Path: blob/21.2-virgl/include/drm-uapi/drm_fourcc.h
4547 views
/*1* Copyright 2011 Intel Corporation2*3* Permission is hereby granted, free of charge, to any person obtaining a4* copy of this software and associated documentation files (the "Software"),5* to deal in the Software without restriction, including without limitation6* the rights to use, copy, modify, merge, publish, distribute, sublicense,7* and/or sell copies of the Software, and to permit persons to whom the8* Software is furnished to do so, subject to the following conditions:9*10* The above copyright notice and this permission notice (including the next11* paragraph) shall be included in all copies or substantial portions of the12* Software.13*14* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR15* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,16* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL17* VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR18* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,19* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR20* OTHER DEALINGS IN THE SOFTWARE.21*/2223#ifndef DRM_FOURCC_H24#define DRM_FOURCC_H2526#include "drm.h"2728#if defined(__cplusplus)29extern "C" {30#endif3132/**33* DOC: overview34*35* In the DRM subsystem, framebuffer pixel formats are described using the36* fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the37* fourcc code, a Format Modifier may optionally be provided, in order to38* further describe the buffer's format - for example tiling or compression.39*40* Format Modifiers41* ----------------42*43* Format modifiers are used in conjunction with a fourcc code, forming a44* unique fourcc:modifier pair. This format:modifier pair must fully define the45* format and data layout of the buffer, and should be the only way to describe46* that particular buffer.47*48* Having multiple fourcc:modifier pairs which describe the same layout should49* be avoided, as such aliases run the risk of different drivers exposing50* different names for the same data format, forcing userspace to understand51* that they are aliases.52*53* Format modifiers may change any property of the buffer, including the number54* of planes and/or the required allocation size. Format modifiers are55* vendor-namespaced, and as such the relationship between a fourcc code and a56* modifier is specific to the modifer being used. For example, some modifiers57* may preserve meaning - such as number of planes - from the fourcc code,58* whereas others may not.59*60* Modifiers must uniquely encode buffer layout. In other words, a buffer must61* match only a single modifier. A modifier must not be a subset of layouts of62* another modifier. For instance, it's incorrect to encode pitch alignment in63* a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel64* aligned modifier. That said, modifiers can have implicit minimal65* requirements.66*67* For modifiers where the combination of fourcc code and modifier can alias,68* a canonical pair needs to be defined and used by all drivers. Preferred69* combinations are also encouraged where all combinations might lead to70* confusion and unnecessarily reduced interoperability. An example for the71* latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.72*73* There are two kinds of modifier users:74*75* - Kernel and user-space drivers: for drivers it's important that modifiers76* don't alias, otherwise two drivers might support the same format but use77* different aliases, preventing them from sharing buffers in an efficient78* format.79* - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users80* see modifiers as opaque tokens they can check for equality and intersect.81* These users musn't need to know to reason about the modifier value82* (i.e. they are not expected to extract information out of the modifier).83*84* Vendors should document their modifier usage in as much detail as85* possible, to ensure maximum compatibility across devices, drivers and86* applications.87*88* The authoritative list of format modifier codes is found in89* `include/uapi/drm/drm_fourcc.h`90*/9192#define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \93((__u32)(c) << 16) | ((__u32)(d) << 24))9495#define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */9697/* Reserve 0 for the invalid format specifier */98#define DRM_FORMAT_INVALID 099100/* color index */101#define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */102103/* 8 bpp Red */104#define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */105106/* 16 bpp Red */107#define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */108109/* 16 bpp RG */110#define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */111#define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */112113/* 32 bpp RG */114#define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */115#define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */116117/* 8 bpp RGB */118#define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */119#define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */120121/* 16 bpp RGB */122#define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */123#define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */124#define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */125#define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */126127#define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */128#define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */129#define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */130#define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */131132#define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */133#define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */134#define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */135#define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */136137#define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */138#define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */139#define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */140#define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */141142#define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */143#define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */144145/* 24 bpp RGB */146#define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */147#define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */148149/* 32 bpp RGB */150#define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */151#define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */152#define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */153#define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */154155#define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */156#define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */157#define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */158#define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */159160#define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */161#define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */162#define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */163#define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */164165#define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */166#define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */167#define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */168#define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */169170/* 64 bpp RGB */171#define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */172#define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */173174#define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */175#define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */176177/*178* Floating point 64bpp RGB179* IEEE 754-2008 binary16 half-precision float180* [15:0] sign:exponent:mantissa 1:5:10181*/182#define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */183#define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */184185#define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */186#define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */187188/*189* RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits190* of unused padding per component:191*/192#define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */193194/* packed YCbCr */195#define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */196#define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */197#define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */198#define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */199200#define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */201#define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */202#define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */203#define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */204205/*206* packed Y2xx indicate for each component, xx valid data occupy msb207* 16-xx padding occupy lsb208*/209#define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */210#define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */211#define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */212213/*214* packed Y4xx indicate for each component, xx valid data occupy msb215* 16-xx padding occupy lsb except Y410216*/217#define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */218#define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */219#define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */220221#define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */222#define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */223#define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */224225/*226* packed YCbCr420 2x2 tiled formats227* first 64 bits will contain Y,Cb,Cr components for a 2x2 tile228*/229/* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */230#define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0')231/* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */232#define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0')233234/* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */235#define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2')236/* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */237#define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2')238239/*240* 1-plane YUV 4:2:0241* In these formats, the component ordering is specified (Y, followed by U242* then V), but the exact Linear layout is undefined.243* These formats can only be used with a non-Linear modifier.244*/245#define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8')246#define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')247248/*249* 2 plane RGB + A250* index 0 = RGB plane, same format as the corresponding non _A8 format has251* index 1 = A plane, [7:0] A252*/253#define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8')254#define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8')255#define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8')256#define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8')257#define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8')258#define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8')259#define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8')260#define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8')261262/*263* 2 plane YCbCr264* index 0 = Y plane, [7:0] Y265* index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian266* or267* index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian268*/269#define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */270#define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */271#define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */272#define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */273#define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */274#define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */275/*276* 2 plane YCbCr277* index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian278* index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian279*/280#define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */281282/*283* 2 plane YCbCr MSB aligned284* index 0 = Y plane, [15:0] Y:x [10:6] little endian285* index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian286*/287#define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */288289/*290* 2 plane YCbCr MSB aligned291* index 0 = Y plane, [15:0] Y:x [10:6] little endian292* index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian293*/294#define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */295296/*297* 2 plane YCbCr MSB aligned298* index 0 = Y plane, [15:0] Y:x [12:4] little endian299* index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian300*/301#define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */302303/*304* 2 plane YCbCr MSB aligned305* index 0 = Y plane, [15:0] Y little endian306* index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian307*/308#define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */309310/* 3 plane non-subsampled (444) YCbCr311* 16 bits per component, but only 10 bits are used and 6 bits are padded312* index 0: Y plane, [15:0] Y:x [10:6] little endian313* index 1: Cb plane, [15:0] Cb:x [10:6] little endian314* index 2: Cr plane, [15:0] Cr:x [10:6] little endian315*/316#define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0')317318/* 3 plane non-subsampled (444) YCrCb319* 16 bits per component, but only 10 bits are used and 6 bits are padded320* index 0: Y plane, [15:0] Y:x [10:6] little endian321* index 1: Cr plane, [15:0] Cr:x [10:6] little endian322* index 2: Cb plane, [15:0] Cb:x [10:6] little endian323*/324#define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1')325326/*327* 3 plane YCbCr328* index 0: Y plane, [7:0] Y329* index 1: Cb plane, [7:0] Cb330* index 2: Cr plane, [7:0] Cr331* or332* index 1: Cr plane, [7:0] Cr333* index 2: Cb plane, [7:0] Cb334*/335#define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */336#define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */337#define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */338#define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */339#define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */340#define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */341#define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */342#define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */343#define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */344#define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */345346347/*348* Format Modifiers:349*350* Format modifiers describe, typically, a re-ordering or modification351* of the data in a plane of an FB. This can be used to express tiled/352* swizzled formats, or compression, or a combination of the two.353*354* The upper 8 bits of the format modifier are a vendor-id as assigned355* below. The lower 56 bits are assigned as vendor sees fit.356*/357358/* Vendor Ids: */359#define DRM_FORMAT_MOD_VENDOR_NONE 0360#define DRM_FORMAT_MOD_VENDOR_INTEL 0x01361#define DRM_FORMAT_MOD_VENDOR_AMD 0x02362#define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03363#define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04364#define DRM_FORMAT_MOD_VENDOR_QCOM 0x05365#define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06366#define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07367#define DRM_FORMAT_MOD_VENDOR_ARM 0x08368#define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09369#define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a370371/* add more to the end as needed */372373#define DRM_FORMAT_RESERVED ((1ULL << 56) - 1)374375#define fourcc_mod_code(vendor, val) \376((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))377378/*379* Format Modifier tokens:380*381* When adding a new token please document the layout with a code comment,382* similar to the fourcc codes above. drm_fourcc.h is considered the383* authoritative source for all of these.384*385* Generic modifier names:386*387* DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names388* for layouts which are common across multiple vendors. To preserve389* compatibility, in cases where a vendor-specific definition already exists and390* a generic name for it is desired, the common name is a purely symbolic alias391* and must use the same numerical value as the original definition.392*393* Note that generic names should only be used for modifiers which describe394* generic layouts (such as pixel re-ordering), which may have395* independently-developed support across multiple vendors.396*397* In future cases where a generic layout is identified before merging with a398* vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor399* 'NONE' could be considered. This should only be for obvious, exceptional400* cases to avoid polluting the 'GENERIC' namespace with modifiers which only401* apply to a single vendor.402*403* Generic names should not be used for cases where multiple hardware vendors404* have implementations of the same standardised compression scheme (such as405* AFBC). In those cases, all implementations should use the same format406* modifier(s), reflecting the vendor of the standard.407*/408409#define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE410411/*412* Invalid Modifier413*414* This modifier can be used as a sentinel to terminate the format modifiers415* list, or to initialize a variable with an invalid modifier. It might also be416* used to report an error back to userspace for certain APIs.417*/418#define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)419420/*421* Linear Layout422*423* Just plain linear layout. Note that this is different from no specifying any424* modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),425* which tells the driver to also take driver-internal information into account426* and so might actually result in a tiled framebuffer.427*/428#define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0)429430/*431* Deprecated: use DRM_FORMAT_MOD_LINEAR instead432*433* The "none" format modifier doesn't actually mean that the modifier is434* implicit, instead it means that the layout is linear. Whether modifiers are435* used is out-of-band information carried in an API-specific way (e.g. in a436* flag for drm_mode_fb_cmd2).437*/438#define DRM_FORMAT_MOD_NONE 0439440/* Intel framebuffer modifiers */441442/*443* Intel X-tiling layout444*445* This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)446* in row-major layout. Within the tile bytes are laid out row-major, with447* a platform-dependent stride. On top of that the memory can apply448* platform-depending swizzling of some higher address bits into bit6.449*450* Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.451* On earlier platforms the is highly platforms specific and not useful for452* cross-driver sharing. It exists since on a given platform it does uniquely453* identify the layout in a simple way for i915-specific userspace, which454* facilitated conversion of userspace to modifiers. Additionally the exact455* format on some really old platforms is not known.456*/457#define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)458459/*460* Intel Y-tiling layout461*462* This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)463* in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)464* chunks column-major, with a platform-dependent height. On top of that the465* memory can apply platform-depending swizzling of some higher address bits466* into bit6.467*468* Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.469* On earlier platforms the is highly platforms specific and not useful for470* cross-driver sharing. It exists since on a given platform it does uniquely471* identify the layout in a simple way for i915-specific userspace, which472* facilitated conversion of userspace to modifiers. Additionally the exact473* format on some really old platforms is not known.474*/475#define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)476477/*478* Intel Yf-tiling layout479*480* This is a tiled layout using 4Kb tiles in row-major layout.481* Within the tile pixels are laid out in 16 256 byte units / sub-tiles which482* are arranged in four groups (two wide, two high) with column-major layout.483* Each group therefore consits out of four 256 byte units, which are also laid484* out as 2x2 column-major.485* 256 byte units are made out of four 64 byte blocks of pixels, producing486* either a square block or a 2:1 unit.487* 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width488* in pixel depends on the pixel depth.489*/490#define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)491492/*493* Intel color control surface (CCS) for render compression494*495* The framebuffer format must be one of the 8:8:8:8 RGB formats.496* The main surface will be plane index 0 and must be Y/Yf-tiled,497* the CCS will be plane index 1.498*499* Each CCS tile matches a 1024x512 pixel area of the main surface.500* To match certain aspects of the 3D hardware the CCS is501* considered to be made up of normal 128Bx32 Y tiles, Thus502* the CCS pitch must be specified in multiples of 128 bytes.503*504* In reality the CCS tile appears to be a 64Bx64 Y tile, composed505* of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.506* But that fact is not relevant unless the memory is accessed507* directly.508*/509#define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4)510#define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5)511512/*513* Intel color control surfaces (CCS) for Gen-12 render compression.514*515* The main surface is Y-tiled and at plane index 0, the CCS is linear and516* at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in517* main surface. In other words, 4 bits in CCS map to a main surface cache518* line pair. The main surface pitch is required to be a multiple of four519* Y-tile widths.520*/521#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)522523/*524* Intel color control surfaces (CCS) for Gen-12 media compression525*526* The main surface is Y-tiled and at plane index 0, the CCS is linear and527* at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in528* main surface. In other words, 4 bits in CCS map to a main surface cache529* line pair. The main surface pitch is required to be a multiple of four530* Y-tile widths. For semi-planar formats like NV12, CCS planes follow the531* Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,532* planes 2 and 3 for the respective CCS.533*/534#define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)535536/*537* Intel Color Control Surface with Clear Color (CCS) for Gen-12 render538* compression.539*540* The main surface is Y-tiled and is at plane index 0 whereas CCS is linear541* and at index 1. The clear color is stored at index 2, and the pitch should542* be ignored. The clear color structure is 256 bits. The first 128 bits543* represents Raw Clear Color Red, Green, Blue and Alpha color each represented544* by 32 bits. The raw clear color is consumed by the 3d engine and generates545* the converted clear color of size 64 bits. The first 32 bits store the Lower546* Converted Clear Color value and the next 32 bits store the Higher Converted547* Clear Color value when applicable. The Converted Clear Color values are548* consumed by the DE. The last 64 bits are used to store Color Discard Enable549* and Depth Clear Value Valid which are ignored by the DE. A CCS cache line550* corresponds to an area of 4x1 tiles in the main surface. The main surface551* pitch is required to be a multiple of 4 tile widths.552*/553#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)554555/*556* Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks557*558* Macroblocks are laid in a Z-shape, and each pixel data is following the559* standard NV12 style.560* As for NV12, an image is the result of two frame buffers: one for Y,561* one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).562* Alignment requirements are (for each buffer):563* - multiple of 128 pixels for the width564* - multiple of 32 pixels for the height565*566* For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html567*/568#define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1)569570/*571* Tiled, 16 (pixels) x 16 (lines) - sized macroblocks572*573* This is a simple tiled layout using tiles of 16x16 pixels in a row-major574* layout. For YCbCr formats Cb/Cr components are taken in such a way that575* they correspond to their 16x16 luma block.576*/577#define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2)578579/*580* Qualcomm Compressed Format581*582* Refers to a compressed variant of the base format that is compressed.583* Implementation may be platform and base-format specific.584*585* Each macrotile consists of m x n (mostly 4 x 4) tiles.586* Pixel data pitch/stride is aligned with macrotile width.587* Pixel data height is aligned with macrotile height.588* Entire pixel data buffer is aligned with 4k(bytes).589*/590#define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1)591592/* Vivante framebuffer modifiers */593594/*595* Vivante 4x4 tiling layout596*597* This is a simple tiled layout using tiles of 4x4 pixels in a row-major598* layout.599*/600#define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1)601602/*603* Vivante 64x64 super-tiling layout604*605* This is a tiled layout using 64x64 pixel super-tiles, where each super-tile606* contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-607* major layout.608*609* For more information: see610* https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling611*/612#define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2)613614/*615* Vivante 4x4 tiling layout for dual-pipe616*617* Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a618* different base address. Offsets from the base addresses are therefore halved619* compared to the non-split tiled layout.620*/621#define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3)622623/*624* Vivante 64x64 super-tiling layout for dual-pipe625*626* Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile627* starts at a different base address. Offsets from the base addresses are628* therefore halved compared to the non-split super-tiled layout.629*/630#define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)631632/* NVIDIA frame buffer modifiers */633634/*635* Tegra Tiled Layout, used by Tegra 2, 3 and 4.636*637* Pixels are arranged in simple tiles of 16 x 16 bytes.638*/639#define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)640641/*642* Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,643* and Tegra GPUs starting with Tegra K1.644*645* Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies646* based on the architecture generation. GOBs themselves are then arranged in647* 3D blocks, with the block dimensions (in terms of GOBs) always being a power648* of two, and hence expressible as their log2 equivalent (E.g., "2" represents649* a block depth or height of "4").650*651* Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format652* in full detail.653*654* Macro655* Bits Param Description656* ---- ----- -----------------------------------------------------------------657*658* 3:0 h log2(height) of each block, in GOBs. Placed here for659* compatibility with the existing660* DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.661*662* 4:4 - Must be 1, to indicate block-linear layout. Necessary for663* compatibility with the existing664* DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.665*666* 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block667* size). Must be zero.668*669* Note there is no log2(width) parameter. Some portions of the670* hardware support a block width of two gobs, but it is impractical671* to use due to lack of support elsewhere, and has no known672* benefits.673*674* 11:9 - Reserved (To support 2D-array textures with variable array stride675* in blocks, specified via log2(tile width in blocks)). Must be676* zero.677*678* 19:12 k Page Kind. This value directly maps to a field in the page679* tables of all GPUs >= NV50. It affects the exact layout of bits680* in memory and can be derived from the tuple681*682* (format, GPU model, compression type, samples per pixel)683*684* Where compression type is defined below. If GPU model were685* implied by the format modifier, format, or memory buffer, page686* kind would not need to be included in the modifier itself, but687* since the modifier should define the layout of the associated688* memory buffer independent from any device or other context, it689* must be included here.690*691* 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed692* starting with Fermi GPUs. Additionally, the mapping between page693* kind and bit layout has changed at various points.694*695* 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping696* 1 = Gob Height 4, G80 - GT2XX Page Kind mapping697* 2 = Gob Height 8, Turing+ Page Kind mapping698* 3 = Reserved for future use.699*700* 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further701* bit remapping step that occurs at an even lower level than the702* page kind and block linear swizzles. This causes the layout of703* surfaces mapped in those SOC's GPUs to be incompatible with the704* equivalent mapping on other GPUs in the same system.705*706* 0 = Tegra K1 - Tegra Parker/TX2 Layout.707* 1 = Desktop GPU and Tegra Xavier+ Layout708*709* 25:23 c Lossless Framebuffer Compression type.710*711* 0 = none712* 1 = ROP/3D, layout 1, exact compression format implied by Page713* Kind field714* 2 = ROP/3D, layout 2, exact compression format implied by Page715* Kind field716* 3 = CDE horizontal717* 4 = CDE vertical718* 5 = Reserved for future use719* 6 = Reserved for future use720* 7 = Reserved for future use721*722* 55:25 - Reserved for future use. Must be zero.723*/724#define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \725fourcc_mod_code(NVIDIA, (0x10 | \726((h) & 0xf) | \727(((k) & 0xff) << 12) | \728(((g) & 0x3) << 20) | \729(((s) & 0x1) << 22) | \730(((c) & 0x7) << 23)))731732/* To grandfather in prior block linear format modifiers to the above layout,733* the page kind "0", which corresponds to "pitch/linear" and hence is unusable734* with block-linear layouts, is remapped within drivers to the value 0xfe,735* which corresponds to the "generic" kind used for simple single-sample736* uncompressed color formats on Fermi - Volta GPUs.737*/738static __inline__ __u64739drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)740{741if (!(modifier & 0x10) || (modifier & (0xff << 12)))742return modifier;743else744return modifier | (0xfe << 12);745}746747/*748* 16Bx2 Block Linear layout, used by Tegra K1 and later749*750* Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked751* vertically by a power of 2 (1 to 32 GOBs) to form a block.752*753* Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.754*755* Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.756* Valid values are:757*758* 0 == ONE_GOB759* 1 == TWO_GOBS760* 2 == FOUR_GOBS761* 3 == EIGHT_GOBS762* 4 == SIXTEEN_GOBS763* 5 == THIRTYTWO_GOBS764*765* Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format766* in full detail.767*/768#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \769DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))770771#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \772DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)773#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \774DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)775#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \776DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)777#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \778DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)779#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \780DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)781#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \782DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)783784/*785* Some Broadcom modifiers take parameters, for example the number of786* vertical lines in the image. Reserve the lower 32 bits for modifier787* type, and the next 24 bits for parameters. Top 8 bits are the788* vendor code.789*/790#define __fourcc_mod_broadcom_param_shift 8791#define __fourcc_mod_broadcom_param_bits 48792#define fourcc_mod_broadcom_code(val, params) \793fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))794#define fourcc_mod_broadcom_param(m) \795((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \796((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))797#define fourcc_mod_broadcom_mod(m) \798((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \799__fourcc_mod_broadcom_param_shift))800801/*802* Broadcom VC4 "T" format803*804* This is the primary layout that the V3D GPU can texture from (it805* can't do linear). The T format has:806*807* - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4808* pixels at 32 bit depth.809*810* - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually811* 16x16 pixels).812*813* - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On814* even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows815* they're (TR, BR, BL, TL), where bottom left is start of memory.816*817* - an image made of 4k tiles in rows either left-to-right (even rows of 4k818* tiles) or right-to-left (odd rows of 4k tiles).819*/820#define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)821822/*823* Broadcom SAND format824*825* This is the native format that the H.264 codec block uses. For VC4826* HVS, it is only valid for H.264 (NV12/21) and RGBA modes.827*828* The image can be considered to be split into columns, and the829* columns are placed consecutively into memory. The width of those830* columns can be either 32, 64, 128, or 256 pixels, but in practice831* only 128 pixel columns are used.832*833* The pitch between the start of each column is set to optimally834* switch between SDRAM banks. This is passed as the number of lines835* of column width in the modifier (we can't use the stride value due836* to various core checks that look at it , so you should set the837* stride to width*cpp).838*839* Note that the column height for this format modifier is the same840* for all of the planes, assuming that each column contains both Y841* and UV. Some SAND-using hardware stores UV in a separate tiled842* image from Y to reduce the column height, which is not supported843* with these modifiers.844*/845846#define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \847fourcc_mod_broadcom_code(2, v)848#define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \849fourcc_mod_broadcom_code(3, v)850#define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \851fourcc_mod_broadcom_code(4, v)852#define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \853fourcc_mod_broadcom_code(5, v)854855#define DRM_FORMAT_MOD_BROADCOM_SAND32 \856DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)857#define DRM_FORMAT_MOD_BROADCOM_SAND64 \858DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)859#define DRM_FORMAT_MOD_BROADCOM_SAND128 \860DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)861#define DRM_FORMAT_MOD_BROADCOM_SAND256 \862DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)863864/* Broadcom UIF format865*866* This is the common format for the current Broadcom multimedia867* blocks, including V3D 3.x and newer, newer video codecs, and868* displays.869*870* The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),871* and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are872* stored in columns, with padding between the columns to ensure that873* moving from one column to the next doesn't hit the same SDRAM page874* bank.875*876* To calculate the padding, it is assumed that each hardware block877* and the software driving it knows the platform's SDRAM page size,878* number of banks, and XOR address, and that it's identical between879* all blocks using the format. This tiling modifier will use XOR as880* necessary to reduce the padding. If a hardware block can't do XOR,881* the assumption is that a no-XOR tiling modifier will be created.882*/883#define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)884885/*886* Arm Framebuffer Compression (AFBC) modifiers887*888* AFBC is a proprietary lossless image compression protocol and format.889* It provides fine-grained random access and minimizes the amount of data890* transferred between IP blocks.891*892* AFBC has several features which may be supported and/or used, which are893* represented using bits in the modifier. Not all combinations are valid,894* and different devices or use-cases may support different combinations.895*896* Further information on the use of AFBC modifiers can be found in897* Documentation/gpu/afbc.rst898*/899900/*901* The top 4 bits (out of the 56 bits alloted for specifying vendor specific902* modifiers) denote the category for modifiers. Currently we have only two903* categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen904* different categories.905*/906#define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \907fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))908909#define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00910#define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01911912#define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \913DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)914915/*916* AFBC superblock size917*918* Indicates the superblock size(s) used for the AFBC buffer. The buffer919* size (in pixels) must be aligned to a multiple of the superblock size.920* Four lowest significant bits(LSBs) are reserved for block size.921*922* Where one superblock size is specified, it applies to all planes of the923* buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,924* the first applies to the Luma plane and the second applies to the Chroma925* plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).926* Multiple superblock sizes are only valid for multi-plane YCbCr formats.927*/928#define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf929#define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL)930#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL)931#define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL)932#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)933934/*935* AFBC lossless colorspace transform936*937* Indicates that the buffer makes use of the AFBC lossless colorspace938* transform.939*/940#define AFBC_FORMAT_MOD_YTR (1ULL << 4)941942/*943* AFBC block-split944*945* Indicates that the payload of each superblock is split. The second946* half of the payload is positioned at a predefined offset from the start947* of the superblock payload.948*/949#define AFBC_FORMAT_MOD_SPLIT (1ULL << 5)950951/*952* AFBC sparse layout953*954* This flag indicates that the payload of each superblock must be stored at a955* predefined position relative to the other superblocks in the same AFBC956* buffer. This order is the same order used by the header buffer. In this mode957* each superblock is given the same amount of space as an uncompressed958* superblock of the particular format would require, rounding up to the next959* multiple of 128 bytes in size.960*/961#define AFBC_FORMAT_MOD_SPARSE (1ULL << 6)962963/*964* AFBC copy-block restrict965*966* Buffers with this flag must obey the copy-block restriction. The restriction967* is such that there are no copy-blocks referring across the border of 8x8968* blocks. For the subsampled data the 8x8 limitation is also subsampled.969*/970#define AFBC_FORMAT_MOD_CBR (1ULL << 7)971972/*973* AFBC tiled layout974*975* The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all976* superblocks inside a tile are stored together in memory. 8x8 tiles are used977* for pixel formats up to and including 32 bpp while 4x4 tiles are used for978* larger bpp formats. The order between the tiles is scan line.979* When the tiled layout is used, the buffer size (in pixels) must be aligned980* to the tile size.981*/982#define AFBC_FORMAT_MOD_TILED (1ULL << 8)983984/*985* AFBC solid color blocks986*987* Indicates that the buffer makes use of solid-color blocks, whereby bandwidth988* can be reduced if a whole superblock is a single color.989*/990#define AFBC_FORMAT_MOD_SC (1ULL << 9)991992/*993* AFBC double-buffer994*995* Indicates that the buffer is allocated in a layout safe for front-buffer996* rendering.997*/998#define AFBC_FORMAT_MOD_DB (1ULL << 10)9991000/*1001* AFBC buffer content hints1002*1003* Indicates that the buffer includes per-superblock content hints.1004*/1005#define AFBC_FORMAT_MOD_BCH (1ULL << 11)10061007/* AFBC uncompressed storage mode1008*1009* Indicates that the buffer is using AFBC uncompressed storage mode.1010* In this mode all superblock payloads in the buffer use the uncompressed1011* storage mode, which is usually only used for data which cannot be compressed.1012* The buffer layout is the same as for AFBC buffers without USM set, this only1013* affects the storage mode of the individual superblocks. Note that even a1014* buffer without USM set may use uncompressed storage mode for some or all1015* superblocks, USM just guarantees it for all.1016*/1017#define AFBC_FORMAT_MOD_USM (1ULL << 12)10181019/*1020* Arm 16x16 Block U-Interleaved modifier1021*1022* This is used by Arm Mali Utgard and Midgard GPUs. It divides the image1023* into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels1024* in the block are reordered.1025*/1026#define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \1027DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)10281029/*1030* Allwinner tiled modifier1031*1032* This tiling mode is implemented by the VPU found on all Allwinner platforms,1033* codenamed sunxi. It is associated with a YUV format that uses either 2 or 31034* planes.1035*1036* With this tiling, the luminance samples are disposed in tiles representing1037* 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.1038* The pixel order in each tile is linear and the tiles are disposed linearly,1039* both in row-major order.1040*/1041#define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)10421043/*1044* Amlogic Video Framebuffer Compression modifiers1045*1046* Amlogic uses a proprietary lossless image compression protocol and format1047* for their hardware video codec accelerators, either video decoders or1048* video input encoders.1049*1050* It considerably reduces memory bandwidth while writing and reading1051* frames in memory.1052*1053* The underlying storage is considered to be 3 components, 8bit or 10-bit1054* per component YCbCr 420, single plane :1055* - DRM_FORMAT_YUV420_8BIT1056* - DRM_FORMAT_YUV420_10BIT1057*1058* The first 8 bits of the mode defines the layout, then the following 8 bits1059* defines the options changing the layout.1060*1061* Not all combinations are valid, and different SoCs may support different1062* combinations of layout and options.1063*/1064#define __fourcc_mod_amlogic_layout_mask 0xff1065#define __fourcc_mod_amlogic_options_shift 81066#define __fourcc_mod_amlogic_options_mask 0xff10671068#define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \1069fourcc_mod_code(AMLOGIC, \1070((__layout) & __fourcc_mod_amlogic_layout_mask) | \1071(((__options) & __fourcc_mod_amlogic_options_mask) \1072<< __fourcc_mod_amlogic_options_shift))10731074/* Amlogic FBC Layouts */10751076/*1077* Amlogic FBC Basic Layout1078*1079* The basic layout is composed of:1080* - a body content organized in 64x32 superblocks with 4096 bytes per1081* superblock in default mode.1082* - a 32 bytes per 128x64 header block1083*1084* This layout is transferrable between Amlogic SoCs supporting this modifier.1085*/1086#define AMLOGIC_FBC_LAYOUT_BASIC (1ULL)10871088/*1089* Amlogic FBC Scatter Memory layout1090*1091* Indicates the header contains IOMMU references to the compressed1092* frames content to optimize memory access and layout.1093*1094* In this mode, only the header memory address is needed, thus the1095* content memory organization is tied to the current producer1096* execution and cannot be saved/dumped neither transferrable between1097* Amlogic SoCs supporting this modifier.1098*1099* Due to the nature of the layout, these buffers are not expected to1100* be accessible by the user-space clients, but only accessible by the1101* hardware producers and consumers.1102*1103* The user-space clients should expect a failure while trying to mmap1104* the DMA-BUF handle returned by the producer.1105*/1106#define AMLOGIC_FBC_LAYOUT_SCATTER (2ULL)11071108/* Amlogic FBC Layout Options Bit Mask */11091110/*1111* Amlogic FBC Memory Saving mode1112*1113* Indicates the storage is packed when pixel size is multiple of word1114* boudaries, i.e. 8bit should be stored in this mode to save allocation1115* memory.1116*1117* This mode reduces body layout to 3072 bytes per 64x32 superblock with1118* the basic layout and 3200 bytes per 64x32 superblock combined with1119* the scatter layout.1120*/1121#define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0)11221123/*1124* AMD modifiers1125*1126* Memory layout:1127*1128* without DCC:1129* - main surface1130*1131* with DCC & without DCC_RETILE:1132* - main surface in plane 01133* - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)1134*1135* with DCC & DCC_RETILE:1136* - main surface in plane 01137* - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)1138* - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)1139*1140* For multi-plane formats the above surfaces get merged into one plane for1141* each format plane, based on the required alignment only.1142*1143* Bits Parameter Notes1144* ----- ------------------------ ---------------------------------------------1145*1146* 7:0 TILE_VERSION Values are AMD_FMT_MOD_TILE_VER_*1147* 12:8 TILE Values are AMD_FMT_MOD_TILE_<version>_*1148* 13 DCC1149* 14 DCC_RETILE1150* 15 DCC_PIPE_ALIGN1151* 16 DCC_INDEPENDENT_64B1152* 17 DCC_INDEPENDENT_128B1153* 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*1154* 20 DCC_CONSTANT_ENCODE1155* 23:21 PIPE_XOR_BITS Only for some chips1156* 26:24 BANK_XOR_BITS Only for some chips1157* 29:27 PACKERS Only for some chips1158* 32:30 RB Only for some chips1159* 35:33 PIPE Only for some chips1160* 55:36 - Reserved for future use, must be zero1161*/1162#define AMD_FMT_MOD fourcc_mod_code(AMD, 0)11631164#define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)11651166/* Reserve 0 for GFX8 and older */1167#define AMD_FMT_MOD_TILE_VER_GFX9 11168#define AMD_FMT_MOD_TILE_VER_GFX10 21169#define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 311701171/*1172* 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical1173* version.1174*/1175#define AMD_FMT_MOD_TILE_GFX9_64K_S 911761177/*1178* 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has1179* GFX9 as canonical version.1180*/1181#define AMD_FMT_MOD_TILE_GFX9_64K_D 101182#define AMD_FMT_MOD_TILE_GFX9_64K_S_X 251183#define AMD_FMT_MOD_TILE_GFX9_64K_D_X 261184#define AMD_FMT_MOD_TILE_GFX9_64K_R_X 2711851186#define AMD_FMT_MOD_DCC_BLOCK_64B 01187#define AMD_FMT_MOD_DCC_BLOCK_128B 11188#define AMD_FMT_MOD_DCC_BLOCK_256B 211891190#define AMD_FMT_MOD_TILE_VERSION_SHIFT 01191#define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF1192#define AMD_FMT_MOD_TILE_SHIFT 81193#define AMD_FMT_MOD_TILE_MASK 0x1F11941195/* Whether DCC compression is enabled. */1196#define AMD_FMT_MOD_DCC_SHIFT 131197#define AMD_FMT_MOD_DCC_MASK 0x111981199/*1200* Whether to include two DCC surfaces, one which is rb & pipe aligned, and1201* one which is not-aligned.1202*/1203#define AMD_FMT_MOD_DCC_RETILE_SHIFT 141204#define AMD_FMT_MOD_DCC_RETILE_MASK 0x112051206/* Only set if DCC_RETILE = false */1207#define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 151208#define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x112091210#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 161211#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x11212#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 171213#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x11214#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 181215#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x312161217/*1218* DCC supports embedding some clear colors directly in the DCC surface.1219* However, on older GPUs the rendering HW ignores the embedded clear color1220* and prefers the driver provided color. This necessitates doing a fastclear1221* eliminate operation before a process transfers control.1222*1223* If this bit is set that means the fastclear eliminate is not needed for these1224* embeddable colors.1225*/1226#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 201227#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x112281229/*1230* The below fields are for accounting for per GPU differences. These are only1231* relevant for GFX9 and later and if the tile field is *_X/_T.1232*1233* PIPE_XOR_BITS = always needed1234* BANK_XOR_BITS = only for TILE_VER_GFX91235* PACKERS = only for TILE_VER_GFX10_RBPLUS1236* RB = only for TILE_VER_GFX9 & DCC1237* PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)1238*/1239#define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 211240#define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x71241#define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 241242#define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x71243#define AMD_FMT_MOD_PACKERS_SHIFT 271244#define AMD_FMT_MOD_PACKERS_MASK 0x71245#define AMD_FMT_MOD_RB_SHIFT 301246#define AMD_FMT_MOD_RB_MASK 0x71247#define AMD_FMT_MOD_PIPE_SHIFT 331248#define AMD_FMT_MOD_PIPE_MASK 0x712491250#define AMD_FMT_MOD_SET(field, value) \1251((uint64_t)(value) << AMD_FMT_MOD_##field##_SHIFT)1252#define AMD_FMT_MOD_GET(field, value) \1253(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)1254#define AMD_FMT_MOD_CLEAR(field) \1255(~((uint64_t)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))12561257#if defined(__cplusplus)1258}1259#endif12601261#endif /* DRM_FOURCC_H */126212631264