Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
PojavLauncherTeam
GitHub Repository: PojavLauncherTeam/mesa
Path: blob/21.2-virgl/src/amd/compiler/aco_ssa_elimination.cpp
4550 views
1
/*
2
* Copyright © 2018 Valve Corporation
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining a
5
* copy of this software and associated documentation files (the "Software"),
6
* to deal in the Software without restriction, including without limitation
7
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
* and/or sell copies of the Software, and to permit persons to whom the
9
* Software is furnished to do so, subject to the following conditions:
10
*
11
* The above copyright notice and this permission notice (including the next
12
* paragraph) shall be included in all copies or substantial portions of the
13
* Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21
* IN THE SOFTWARE.
22
*
23
*/
24
25
#include "aco_ir.h"
26
27
#include <algorithm>
28
#include <map>
29
#include <vector>
30
31
namespace aco {
32
namespace {
33
34
struct phi_info_item {
35
Definition def;
36
Operand op;
37
};
38
39
struct ssa_elimination_ctx {
40
/* The outer vectors should be indexed by block index. The inner vectors store phi information
41
* for each block. */
42
std::vector<std::vector<phi_info_item>> logical_phi_info;
43
std::vector<std::vector<phi_info_item>> linear_phi_info;
44
std::vector<bool> empty_blocks;
45
std::vector<bool> blocks_incoming_exec_used;
46
Program* program;
47
48
ssa_elimination_ctx(Program* program_)
49
: logical_phi_info(program_->blocks.size()), linear_phi_info(program_->blocks.size()),
50
empty_blocks(program_->blocks.size(), true),
51
blocks_incoming_exec_used(program_->blocks.size(), true), program(program_)
52
{}
53
};
54
55
void
56
collect_phi_info(ssa_elimination_ctx& ctx)
57
{
58
for (Block& block : ctx.program->blocks) {
59
for (aco_ptr<Instruction>& phi : block.instructions) {
60
if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi)
61
break;
62
63
for (unsigned i = 0; i < phi->operands.size(); i++) {
64
if (phi->operands[i].isUndefined())
65
continue;
66
if (phi->operands[i].physReg() == phi->definitions[0].physReg())
67
continue;
68
69
assert(phi->definitions[0].size() == phi->operands[i].size());
70
71
std::vector<unsigned>& preds =
72
phi->opcode == aco_opcode::p_phi ? block.logical_preds : block.linear_preds;
73
uint32_t pred_idx = preds[i];
74
auto& info_vec = phi->opcode == aco_opcode::p_phi ? ctx.logical_phi_info[pred_idx]
75
: ctx.linear_phi_info[pred_idx];
76
info_vec.push_back({phi->definitions[0], phi->operands[i]});
77
ctx.empty_blocks[pred_idx] = false;
78
}
79
}
80
}
81
}
82
83
void
84
insert_parallelcopies(ssa_elimination_ctx& ctx)
85
{
86
/* insert the parallelcopies from logical phis before p_logical_end */
87
for (unsigned block_idx = 0; block_idx < ctx.program->blocks.size(); ++block_idx) {
88
auto& logical_phi_info = ctx.logical_phi_info[block_idx];
89
if (logical_phi_info.empty())
90
continue;
91
92
Block& block = ctx.program->blocks[block_idx];
93
unsigned idx = block.instructions.size() - 1;
94
while (block.instructions[idx]->opcode != aco_opcode::p_logical_end) {
95
assert(idx > 0);
96
idx--;
97
}
98
99
std::vector<aco_ptr<Instruction>>::iterator it = std::next(block.instructions.begin(), idx);
100
aco_ptr<Pseudo_instruction> pc{
101
create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO,
102
logical_phi_info.size(), logical_phi_info.size())};
103
unsigned i = 0;
104
for (auto& phi_info : logical_phi_info) {
105
pc->definitions[i] = phi_info.def;
106
pc->operands[i] = phi_info.op;
107
i++;
108
}
109
/* this shouldn't be needed since we're only copying vgprs */
110
pc->tmp_in_scc = false;
111
block.instructions.insert(it, std::move(pc));
112
}
113
114
/* insert parallelcopies for the linear phis at the end of blocks just before the branch */
115
for (unsigned block_idx = 0; block_idx < ctx.program->blocks.size(); ++block_idx) {
116
auto& linear_phi_info = ctx.linear_phi_info[block_idx];
117
if (linear_phi_info.empty())
118
continue;
119
120
Block& block = ctx.program->blocks[block_idx];
121
std::vector<aco_ptr<Instruction>>::iterator it = block.instructions.end();
122
--it;
123
assert((*it)->isBranch());
124
aco_ptr<Pseudo_instruction> pc{
125
create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO,
126
linear_phi_info.size(), linear_phi_info.size())};
127
unsigned i = 0;
128
for (auto& phi_info : linear_phi_info) {
129
pc->definitions[i] = phi_info.def;
130
pc->operands[i] = phi_info.op;
131
i++;
132
}
133
pc->tmp_in_scc = block.scc_live_out;
134
pc->scratch_sgpr = block.scratch_sgpr;
135
block.instructions.insert(it, std::move(pc));
136
}
137
}
138
139
bool
140
is_empty_block(Block* block, bool ignore_exec_writes)
141
{
142
/* check if this block is empty and the exec mask is not needed */
143
for (aco_ptr<Instruction>& instr : block->instructions) {
144
switch (instr->opcode) {
145
case aco_opcode::p_linear_phi:
146
case aco_opcode::p_phi:
147
case aco_opcode::p_logical_start:
148
case aco_opcode::p_logical_end:
149
case aco_opcode::p_branch: break;
150
case aco_opcode::p_parallelcopy:
151
for (unsigned i = 0; i < instr->definitions.size(); i++) {
152
if (ignore_exec_writes && instr->definitions[i].physReg() == exec)
153
continue;
154
if (instr->definitions[i].physReg() != instr->operands[i].physReg())
155
return false;
156
}
157
break;
158
case aco_opcode::s_andn2_b64:
159
case aco_opcode::s_andn2_b32:
160
if (ignore_exec_writes && instr->definitions[0].physReg() == exec)
161
break;
162
return false;
163
default: return false;
164
}
165
}
166
return true;
167
}
168
169
void
170
try_remove_merge_block(ssa_elimination_ctx& ctx, Block* block)
171
{
172
/* check if the successor is another merge block which restores exec */
173
// TODO: divergent loops also restore exec
174
if (block->linear_succs.size() != 1 ||
175
!(ctx.program->blocks[block->linear_succs[0]].kind & block_kind_merge))
176
return;
177
178
/* check if this block is empty */
179
if (!is_empty_block(block, true))
180
return;
181
182
/* keep the branch instruction and remove the rest */
183
aco_ptr<Instruction> branch = std::move(block->instructions.back());
184
block->instructions.clear();
185
block->instructions.emplace_back(std::move(branch));
186
}
187
188
void
189
try_remove_invert_block(ssa_elimination_ctx& ctx, Block* block)
190
{
191
assert(block->linear_succs.size() == 2);
192
/* only remove this block if the successor got removed as well */
193
if (block->linear_succs[0] != block->linear_succs[1])
194
return;
195
196
/* check if block is otherwise empty */
197
if (!is_empty_block(block, true))
198
return;
199
200
unsigned succ_idx = block->linear_succs[0];
201
assert(block->linear_preds.size() == 2);
202
for (unsigned i = 0; i < 2; i++) {
203
Block* pred = &ctx.program->blocks[block->linear_preds[i]];
204
pred->linear_succs[0] = succ_idx;
205
ctx.program->blocks[succ_idx].linear_preds[i] = pred->index;
206
207
Pseudo_branch_instruction& branch = pred->instructions.back()->branch();
208
assert(branch.isBranch());
209
branch.target[0] = succ_idx;
210
branch.target[1] = succ_idx;
211
}
212
213
block->instructions.clear();
214
block->linear_preds.clear();
215
block->linear_succs.clear();
216
}
217
218
void
219
try_remove_simple_block(ssa_elimination_ctx& ctx, Block* block)
220
{
221
if (!is_empty_block(block, false))
222
return;
223
224
Block& pred = ctx.program->blocks[block->linear_preds[0]];
225
Block& succ = ctx.program->blocks[block->linear_succs[0]];
226
Pseudo_branch_instruction& branch = pred.instructions.back()->branch();
227
if (branch.opcode == aco_opcode::p_branch) {
228
branch.target[0] = succ.index;
229
branch.target[1] = succ.index;
230
} else if (branch.target[0] == block->index) {
231
branch.target[0] = succ.index;
232
} else if (branch.target[0] == succ.index) {
233
assert(branch.target[1] == block->index);
234
branch.target[1] = succ.index;
235
branch.opcode = aco_opcode::p_branch;
236
} else if (branch.target[1] == block->index) {
237
/* check if there is a fall-through path from block to succ */
238
bool falls_through = block->index < succ.index;
239
for (unsigned j = block->index + 1; falls_through && j < succ.index; j++) {
240
assert(ctx.program->blocks[j].index == j);
241
if (!ctx.program->blocks[j].instructions.empty())
242
falls_through = false;
243
}
244
if (falls_through) {
245
branch.target[1] = succ.index;
246
} else {
247
/* check if there is a fall-through path for the alternative target */
248
if (block->index >= branch.target[0])
249
return;
250
for (unsigned j = block->index + 1; j < branch.target[0]; j++) {
251
if (!ctx.program->blocks[j].instructions.empty())
252
return;
253
}
254
255
/* This is a (uniform) break or continue block. The branch condition has to be inverted. */
256
if (branch.opcode == aco_opcode::p_cbranch_z)
257
branch.opcode = aco_opcode::p_cbranch_nz;
258
else if (branch.opcode == aco_opcode::p_cbranch_nz)
259
branch.opcode = aco_opcode::p_cbranch_z;
260
else
261
assert(false);
262
/* also invert the linear successors */
263
pred.linear_succs[0] = pred.linear_succs[1];
264
pred.linear_succs[1] = succ.index;
265
branch.target[1] = branch.target[0];
266
branch.target[0] = succ.index;
267
}
268
} else {
269
assert(false);
270
}
271
272
if (branch.target[0] == branch.target[1])
273
branch.opcode = aco_opcode::p_branch;
274
275
for (unsigned i = 0; i < pred.linear_succs.size(); i++)
276
if (pred.linear_succs[i] == block->index)
277
pred.linear_succs[i] = succ.index;
278
279
for (unsigned i = 0; i < succ.linear_preds.size(); i++)
280
if (succ.linear_preds[i] == block->index)
281
succ.linear_preds[i] = pred.index;
282
283
block->instructions.clear();
284
block->linear_preds.clear();
285
block->linear_succs.clear();
286
}
287
288
bool
289
instr_writes_exec(Instruction* instr)
290
{
291
for (Definition& def : instr->definitions)
292
if (def.physReg() == exec || def.physReg() == exec_hi)
293
return true;
294
295
return false;
296
}
297
298
void
299
eliminate_useless_exec_writes_in_block(ssa_elimination_ctx& ctx, Block& block)
300
{
301
/* Check if any successor needs the outgoing exec mask from the current block. */
302
303
bool exec_write_used;
304
305
if (!ctx.logical_phi_info[block.index].empty()) {
306
exec_write_used = true;
307
} else {
308
bool copy_to_exec = false;
309
bool copy_from_exec = false;
310
311
for (const auto& successor_phi_info : ctx.linear_phi_info[block.index]) {
312
copy_to_exec |= successor_phi_info.def.physReg() == exec;
313
copy_from_exec |= successor_phi_info.op.physReg() == exec;
314
}
315
316
if (copy_from_exec)
317
exec_write_used = true;
318
else if (copy_to_exec)
319
exec_write_used = false;
320
else
321
/* blocks_incoming_exec_used is initialized to true, so this is correct even for loops. */
322
exec_write_used =
323
std::any_of(block.linear_succs.begin(), block.linear_succs.end(),
324
[&ctx](int succ_idx) { return ctx.blocks_incoming_exec_used[succ_idx]; });
325
}
326
327
/* Go through all instructions and eliminate useless exec writes. */
328
329
for (int i = block.instructions.size() - 1; i >= 0; --i) {
330
aco_ptr<Instruction>& instr = block.instructions[i];
331
332
/* We already take information from phis into account before the loop, so let's just break on
333
* phis. */
334
if (instr->opcode == aco_opcode::p_linear_phi || instr->opcode == aco_opcode::p_phi)
335
break;
336
337
/* See if the current instruction needs or writes exec. */
338
bool needs_exec = needs_exec_mask(instr.get());
339
bool writes_exec = instr_writes_exec(instr.get());
340
341
/* See if we found an unused exec write. */
342
if (writes_exec && !exec_write_used) {
343
instr.reset();
344
continue;
345
}
346
347
/* For a newly encountered exec write, clear the used flag. */
348
if (writes_exec)
349
exec_write_used = false;
350
351
/* If the current instruction needs exec, mark it as used. */
352
exec_write_used |= needs_exec;
353
}
354
355
/* Remember if the current block needs an incoming exec mask from its predecessors. */
356
ctx.blocks_incoming_exec_used[block.index] = exec_write_used;
357
358
/* Cleanup: remove deleted instructions from the vector. */
359
auto new_end = std::remove(block.instructions.begin(), block.instructions.end(), nullptr);
360
block.instructions.resize(new_end - block.instructions.begin());
361
}
362
363
void
364
jump_threading(ssa_elimination_ctx& ctx)
365
{
366
for (int i = ctx.program->blocks.size() - 1; i >= 0; i--) {
367
Block* block = &ctx.program->blocks[i];
368
eliminate_useless_exec_writes_in_block(ctx, *block);
369
370
if (!ctx.empty_blocks[i])
371
continue;
372
373
if (block->kind & block_kind_invert) {
374
try_remove_invert_block(ctx, block);
375
continue;
376
}
377
378
if (block->linear_succs.size() > 1)
379
continue;
380
381
if (block->kind & block_kind_merge || block->kind & block_kind_loop_exit)
382
try_remove_merge_block(ctx, block);
383
384
if (block->linear_preds.size() == 1)
385
try_remove_simple_block(ctx, block);
386
}
387
}
388
389
} /* end namespace */
390
391
void
392
ssa_elimination(Program* program)
393
{
394
ssa_elimination_ctx ctx(program);
395
396
/* Collect information about every phi-instruction */
397
collect_phi_info(ctx);
398
399
/* eliminate empty blocks */
400
jump_threading(ctx);
401
402
/* insert parallelcopies from SSA elimination */
403
insert_parallelcopies(ctx);
404
}
405
} // namespace aco
406
407