Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/include/drm-uapi/drm_fourcc.h
4547 views
1
/*
2
* Copyright 2011 Intel Corporation
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining a
5
* copy of this software and associated documentation files (the "Software"),
6
* to deal in the Software without restriction, including without limitation
7
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
* and/or sell copies of the Software, and to permit persons to whom the
9
* Software is furnished to do so, subject to the following conditions:
10
*
11
* The above copyright notice and this permission notice (including the next
12
* paragraph) shall be included in all copies or substantial portions of the
13
* Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21
* OTHER DEALINGS IN THE SOFTWARE.
22
*/
23
24
#ifndef DRM_FOURCC_H
25
#define DRM_FOURCC_H
26
27
#include "drm.h"
28
29
#if defined(__cplusplus)
30
extern "C" {
31
#endif
32
33
/**
34
* DOC: overview
35
*
36
* In the DRM subsystem, framebuffer pixel formats are described using the
37
* fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38
* fourcc code, a Format Modifier may optionally be provided, in order to
39
* further describe the buffer's format - for example tiling or compression.
40
*
41
* Format Modifiers
42
* ----------------
43
*
44
* Format modifiers are used in conjunction with a fourcc code, forming a
45
* unique fourcc:modifier pair. This format:modifier pair must fully define the
46
* format and data layout of the buffer, and should be the only way to describe
47
* that particular buffer.
48
*
49
* Having multiple fourcc:modifier pairs which describe the same layout should
50
* be avoided, as such aliases run the risk of different drivers exposing
51
* different names for the same data format, forcing userspace to understand
52
* that they are aliases.
53
*
54
* Format modifiers may change any property of the buffer, including the number
55
* of planes and/or the required allocation size. Format modifiers are
56
* vendor-namespaced, and as such the relationship between a fourcc code and a
57
* modifier is specific to the modifer being used. For example, some modifiers
58
* may preserve meaning - such as number of planes - from the fourcc code,
59
* whereas others may not.
60
*
61
* Modifiers must uniquely encode buffer layout. In other words, a buffer must
62
* match only a single modifier. A modifier must not be a subset of layouts of
63
* another modifier. For instance, it's incorrect to encode pitch alignment in
64
* a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
65
* aligned modifier. That said, modifiers can have implicit minimal
66
* requirements.
67
*
68
* For modifiers where the combination of fourcc code and modifier can alias,
69
* a canonical pair needs to be defined and used by all drivers. Preferred
70
* combinations are also encouraged where all combinations might lead to
71
* confusion and unnecessarily reduced interoperability. An example for the
72
* latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
73
*
74
* There are two kinds of modifier users:
75
*
76
* - Kernel and user-space drivers: for drivers it's important that modifiers
77
* don't alias, otherwise two drivers might support the same format but use
78
* different aliases, preventing them from sharing buffers in an efficient
79
* format.
80
* - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
81
* see modifiers as opaque tokens they can check for equality and intersect.
82
* These users musn't need to know to reason about the modifier value
83
* (i.e. they are not expected to extract information out of the modifier).
84
*
85
* Vendors should document their modifier usage in as much detail as
86
* possible, to ensure maximum compatibility across devices, drivers and
87
* applications.
88
*
89
* The authoritative list of format modifier codes is found in
90
* `include/uapi/drm/drm_fourcc.h`
91
*/
92
93
#define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
94
((__u32)(c) << 16) | ((__u32)(d) << 24))
95
96
#define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
97
98
/* Reserve 0 for the invalid format specifier */
99
#define DRM_FORMAT_INVALID 0
100
101
/* color index */
102
#define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
103
104
/* 8 bpp Red */
105
#define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
106
107
/* 16 bpp Red */
108
#define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
109
110
/* 16 bpp RG */
111
#define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
112
#define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
113
114
/* 32 bpp RG */
115
#define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
116
#define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
117
118
/* 8 bpp RGB */
119
#define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
120
#define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
121
122
/* 16 bpp RGB */
123
#define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
124
#define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
125
#define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
126
#define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
127
128
#define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
129
#define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
130
#define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
131
#define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
132
133
#define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
134
#define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
135
#define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
136
#define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
137
138
#define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
139
#define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
140
#define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
141
#define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
142
143
#define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
144
#define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
145
146
/* 24 bpp RGB */
147
#define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
148
#define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
149
150
/* 32 bpp RGB */
151
#define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
152
#define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
153
#define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
154
#define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
155
156
#define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
157
#define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
158
#define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
159
#define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
160
161
#define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
162
#define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
163
#define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
164
#define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
165
166
#define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
167
#define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
168
#define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
169
#define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
170
171
/* 64 bpp RGB */
172
#define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
173
#define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
174
175
#define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
176
#define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
177
178
/*
179
* Floating point 64bpp RGB
180
* IEEE 754-2008 binary16 half-precision float
181
* [15:0] sign:exponent:mantissa 1:5:10
182
*/
183
#define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
184
#define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
185
186
#define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
187
#define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
188
189
/*
190
* RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
191
* of unused padding per component:
192
*/
193
#define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
194
195
/* packed YCbCr */
196
#define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
197
#define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
198
#define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
199
#define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
200
201
#define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
202
#define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
203
#define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
204
#define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
205
206
/*
207
* packed Y2xx indicate for each component, xx valid data occupy msb
208
* 16-xx padding occupy lsb
209
*/
210
#define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
211
#define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
212
#define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
213
214
/*
215
* packed Y4xx indicate for each component, xx valid data occupy msb
216
* 16-xx padding occupy lsb except Y410
217
*/
218
#define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
219
#define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
220
#define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
221
222
#define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
223
#define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
224
#define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
225
226
/*
227
* packed YCbCr420 2x2 tiled formats
228
* first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
229
*/
230
/* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
231
#define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0')
232
/* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
233
#define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0')
234
235
/* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
236
#define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2')
237
/* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
238
#define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2')
239
240
/*
241
* 1-plane YUV 4:2:0
242
* In these formats, the component ordering is specified (Y, followed by U
243
* then V), but the exact Linear layout is undefined.
244
* These formats can only be used with a non-Linear modifier.
245
*/
246
#define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8')
247
#define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
248
249
/*
250
* 2 plane RGB + A
251
* index 0 = RGB plane, same format as the corresponding non _A8 format has
252
* index 1 = A plane, [7:0] A
253
*/
254
#define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8')
255
#define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8')
256
#define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8')
257
#define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8')
258
#define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8')
259
#define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8')
260
#define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8')
261
#define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8')
262
263
/*
264
* 2 plane YCbCr
265
* index 0 = Y plane, [7:0] Y
266
* index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
267
* or
268
* index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
269
*/
270
#define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
271
#define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
272
#define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
273
#define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
274
#define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
275
#define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
276
/*
277
* 2 plane YCbCr
278
* index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
279
* index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
280
*/
281
#define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
282
283
/*
284
* 2 plane YCbCr MSB aligned
285
* index 0 = Y plane, [15:0] Y:x [10:6] little endian
286
* index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
287
*/
288
#define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
289
290
/*
291
* 2 plane YCbCr MSB aligned
292
* index 0 = Y plane, [15:0] Y:x [10:6] little endian
293
* index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
294
*/
295
#define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
296
297
/*
298
* 2 plane YCbCr MSB aligned
299
* index 0 = Y plane, [15:0] Y:x [12:4] little endian
300
* index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
301
*/
302
#define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
303
304
/*
305
* 2 plane YCbCr MSB aligned
306
* index 0 = Y plane, [15:0] Y little endian
307
* index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
308
*/
309
#define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
310
311
/* 3 plane non-subsampled (444) YCbCr
312
* 16 bits per component, but only 10 bits are used and 6 bits are padded
313
* index 0: Y plane, [15:0] Y:x [10:6] little endian
314
* index 1: Cb plane, [15:0] Cb:x [10:6] little endian
315
* index 2: Cr plane, [15:0] Cr:x [10:6] little endian
316
*/
317
#define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0')
318
319
/* 3 plane non-subsampled (444) YCrCb
320
* 16 bits per component, but only 10 bits are used and 6 bits are padded
321
* index 0: Y plane, [15:0] Y:x [10:6] little endian
322
* index 1: Cr plane, [15:0] Cr:x [10:6] little endian
323
* index 2: Cb plane, [15:0] Cb:x [10:6] little endian
324
*/
325
#define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1')
326
327
/*
328
* 3 plane YCbCr
329
* index 0: Y plane, [7:0] Y
330
* index 1: Cb plane, [7:0] Cb
331
* index 2: Cr plane, [7:0] Cr
332
* or
333
* index 1: Cr plane, [7:0] Cr
334
* index 2: Cb plane, [7:0] Cb
335
*/
336
#define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
337
#define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
338
#define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
339
#define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
340
#define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
341
#define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
342
#define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
343
#define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
344
#define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
345
#define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
346
347
348
/*
349
* Format Modifiers:
350
*
351
* Format modifiers describe, typically, a re-ordering or modification
352
* of the data in a plane of an FB. This can be used to express tiled/
353
* swizzled formats, or compression, or a combination of the two.
354
*
355
* The upper 8 bits of the format modifier are a vendor-id as assigned
356
* below. The lower 56 bits are assigned as vendor sees fit.
357
*/
358
359
/* Vendor Ids: */
360
#define DRM_FORMAT_MOD_VENDOR_NONE 0
361
#define DRM_FORMAT_MOD_VENDOR_INTEL 0x01
362
#define DRM_FORMAT_MOD_VENDOR_AMD 0x02
363
#define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03
364
#define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
365
#define DRM_FORMAT_MOD_VENDOR_QCOM 0x05
366
#define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
367
#define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
368
#define DRM_FORMAT_MOD_VENDOR_ARM 0x08
369
#define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
370
#define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
371
372
/* add more to the end as needed */
373
374
#define DRM_FORMAT_RESERVED ((1ULL << 56) - 1)
375
376
#define fourcc_mod_code(vendor, val) \
377
((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
378
379
/*
380
* Format Modifier tokens:
381
*
382
* When adding a new token please document the layout with a code comment,
383
* similar to the fourcc codes above. drm_fourcc.h is considered the
384
* authoritative source for all of these.
385
*
386
* Generic modifier names:
387
*
388
* DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
389
* for layouts which are common across multiple vendors. To preserve
390
* compatibility, in cases where a vendor-specific definition already exists and
391
* a generic name for it is desired, the common name is a purely symbolic alias
392
* and must use the same numerical value as the original definition.
393
*
394
* Note that generic names should only be used for modifiers which describe
395
* generic layouts (such as pixel re-ordering), which may have
396
* independently-developed support across multiple vendors.
397
*
398
* In future cases where a generic layout is identified before merging with a
399
* vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
400
* 'NONE' could be considered. This should only be for obvious, exceptional
401
* cases to avoid polluting the 'GENERIC' namespace with modifiers which only
402
* apply to a single vendor.
403
*
404
* Generic names should not be used for cases where multiple hardware vendors
405
* have implementations of the same standardised compression scheme (such as
406
* AFBC). In those cases, all implementations should use the same format
407
* modifier(s), reflecting the vendor of the standard.
408
*/
409
410
#define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
411
412
/*
413
* Invalid Modifier
414
*
415
* This modifier can be used as a sentinel to terminate the format modifiers
416
* list, or to initialize a variable with an invalid modifier. It might also be
417
* used to report an error back to userspace for certain APIs.
418
*/
419
#define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
420
421
/*
422
* Linear Layout
423
*
424
* Just plain linear layout. Note that this is different from no specifying any
425
* modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
426
* which tells the driver to also take driver-internal information into account
427
* and so might actually result in a tiled framebuffer.
428
*/
429
#define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0)
430
431
/*
432
* Deprecated: use DRM_FORMAT_MOD_LINEAR instead
433
*
434
* The "none" format modifier doesn't actually mean that the modifier is
435
* implicit, instead it means that the layout is linear. Whether modifiers are
436
* used is out-of-band information carried in an API-specific way (e.g. in a
437
* flag for drm_mode_fb_cmd2).
438
*/
439
#define DRM_FORMAT_MOD_NONE 0
440
441
/* Intel framebuffer modifiers */
442
443
/*
444
* Intel X-tiling layout
445
*
446
* This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
447
* in row-major layout. Within the tile bytes are laid out row-major, with
448
* a platform-dependent stride. On top of that the memory can apply
449
* platform-depending swizzling of some higher address bits into bit6.
450
*
451
* Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
452
* On earlier platforms the is highly platforms specific and not useful for
453
* cross-driver sharing. It exists since on a given platform it does uniquely
454
* identify the layout in a simple way for i915-specific userspace, which
455
* facilitated conversion of userspace to modifiers. Additionally the exact
456
* format on some really old platforms is not known.
457
*/
458
#define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
459
460
/*
461
* Intel Y-tiling layout
462
*
463
* This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
464
* in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
465
* chunks column-major, with a platform-dependent height. On top of that the
466
* memory can apply platform-depending swizzling of some higher address bits
467
* into bit6.
468
*
469
* Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
470
* On earlier platforms the is highly platforms specific and not useful for
471
* cross-driver sharing. It exists since on a given platform it does uniquely
472
* identify the layout in a simple way for i915-specific userspace, which
473
* facilitated conversion of userspace to modifiers. Additionally the exact
474
* format on some really old platforms is not known.
475
*/
476
#define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
477
478
/*
479
* Intel Yf-tiling layout
480
*
481
* This is a tiled layout using 4Kb tiles in row-major layout.
482
* Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
483
* are arranged in four groups (two wide, two high) with column-major layout.
484
* Each group therefore consits out of four 256 byte units, which are also laid
485
* out as 2x2 column-major.
486
* 256 byte units are made out of four 64 byte blocks of pixels, producing
487
* either a square block or a 2:1 unit.
488
* 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
489
* in pixel depends on the pixel depth.
490
*/
491
#define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
492
493
/*
494
* Intel color control surface (CCS) for render compression
495
*
496
* The framebuffer format must be one of the 8:8:8:8 RGB formats.
497
* The main surface will be plane index 0 and must be Y/Yf-tiled,
498
* the CCS will be plane index 1.
499
*
500
* Each CCS tile matches a 1024x512 pixel area of the main surface.
501
* To match certain aspects of the 3D hardware the CCS is
502
* considered to be made up of normal 128Bx32 Y tiles, Thus
503
* the CCS pitch must be specified in multiples of 128 bytes.
504
*
505
* In reality the CCS tile appears to be a 64Bx64 Y tile, composed
506
* of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
507
* But that fact is not relevant unless the memory is accessed
508
* directly.
509
*/
510
#define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4)
511
#define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5)
512
513
/*
514
* Intel color control surfaces (CCS) for Gen-12 render compression.
515
*
516
* The main surface is Y-tiled and at plane index 0, the CCS is linear and
517
* at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
518
* main surface. In other words, 4 bits in CCS map to a main surface cache
519
* line pair. The main surface pitch is required to be a multiple of four
520
* Y-tile widths.
521
*/
522
#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
523
524
/*
525
* Intel color control surfaces (CCS) for Gen-12 media compression
526
*
527
* The main surface is Y-tiled and at plane index 0, the CCS is linear and
528
* at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
529
* main surface. In other words, 4 bits in CCS map to a main surface cache
530
* line pair. The main surface pitch is required to be a multiple of four
531
* Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
532
* Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
533
* planes 2 and 3 for the respective CCS.
534
*/
535
#define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
536
537
/*
538
* Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
539
* compression.
540
*
541
* The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
542
* and at index 1. The clear color is stored at index 2, and the pitch should
543
* be ignored. The clear color structure is 256 bits. The first 128 bits
544
* represents Raw Clear Color Red, Green, Blue and Alpha color each represented
545
* by 32 bits. The raw clear color is consumed by the 3d engine and generates
546
* the converted clear color of size 64 bits. The first 32 bits store the Lower
547
* Converted Clear Color value and the next 32 bits store the Higher Converted
548
* Clear Color value when applicable. The Converted Clear Color values are
549
* consumed by the DE. The last 64 bits are used to store Color Discard Enable
550
* and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
551
* corresponds to an area of 4x1 tiles in the main surface. The main surface
552
* pitch is required to be a multiple of 4 tile widths.
553
*/
554
#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
555
556
/*
557
* Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
558
*
559
* Macroblocks are laid in a Z-shape, and each pixel data is following the
560
* standard NV12 style.
561
* As for NV12, an image is the result of two frame buffers: one for Y,
562
* one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
563
* Alignment requirements are (for each buffer):
564
* - multiple of 128 pixels for the width
565
* - multiple of 32 pixels for the height
566
*
567
* For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
568
*/
569
#define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1)
570
571
/*
572
* Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
573
*
574
* This is a simple tiled layout using tiles of 16x16 pixels in a row-major
575
* layout. For YCbCr formats Cb/Cr components are taken in such a way that
576
* they correspond to their 16x16 luma block.
577
*/
578
#define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2)
579
580
/*
581
* Qualcomm Compressed Format
582
*
583
* Refers to a compressed variant of the base format that is compressed.
584
* Implementation may be platform and base-format specific.
585
*
586
* Each macrotile consists of m x n (mostly 4 x 4) tiles.
587
* Pixel data pitch/stride is aligned with macrotile width.
588
* Pixel data height is aligned with macrotile height.
589
* Entire pixel data buffer is aligned with 4k(bytes).
590
*/
591
#define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1)
592
593
/* Vivante framebuffer modifiers */
594
595
/*
596
* Vivante 4x4 tiling layout
597
*
598
* This is a simple tiled layout using tiles of 4x4 pixels in a row-major
599
* layout.
600
*/
601
#define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1)
602
603
/*
604
* Vivante 64x64 super-tiling layout
605
*
606
* This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
607
* contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
608
* major layout.
609
*
610
* For more information: see
611
* https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
612
*/
613
#define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2)
614
615
/*
616
* Vivante 4x4 tiling layout for dual-pipe
617
*
618
* Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
619
* different base address. Offsets from the base addresses are therefore halved
620
* compared to the non-split tiled layout.
621
*/
622
#define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3)
623
624
/*
625
* Vivante 64x64 super-tiling layout for dual-pipe
626
*
627
* Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
628
* starts at a different base address. Offsets from the base addresses are
629
* therefore halved compared to the non-split super-tiled layout.
630
*/
631
#define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
632
633
/* NVIDIA frame buffer modifiers */
634
635
/*
636
* Tegra Tiled Layout, used by Tegra 2, 3 and 4.
637
*
638
* Pixels are arranged in simple tiles of 16 x 16 bytes.
639
*/
640
#define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
641
642
/*
643
* Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
644
* and Tegra GPUs starting with Tegra K1.
645
*
646
* Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies
647
* based on the architecture generation. GOBs themselves are then arranged in
648
* 3D blocks, with the block dimensions (in terms of GOBs) always being a power
649
* of two, and hence expressible as their log2 equivalent (E.g., "2" represents
650
* a block depth or height of "4").
651
*
652
* Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
653
* in full detail.
654
*
655
* Macro
656
* Bits Param Description
657
* ---- ----- -----------------------------------------------------------------
658
*
659
* 3:0 h log2(height) of each block, in GOBs. Placed here for
660
* compatibility with the existing
661
* DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
662
*
663
* 4:4 - Must be 1, to indicate block-linear layout. Necessary for
664
* compatibility with the existing
665
* DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
666
*
667
* 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block
668
* size). Must be zero.
669
*
670
* Note there is no log2(width) parameter. Some portions of the
671
* hardware support a block width of two gobs, but it is impractical
672
* to use due to lack of support elsewhere, and has no known
673
* benefits.
674
*
675
* 11:9 - Reserved (To support 2D-array textures with variable array stride
676
* in blocks, specified via log2(tile width in blocks)). Must be
677
* zero.
678
*
679
* 19:12 k Page Kind. This value directly maps to a field in the page
680
* tables of all GPUs >= NV50. It affects the exact layout of bits
681
* in memory and can be derived from the tuple
682
*
683
* (format, GPU model, compression type, samples per pixel)
684
*
685
* Where compression type is defined below. If GPU model were
686
* implied by the format modifier, format, or memory buffer, page
687
* kind would not need to be included in the modifier itself, but
688
* since the modifier should define the layout of the associated
689
* memory buffer independent from any device or other context, it
690
* must be included here.
691
*
692
* 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed
693
* starting with Fermi GPUs. Additionally, the mapping between page
694
* kind and bit layout has changed at various points.
695
*
696
* 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
697
* 1 = Gob Height 4, G80 - GT2XX Page Kind mapping
698
* 2 = Gob Height 8, Turing+ Page Kind mapping
699
* 3 = Reserved for future use.
700
*
701
* 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further
702
* bit remapping step that occurs at an even lower level than the
703
* page kind and block linear swizzles. This causes the layout of
704
* surfaces mapped in those SOC's GPUs to be incompatible with the
705
* equivalent mapping on other GPUs in the same system.
706
*
707
* 0 = Tegra K1 - Tegra Parker/TX2 Layout.
708
* 1 = Desktop GPU and Tegra Xavier+ Layout
709
*
710
* 25:23 c Lossless Framebuffer Compression type.
711
*
712
* 0 = none
713
* 1 = ROP/3D, layout 1, exact compression format implied by Page
714
* Kind field
715
* 2 = ROP/3D, layout 2, exact compression format implied by Page
716
* Kind field
717
* 3 = CDE horizontal
718
* 4 = CDE vertical
719
* 5 = Reserved for future use
720
* 6 = Reserved for future use
721
* 7 = Reserved for future use
722
*
723
* 55:25 - Reserved for future use. Must be zero.
724
*/
725
#define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
726
fourcc_mod_code(NVIDIA, (0x10 | \
727
((h) & 0xf) | \
728
(((k) & 0xff) << 12) | \
729
(((g) & 0x3) << 20) | \
730
(((s) & 0x1) << 22) | \
731
(((c) & 0x7) << 23)))
732
733
/* To grandfather in prior block linear format modifiers to the above layout,
734
* the page kind "0", which corresponds to "pitch/linear" and hence is unusable
735
* with block-linear layouts, is remapped within drivers to the value 0xfe,
736
* which corresponds to the "generic" kind used for simple single-sample
737
* uncompressed color formats on Fermi - Volta GPUs.
738
*/
739
static __inline__ __u64
740
drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
741
{
742
if (!(modifier & 0x10) || (modifier & (0xff << 12)))
743
return modifier;
744
else
745
return modifier | (0xfe << 12);
746
}
747
748
/*
749
* 16Bx2 Block Linear layout, used by Tegra K1 and later
750
*
751
* Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
752
* vertically by a power of 2 (1 to 32 GOBs) to form a block.
753
*
754
* Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
755
*
756
* Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
757
* Valid values are:
758
*
759
* 0 == ONE_GOB
760
* 1 == TWO_GOBS
761
* 2 == FOUR_GOBS
762
* 3 == EIGHT_GOBS
763
* 4 == SIXTEEN_GOBS
764
* 5 == THIRTYTWO_GOBS
765
*
766
* Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
767
* in full detail.
768
*/
769
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
770
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
771
772
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
773
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
774
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
775
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
776
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
777
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
778
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
779
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
780
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
781
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
782
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
783
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
784
785
/*
786
* Some Broadcom modifiers take parameters, for example the number of
787
* vertical lines in the image. Reserve the lower 32 bits for modifier
788
* type, and the next 24 bits for parameters. Top 8 bits are the
789
* vendor code.
790
*/
791
#define __fourcc_mod_broadcom_param_shift 8
792
#define __fourcc_mod_broadcom_param_bits 48
793
#define fourcc_mod_broadcom_code(val, params) \
794
fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
795
#define fourcc_mod_broadcom_param(m) \
796
((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \
797
((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
798
#define fourcc_mod_broadcom_mod(m) \
799
((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \
800
__fourcc_mod_broadcom_param_shift))
801
802
/*
803
* Broadcom VC4 "T" format
804
*
805
* This is the primary layout that the V3D GPU can texture from (it
806
* can't do linear). The T format has:
807
*
808
* - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4
809
* pixels at 32 bit depth.
810
*
811
* - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
812
* 16x16 pixels).
813
*
814
* - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On
815
* even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
816
* they're (TR, BR, BL, TL), where bottom left is start of memory.
817
*
818
* - an image made of 4k tiles in rows either left-to-right (even rows of 4k
819
* tiles) or right-to-left (odd rows of 4k tiles).
820
*/
821
#define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
822
823
/*
824
* Broadcom SAND format
825
*
826
* This is the native format that the H.264 codec block uses. For VC4
827
* HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
828
*
829
* The image can be considered to be split into columns, and the
830
* columns are placed consecutively into memory. The width of those
831
* columns can be either 32, 64, 128, or 256 pixels, but in practice
832
* only 128 pixel columns are used.
833
*
834
* The pitch between the start of each column is set to optimally
835
* switch between SDRAM banks. This is passed as the number of lines
836
* of column width in the modifier (we can't use the stride value due
837
* to various core checks that look at it , so you should set the
838
* stride to width*cpp).
839
*
840
* Note that the column height for this format modifier is the same
841
* for all of the planes, assuming that each column contains both Y
842
* and UV. Some SAND-using hardware stores UV in a separate tiled
843
* image from Y to reduce the column height, which is not supported
844
* with these modifiers.
845
*/
846
847
#define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
848
fourcc_mod_broadcom_code(2, v)
849
#define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
850
fourcc_mod_broadcom_code(3, v)
851
#define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
852
fourcc_mod_broadcom_code(4, v)
853
#define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
854
fourcc_mod_broadcom_code(5, v)
855
856
#define DRM_FORMAT_MOD_BROADCOM_SAND32 \
857
DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
858
#define DRM_FORMAT_MOD_BROADCOM_SAND64 \
859
DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
860
#define DRM_FORMAT_MOD_BROADCOM_SAND128 \
861
DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
862
#define DRM_FORMAT_MOD_BROADCOM_SAND256 \
863
DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
864
865
/* Broadcom UIF format
866
*
867
* This is the common format for the current Broadcom multimedia
868
* blocks, including V3D 3.x and newer, newer video codecs, and
869
* displays.
870
*
871
* The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
872
* and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are
873
* stored in columns, with padding between the columns to ensure that
874
* moving from one column to the next doesn't hit the same SDRAM page
875
* bank.
876
*
877
* To calculate the padding, it is assumed that each hardware block
878
* and the software driving it knows the platform's SDRAM page size,
879
* number of banks, and XOR address, and that it's identical between
880
* all blocks using the format. This tiling modifier will use XOR as
881
* necessary to reduce the padding. If a hardware block can't do XOR,
882
* the assumption is that a no-XOR tiling modifier will be created.
883
*/
884
#define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
885
886
/*
887
* Arm Framebuffer Compression (AFBC) modifiers
888
*
889
* AFBC is a proprietary lossless image compression protocol and format.
890
* It provides fine-grained random access and minimizes the amount of data
891
* transferred between IP blocks.
892
*
893
* AFBC has several features which may be supported and/or used, which are
894
* represented using bits in the modifier. Not all combinations are valid,
895
* and different devices or use-cases may support different combinations.
896
*
897
* Further information on the use of AFBC modifiers can be found in
898
* Documentation/gpu/afbc.rst
899
*/
900
901
/*
902
* The top 4 bits (out of the 56 bits alloted for specifying vendor specific
903
* modifiers) denote the category for modifiers. Currently we have only two
904
* categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen
905
* different categories.
906
*/
907
#define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
908
fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
909
910
#define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
911
#define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
912
913
#define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
914
DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
915
916
/*
917
* AFBC superblock size
918
*
919
* Indicates the superblock size(s) used for the AFBC buffer. The buffer
920
* size (in pixels) must be aligned to a multiple of the superblock size.
921
* Four lowest significant bits(LSBs) are reserved for block size.
922
*
923
* Where one superblock size is specified, it applies to all planes of the
924
* buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
925
* the first applies to the Luma plane and the second applies to the Chroma
926
* plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
927
* Multiple superblock sizes are only valid for multi-plane YCbCr formats.
928
*/
929
#define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf
930
#define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL)
931
#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL)
932
#define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL)
933
#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
934
935
/*
936
* AFBC lossless colorspace transform
937
*
938
* Indicates that the buffer makes use of the AFBC lossless colorspace
939
* transform.
940
*/
941
#define AFBC_FORMAT_MOD_YTR (1ULL << 4)
942
943
/*
944
* AFBC block-split
945
*
946
* Indicates that the payload of each superblock is split. The second
947
* half of the payload is positioned at a predefined offset from the start
948
* of the superblock payload.
949
*/
950
#define AFBC_FORMAT_MOD_SPLIT (1ULL << 5)
951
952
/*
953
* AFBC sparse layout
954
*
955
* This flag indicates that the payload of each superblock must be stored at a
956
* predefined position relative to the other superblocks in the same AFBC
957
* buffer. This order is the same order used by the header buffer. In this mode
958
* each superblock is given the same amount of space as an uncompressed
959
* superblock of the particular format would require, rounding up to the next
960
* multiple of 128 bytes in size.
961
*/
962
#define AFBC_FORMAT_MOD_SPARSE (1ULL << 6)
963
964
/*
965
* AFBC copy-block restrict
966
*
967
* Buffers with this flag must obey the copy-block restriction. The restriction
968
* is such that there are no copy-blocks referring across the border of 8x8
969
* blocks. For the subsampled data the 8x8 limitation is also subsampled.
970
*/
971
#define AFBC_FORMAT_MOD_CBR (1ULL << 7)
972
973
/*
974
* AFBC tiled layout
975
*
976
* The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
977
* superblocks inside a tile are stored together in memory. 8x8 tiles are used
978
* for pixel formats up to and including 32 bpp while 4x4 tiles are used for
979
* larger bpp formats. The order between the tiles is scan line.
980
* When the tiled layout is used, the buffer size (in pixels) must be aligned
981
* to the tile size.
982
*/
983
#define AFBC_FORMAT_MOD_TILED (1ULL << 8)
984
985
/*
986
* AFBC solid color blocks
987
*
988
* Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
989
* can be reduced if a whole superblock is a single color.
990
*/
991
#define AFBC_FORMAT_MOD_SC (1ULL << 9)
992
993
/*
994
* AFBC double-buffer
995
*
996
* Indicates that the buffer is allocated in a layout safe for front-buffer
997
* rendering.
998
*/
999
#define AFBC_FORMAT_MOD_DB (1ULL << 10)
1000
1001
/*
1002
* AFBC buffer content hints
1003
*
1004
* Indicates that the buffer includes per-superblock content hints.
1005
*/
1006
#define AFBC_FORMAT_MOD_BCH (1ULL << 11)
1007
1008
/* AFBC uncompressed storage mode
1009
*
1010
* Indicates that the buffer is using AFBC uncompressed storage mode.
1011
* In this mode all superblock payloads in the buffer use the uncompressed
1012
* storage mode, which is usually only used for data which cannot be compressed.
1013
* The buffer layout is the same as for AFBC buffers without USM set, this only
1014
* affects the storage mode of the individual superblocks. Note that even a
1015
* buffer without USM set may use uncompressed storage mode for some or all
1016
* superblocks, USM just guarantees it for all.
1017
*/
1018
#define AFBC_FORMAT_MOD_USM (1ULL << 12)
1019
1020
/*
1021
* Arm 16x16 Block U-Interleaved modifier
1022
*
1023
* This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1024
* into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1025
* in the block are reordered.
1026
*/
1027
#define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1028
DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1029
1030
/*
1031
* Allwinner tiled modifier
1032
*
1033
* This tiling mode is implemented by the VPU found on all Allwinner platforms,
1034
* codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1035
* planes.
1036
*
1037
* With this tiling, the luminance samples are disposed in tiles representing
1038
* 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1039
* The pixel order in each tile is linear and the tiles are disposed linearly,
1040
* both in row-major order.
1041
*/
1042
#define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1043
1044
/*
1045
* Amlogic Video Framebuffer Compression modifiers
1046
*
1047
* Amlogic uses a proprietary lossless image compression protocol and format
1048
* for their hardware video codec accelerators, either video decoders or
1049
* video input encoders.
1050
*
1051
* It considerably reduces memory bandwidth while writing and reading
1052
* frames in memory.
1053
*
1054
* The underlying storage is considered to be 3 components, 8bit or 10-bit
1055
* per component YCbCr 420, single plane :
1056
* - DRM_FORMAT_YUV420_8BIT
1057
* - DRM_FORMAT_YUV420_10BIT
1058
*
1059
* The first 8 bits of the mode defines the layout, then the following 8 bits
1060
* defines the options changing the layout.
1061
*
1062
* Not all combinations are valid, and different SoCs may support different
1063
* combinations of layout and options.
1064
*/
1065
#define __fourcc_mod_amlogic_layout_mask 0xff
1066
#define __fourcc_mod_amlogic_options_shift 8
1067
#define __fourcc_mod_amlogic_options_mask 0xff
1068
1069
#define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1070
fourcc_mod_code(AMLOGIC, \
1071
((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1072
(((__options) & __fourcc_mod_amlogic_options_mask) \
1073
<< __fourcc_mod_amlogic_options_shift))
1074
1075
/* Amlogic FBC Layouts */
1076
1077
/*
1078
* Amlogic FBC Basic Layout
1079
*
1080
* The basic layout is composed of:
1081
* - a body content organized in 64x32 superblocks with 4096 bytes per
1082
* superblock in default mode.
1083
* - a 32 bytes per 128x64 header block
1084
*
1085
* This layout is transferrable between Amlogic SoCs supporting this modifier.
1086
*/
1087
#define AMLOGIC_FBC_LAYOUT_BASIC (1ULL)
1088
1089
/*
1090
* Amlogic FBC Scatter Memory layout
1091
*
1092
* Indicates the header contains IOMMU references to the compressed
1093
* frames content to optimize memory access and layout.
1094
*
1095
* In this mode, only the header memory address is needed, thus the
1096
* content memory organization is tied to the current producer
1097
* execution and cannot be saved/dumped neither transferrable between
1098
* Amlogic SoCs supporting this modifier.
1099
*
1100
* Due to the nature of the layout, these buffers are not expected to
1101
* be accessible by the user-space clients, but only accessible by the
1102
* hardware producers and consumers.
1103
*
1104
* The user-space clients should expect a failure while trying to mmap
1105
* the DMA-BUF handle returned by the producer.
1106
*/
1107
#define AMLOGIC_FBC_LAYOUT_SCATTER (2ULL)
1108
1109
/* Amlogic FBC Layout Options Bit Mask */
1110
1111
/*
1112
* Amlogic FBC Memory Saving mode
1113
*
1114
* Indicates the storage is packed when pixel size is multiple of word
1115
* boudaries, i.e. 8bit should be stored in this mode to save allocation
1116
* memory.
1117
*
1118
* This mode reduces body layout to 3072 bytes per 64x32 superblock with
1119
* the basic layout and 3200 bytes per 64x32 superblock combined with
1120
* the scatter layout.
1121
*/
1122
#define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0)
1123
1124
/*
1125
* AMD modifiers
1126
*
1127
* Memory layout:
1128
*
1129
* without DCC:
1130
* - main surface
1131
*
1132
* with DCC & without DCC_RETILE:
1133
* - main surface in plane 0
1134
* - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1135
*
1136
* with DCC & DCC_RETILE:
1137
* - main surface in plane 0
1138
* - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1139
* - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1140
*
1141
* For multi-plane formats the above surfaces get merged into one plane for
1142
* each format plane, based on the required alignment only.
1143
*
1144
* Bits Parameter Notes
1145
* ----- ------------------------ ---------------------------------------------
1146
*
1147
* 7:0 TILE_VERSION Values are AMD_FMT_MOD_TILE_VER_*
1148
* 12:8 TILE Values are AMD_FMT_MOD_TILE_<version>_*
1149
* 13 DCC
1150
* 14 DCC_RETILE
1151
* 15 DCC_PIPE_ALIGN
1152
* 16 DCC_INDEPENDENT_64B
1153
* 17 DCC_INDEPENDENT_128B
1154
* 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1155
* 20 DCC_CONSTANT_ENCODE
1156
* 23:21 PIPE_XOR_BITS Only for some chips
1157
* 26:24 BANK_XOR_BITS Only for some chips
1158
* 29:27 PACKERS Only for some chips
1159
* 32:30 RB Only for some chips
1160
* 35:33 PIPE Only for some chips
1161
* 55:36 - Reserved for future use, must be zero
1162
*/
1163
#define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1164
1165
#define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1166
1167
/* Reserve 0 for GFX8 and older */
1168
#define AMD_FMT_MOD_TILE_VER_GFX9 1
1169
#define AMD_FMT_MOD_TILE_VER_GFX10 2
1170
#define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1171
1172
/*
1173
* 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1174
* version.
1175
*/
1176
#define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1177
1178
/*
1179
* 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1180
* GFX9 as canonical version.
1181
*/
1182
#define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1183
#define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1184
#define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1185
#define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1186
1187
#define AMD_FMT_MOD_DCC_BLOCK_64B 0
1188
#define AMD_FMT_MOD_DCC_BLOCK_128B 1
1189
#define AMD_FMT_MOD_DCC_BLOCK_256B 2
1190
1191
#define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1192
#define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1193
#define AMD_FMT_MOD_TILE_SHIFT 8
1194
#define AMD_FMT_MOD_TILE_MASK 0x1F
1195
1196
/* Whether DCC compression is enabled. */
1197
#define AMD_FMT_MOD_DCC_SHIFT 13
1198
#define AMD_FMT_MOD_DCC_MASK 0x1
1199
1200
/*
1201
* Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1202
* one which is not-aligned.
1203
*/
1204
#define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1205
#define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1206
1207
/* Only set if DCC_RETILE = false */
1208
#define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1209
#define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1210
1211
#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1212
#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1213
#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1214
#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1215
#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1216
#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1217
1218
/*
1219
* DCC supports embedding some clear colors directly in the DCC surface.
1220
* However, on older GPUs the rendering HW ignores the embedded clear color
1221
* and prefers the driver provided color. This necessitates doing a fastclear
1222
* eliminate operation before a process transfers control.
1223
*
1224
* If this bit is set that means the fastclear eliminate is not needed for these
1225
* embeddable colors.
1226
*/
1227
#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1228
#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1229
1230
/*
1231
* The below fields are for accounting for per GPU differences. These are only
1232
* relevant for GFX9 and later and if the tile field is *_X/_T.
1233
*
1234
* PIPE_XOR_BITS = always needed
1235
* BANK_XOR_BITS = only for TILE_VER_GFX9
1236
* PACKERS = only for TILE_VER_GFX10_RBPLUS
1237
* RB = only for TILE_VER_GFX9 & DCC
1238
* PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1239
*/
1240
#define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1241
#define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1242
#define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1243
#define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1244
#define AMD_FMT_MOD_PACKERS_SHIFT 27
1245
#define AMD_FMT_MOD_PACKERS_MASK 0x7
1246
#define AMD_FMT_MOD_RB_SHIFT 30
1247
#define AMD_FMT_MOD_RB_MASK 0x7
1248
#define AMD_FMT_MOD_PIPE_SHIFT 33
1249
#define AMD_FMT_MOD_PIPE_MASK 0x7
1250
1251
#define AMD_FMT_MOD_SET(field, value) \
1252
((uint64_t)(value) << AMD_FMT_MOD_##field##_SHIFT)
1253
#define AMD_FMT_MOD_GET(field, value) \
1254
(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1255
#define AMD_FMT_MOD_CLEAR(field) \
1256
(~((uint64_t)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1257
1258
#if defined(__cplusplus)
1259
}
1260
#endif
1261
1262
#endif /* DRM_FOURCC_H */
1263
1264