788
}
789
790
if (xlat != null) {
791
charCode = xlat[charCode];
792
}
793
794
char highByte = (char)(charCode >> 8);
795
char lowByte = (char)(charCode & 0xff);
796
int key = subHeaderKey[highByte]>>3; // index into subHeaders
797
char mapMe;
798
799
if (key != 0) {
800
mapMe = lowByte;
801
} else {
802
mapMe = highByte;
803
if (mapMe == 0) {
804
mapMe = lowByte;
805
}
806
}
807
808
// System.err.println("charCode="+Integer.toHexString(charCode)+
809
// " key="+key+ " mapMe="+Integer.toHexString(mapMe));
810
char firstCode = firstCodeArray[key];
811
if (mapMe < firstCode) {
812
return 0;
813
} else {
814
mapMe -= firstCode;
815
}
816
817
if (mapMe < entryCountArray[key]) {
818
/* "address" arithmetic is needed to calculate the offset
819
* into glyphIndexArray. "idRangeOffSetArray[key]" specifies
820
* the number of bytes from that location in the table where
821
* the subarray of glyphIndexes starting at "firstCode" begins.
822
* Each entry in the subHeader table is 8 bytes, and the
823
* idRangeOffSetArray field is at offset 6 in the entry.
824
* The glyphIndexArray immediately follows the subHeaders.
825
* So if there are "N" entries then the number of bytes to the
826
* start of glyphIndexArray is (N-key)*8-6.
827
* Subtract this from the idRangeOffSetArray value to get
828
* the number of bytes into glyphIndexArray and divide by 2 to
829
* get the (char) array index.
830
*/
831
int glyphArrayOffset = ((idRangeOffSetArray.length-key)*8)-6;
832
int glyphSubArrayStart =
833
(idRangeOffSetArray[key] - glyphArrayOffset)/2;
834
char glyphCode = glyphIndexArray[glyphSubArrayStart+mapMe];
835
if (glyphCode != 0) {
836
glyphCode += idDeltaArray[key]; //idDelta
837
return glyphCode;
838
}
839
}
840
return getFormatCharGlyph(origCharCode);
841
}
842
}
843
844
// Format 6: Trimmed table mapping
845
static class CMapFormat6 extends CMap {
846
847
char firstCode;
848
char entryCount;
849
char[] glyphIdArray;
850
851
CMapFormat6(ByteBuffer bbuffer, int offset, char[] xlat) {
852
853
bbuffer.position(offset+6);
854
CharBuffer buffer = bbuffer.asCharBuffer();
855
firstCode = buffer.get();
856
entryCount = buffer.get();
857
glyphIdArray = new char[entryCount];
858
for (int i=0; i< entryCount; i++) {
859
glyphIdArray[i] = buffer.get();
860
}
861
}
862
863
char getGlyph(int charCode) {
864
final int origCharCode = charCode;
865
int controlGlyph = getControlCodeGlyph(charCode, true);
866
if (controlGlyph >= 0) {
867
return (char)controlGlyph;
868
}
869
870
if (xlat != null) {
871
charCode = xlat[charCode];
872
}
873
874
charCode -= firstCode;
875
if (charCode < 0 || charCode >= entryCount) {
876
return getFormatCharGlyph(origCharCode);
877
} else {
878
return glyphIdArray[charCode];
879
}
880
}
881
}
882
883
// Format 8: mixed 16-bit and 32-bit coverage
884
// Seems unlikely this code will ever get tested as we look for
885
// MS platform Cmaps and MS states (in the Opentype spec on their website)
886
// that MS doesn't support this format
887
static class CMapFormat8 extends CMap {
888
byte[] is32 = new byte[8192];
889
int nGroups;
890
int[] startCharCode;
891
int[] endCharCode;
892
int[] startGlyphID;
893
894
CMapFormat8(ByteBuffer bbuffer, int offset, char[] xlat) {
895
896
bbuffer.position(12);
897
bbuffer.get(is32);
898
nGroups = bbuffer.getInt() & INTMASK;
899
// A map group record is three uint32's making for 12 bytes total
900
if (bbuffer.remaining() < (12 * (long)nGroups)) {
901
throw new RuntimeException("Format 8 table exceeded");
902
}
903
startCharCode = new int[nGroups];
904
endCharCode = new int[nGroups];
905
startGlyphID = new int[nGroups];
906
}
907
908
char getGlyph(int charCode) {
909
if (xlat != null) {
910
throw new RuntimeException("xlat array for cmap fmt=8");
911
}
912
return 0;
913
}
914
915
}
916
917
918
// Format 4-byte 10: Trimmed table mapping
919
// Seems unlikely this code will ever get tested as we look for
920
// MS platform Cmaps and MS states (in the Opentype spec on their website)
921
// that MS doesn't support this format
922
static class CMapFormat10 extends CMap {
923
924
long firstCode;
925
int entryCount;
926
char[] glyphIdArray;
927
928
CMapFormat10(ByteBuffer bbuffer, int offset, char[] xlat) {
929
930
bbuffer.position(offset+12);
931
firstCode = bbuffer.getInt() & INTMASK;
932
entryCount = bbuffer.getInt() & INTMASK;
933
// each glyph is a uint16, so 2 bytes per value.
934
if (bbuffer.remaining() < (2 * (long)entryCount)) {
935
throw new RuntimeException("Format 10 table exceeded");
936
}
937
CharBuffer buffer = bbuffer.asCharBuffer();
938
glyphIdArray = new char[entryCount];
939
for (int i=0; i< entryCount; i++) {
940
glyphIdArray[i] = buffer.get();
941
}
942
}
943
944
char getGlyph(int charCode) {
945
946
if (xlat != null) {
947
throw new RuntimeException("xlat array for cmap fmt=10");
948
}
949
950
int code = (int)(charCode - firstCode);
951
if (code < 0 || code >= entryCount) {
952
return 0;
953
} else {
954
return glyphIdArray[code];
955
}
956
}
957
}
958
959
// Format 12: Segmented coverage for UCS-4 (fonts supporting
960
// surrogate pairs)
961
static class CMapFormat12 extends CMap {
962
963
int numGroups;
964
int highBit =0;
965
int power;
966
int extra;
967
long[] startCharCode;
968
long[] endCharCode;
969
int[] startGlyphID;
970
971
CMapFormat12(ByteBuffer buffer, int offset, char[] xlat) {
972
if (xlat != null) {
973
throw new RuntimeException("xlat array for cmap fmt=12");
974
}
975
976
buffer.position(offset+12);
977
numGroups = buffer.getInt() & INTMASK;
978
// A map group record is three uint32's making for 12 bytes total
979
if (buffer.remaining() < (12 * (long)numGroups)) {
980
throw new RuntimeException("Format 12 table exceeded");
981
}
982
startCharCode = new long[numGroups];
983
endCharCode = new long[numGroups];
984
startGlyphID = new int[numGroups];
985
buffer = buffer.slice();
986
IntBuffer ibuffer = buffer.asIntBuffer();
987
for (int i=0; i<numGroups; i++) {
988
startCharCode[i] = ibuffer.get() & INTMASK;
989
endCharCode[i] = ibuffer.get() & INTMASK;
990
startGlyphID[i] = ibuffer.get() & INTMASK;
991
}
992
993
/* Finds the high bit by binary searching through the bits */
994
int value = numGroups;
995
996
if (value >= 1 << 16) {
997
value >>= 16;
998
highBit += 16;
999
}
1000
1001
if (value >= 1 << 8) {
1002
value >>= 8;
1003
highBit += 8;
1004
}
1005
1006
if (value >= 1 << 4) {
1007
value >>= 4;
1008
highBit += 4;
1009
}
1010
1011
if (value >= 1 << 2) {
1012
value >>= 2;
1013
highBit += 2;
1014
}
1015
1016
if (value >= 1 << 1) {
1017
value >>= 1;
1018
highBit += 1;
1019
}
1020
1021
power = 1 << highBit;
1022
extra = numGroups - power;
1023
}
1024
1025
char getGlyph(int charCode) {
1026
final int origCharCode = charCode;
1027
int controlGlyph = getControlCodeGlyph(charCode, false);
1028
if (controlGlyph >= 0) {
1029
return (char)controlGlyph;
1030
}
1031
int probe = power;
1032
int range = 0;
1033
1034
if (startCharCode[extra] <= charCode) {
1035
range = extra;
1036
}
1037
1038
while (probe > 1) {
1039
probe >>= 1;
1040
1041
if (startCharCode[range+probe] <= charCode) {
1042
range += probe;
1043
}
1044
}
1045
1046
if (startCharCode[range] <= charCode &&
1047
endCharCode[range] >= charCode) {
1048
return (char)
1049
(startGlyphID[range] + (charCode - startCharCode[range]));
1050
}
1051
1052
return getFormatCharGlyph(origCharCode);
1053
}
1054
1055
}
1056
1057
/* Used to substitute for bad Cmaps. */
1058
static class NullCMapClass extends CMap {
1059
1060
char getGlyph(int charCode) {
1061
return 0;
1062
}
1063
}
1064
1065
public static final NullCMapClass theNullCmap = new NullCMapClass();
1066
1067
final int getControlCodeGlyph(int charCode, boolean noSurrogates) {
1068
if (charCode < 0x0010) {
1069
switch (charCode) {
1070
case 0x0009:
1071
case 0x000a:
1072
case 0x000d: return CharToGlyphMapper.INVISIBLE_GLYPH_ID;
1073
}
1074
} else if (noSurrogates && charCode >= 0xFFFF) {
1075
return 0;
1076
}
1077
return -1;
1078
}
1079
1080
final char getFormatCharGlyph(int charCode) {
1081
if (charCode >= 0x200c) {
1082
if ((charCode <= 0x200f) ||
1083
(charCode >= 0x2028 && charCode <= 0x202e) ||
1084
(charCode >= 0x206a && charCode <= 0x206f)) {
1085
return (char)CharToGlyphMapper.INVISIBLE_GLYPH_ID;
1086
}
1087
}
1088
return 0;
1089
}
1090
1091
static class UVS {
1092
int numSelectors;
1093
int[] selector;
1094
1095
//for Non-Default UVS Table
1096
int[] numUVSMapping;
1097
int[][] unicodeValue;
1098
char[][] glyphID;
1099
1100
UVS(ByteBuffer buffer, int offset) {
1101
buffer.position(offset+6);
1102
numSelectors = buffer.getInt() & INTMASK;
1103
// A variation selector record is one 3 byte int + two int32's
1104
// making for 11 bytes per record.
1105
if (buffer.remaining() < (11 * (long)numSelectors)) {
1106
throw new RuntimeException("Variations exceed buffer");
1107
}
1108
selector = new int[numSelectors];
1109
numUVSMapping = new int[numSelectors];
1110
unicodeValue = new int[numSelectors][];
1111
glyphID = new char[numSelectors][];
1112
1113
for (int i = 0; i < numSelectors; i++) {
1114
buffer.position(offset + 10 + i * 11);
1115
selector[i] = (buffer.get() & 0xff) << 16; //UINT24
1116
selector[i] += (buffer.get() & 0xff) << 8;
1117
selector[i] += buffer.get() & 0xff;
1118
1119
//skip Default UVS Table
1120
1121
//for Non-Default UVS Table
1122
int tableOffset = buffer.getInt(offset + 10 + i * 11 + 7);
1123
if (tableOffset == 0) {
1124
numUVSMapping[i] = 0;
1125
} else if (tableOffset > 0) {
1126
buffer.position(offset+tableOffset);
1127
numUVSMapping[i] = buffer.getInt() & INTMASK;
1128
// a UVS mapping record is one 3 byte int + uint16
1129
// making for 5 bytes per record.
1130
if (buffer.remaining() < (5 * (long)numUVSMapping[i])) {
1131
throw new RuntimeException("Variations exceed buffer");
1132
}
1133
unicodeValue[i] = new int[numUVSMapping[i]];
1134
glyphID[i] = new char[numUVSMapping[i]];
1135
1136
for (int j = 0; j < numUVSMapping[i]; j++) {
1137
int temp = (buffer.get() & 0xff) << 16; //UINT24
1138
temp += (buffer.get() & 0xff) << 8;
1139
temp += buffer.get() & 0xff;
1140
unicodeValue[i][j] = temp;
1141
glyphID[i][j] = buffer.getChar();
1142
}
1143
}
1144
}
1145
}
1146
1147
static final int VS_NOGLYPH = 0;
1148
private int getGlyph(int charCode, int variationSelector) {
1149
int targetSelector = -1;
1150
for (int i = 0; i < numSelectors; i++) {
1151
if (selector[i] == variationSelector) {
1152
targetSelector = i;
1153
break;
1154
}
1155
}
1156
if (targetSelector == -1) {
1157
return VS_NOGLYPH;
1158
}
1159
if (numUVSMapping[targetSelector] > 0) {
1160
int index = java.util.Arrays.binarySearch(
1161
unicodeValue[targetSelector], charCode);
1162
if (index >= 0) {
1163
return glyphID[targetSelector][index];
1164
}
1165
}
1166
return VS_NOGLYPH;
1167
}
1168
}
1169
1170
char getVariationGlyph(int charCode, int variationSelector) {
1171
char glyph = 0;
1172
if (uvs == null) {
1173
glyph = getGlyph(charCode);
1174
} else {
1175
int result = uvs.getGlyph(charCode, variationSelector);
1176
if (result > 0) {
1177
glyph = (char)(result & 0xFFFF);
1178
} else {
1179
glyph = getGlyph(charCode);
1180
}
1181
}
1182
return glyph;
1183
}
1184
}
1185
1186